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 ABSTRACT 

           In this paper, a new numerical method for solving fractional pantograph differential equations is 

presented. The transformation matrix of Bessel polynomials to Taylor polynomials and Taylor operational 

matrix of fractional integration are used to transform the equation to a system of algebraic equations. 

Illustrative examples are included to demonstrate the validity and applicability of the technique. 
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1 INTRODUCTION 

            In recent years use of fractional-order derivative going very strongly in engineering and life 

sciences and also in other area of sciences such as thermal systems, turbulence, image processing, fluid 

flow, mechanics, viscoelastic and other areas of applications (Bai et al. 2007), (Miller et al., 1993), 

(Podlubny, 2002). Recently, the paper (Yzbasi, 2013) presented a collocation method based on the 

Bernstein polynomials for the fractional Riccati type differential equations, the authors (Kazem et al., 

2013), introduced fractional-order Legendre functions for solving fractional-order differential equations, 

the authors (Rahimkhani et al., 2017), applied generalized fractional-order Bernoulli wavelet for solving 

fractional pantograph differential equations. In this paper, we consider the fractional pantograph 

differential equation.  
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here, ,10  jq  and  ,l.,, jmj 10 ,0    

 

2 PRELIMINARIES AND NOTATIONS 

          We give some basic definitions and properties of the fractional calculus theory, which are used 

further in this paper (Podlubny, 2002). 
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Definition 2.1. The Riemann-Liouville fractional integral operator of order ,0  of a function f  is 

defined as 
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Definition 2.2. The fractional derivative of )(xf  in the Caputo sense is defined as 
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for ,0 , ,1  xmmm   where .
dt

d
D   

3 DESCRIPTION OF THE METHOD 

 The m-th degree truncated Bessel polynomials of first kind are defined by (Yuzbasi et al., 

2012) 
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where N is chosen the positive integer so that nN  and .,,1,0 Nn   We can transform the Bessel 

polynomials of first kind to in N-th degree Taylor basis functions. In matrix form as 

                                                             ),(~)( tDTtJ                                                            (3) 

D is the transformation matrix, which defined in (Yuzbasi et al., 2012) and 
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To solve Eq. (1) with conditions, we assume the highest order of derivative is 2, 
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For ,10    integrating from Eq. (5), we get 
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Also, by using Eq. (4) for ,21    we obtain 
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Here, by substituting Eqs. (4)-(8) in Eq. (1), we obtain a system of algebraic equations. Then, we 

collocate this system at the following points  

,1,,2,1       ,
)1(2

12





 Ni

N

i
ti   

 which can be solved this system for the unknown vector A by using Newton's iterative method. 

4 ERROR ESTIMATION 

           In this section, we investigate the convergence analysis of our proposed method. We assume that 

)(tf  is a sufficiently smooth function on ]1,0[  and )(xpN  is the interpolating polynomial to f  at 

points ,it  where Niti ,,1,0   ,   are the roots of the (N + 1)-degree shifted Chebyshev polynomial in 

],1,0[ then we have (Podlubny, 2002) 
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Theorem 4.1.  Suppose ]1,0[)( 1 NCtu  and )()( tJAtu T

N   be the approximate solution obtained by 

the present method in previous section. If )(
~~
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expansion of the exact solution ),(tu  where 
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where 
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Proof: We can write 
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since )(~ tuN  is the best approximation of ),(tu  we have 
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Also, we have 
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2||.||  is 2-norm of vectors. Therefore, by use of orthogonality property of Bessel polynomials, we 

get
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 According to Eq. (12)-(15), we determine the upper bound of error. 
 

5 NUMERICAL RESULTS 

In this section, two examples are given to demonstrate the applicability and accuracy of our 

methods. 
 
Example 5.1. Consider the fractional pantograph differential equation (Rahimkhani et al., 2017) 
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21   ttuDtuDtututuD             (16) 

subject to the initial conditions .0)0()0(  uu  In the case ,2 ,11    the exact solution is 

.)( 2ttu   By applying the proposed method with N = 1 and ,2 ,11    we obtain the exact solution. 

This example considered in other papers, results show that present method more accurate than these 

methods. Maximum absolute error with 2 ,11   on the interval [0,1] for Runge-Kutta method is 

,1034.5 3  the one-Leg   method is ,1081.2 1  the variational iteration method is 
31055.5   and 

generalized fractional-order Bernoulli wavelet method (FBWM) (Rahimkhani et al., 2017) is 

.1039.1 13  From Figure 1. (a), we see that, as   approaches 2, the numerical solutions converge to the 

exact solution. So that, the results of Runge-Kutta method, the one-Leg   method and the variational 

iteration method are considered in (Rahimkhani et al., 2017). 
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Figure 1: a) Approximation solutions for 11  and ,2,8.1,6.1,4.1  with N = 1 of Example 5.1. b) 

The comparison of )(tu  for ,1,9.0,8.0,7.0 with N = 3 of Example 5.2. 

 

 

Example 5.2. Consider the fractional pantograph differential equation (Rahimkhani et al., 2017) 

    ,10    ),exp()8.0exp()5.032.0()
5

4
(5.0)

5

4
(1.0)()(   ttttuDtututuD     (17) 

subject to the initial condition .0)0( u   In the case ,1   the exact solution is ).exp()( tttu   In 

Table 1, we compare the absolute errors of the proposed method for 1  with method in (Rahimkhani 

et al., 2017), variational iteration method and Runge-Kutta method. From Figure 1. (b), we see that, as   

approaches 1, the numerical solutions converge to the exact solution. 
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Table 1 Absolute error with different values of N with 1   for Example 5.2. 

t Present method 

N=3               N=6                N=8 

FBWM  

K=2, M=6 

Variational 

iteration method 

Runge-Kutta 

method 

0.1 2.22
410  5.46

810  2.30
1010  4.98

810  1.30
310  8.68

410  

0.3 1.24
410  4.59

810  1.10
810  7.78

910  2.63
310  1.90

310  

0.5 5.65
510  1.59

710  5.56
810  6.34

510  2.83
310  2.28

310  

0.7 4.54
510  4.66

710  1.47
710  4.36

510  2.39
310  2.27

310  

0.9 8.34
610  1.06 610  2.84

710  2.80
510  1.64

310  2.03
310  

 

6 CONCLUSION 

          In this work we derive operational matrix of fractional derivative and use it to solve pantograph 

differential equation of fractional order. Our numerical finding are compared with exact solutions and 

with the solutions obtained by some other methods. The results of numerical examples demonstrate that 

this method is more accurate than some existing methods. 
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