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Asbtract

For a graph G, the first and second multiplicative Zagreb indices are de-
fined as

∏
1(G) =

∏
v∈V (G) d(v)2 and

∏
2 =

∏
uv∈E(G) d(u)d(v), respectively,

where d(v) is the degree of the vertex v in the graph G. Let QTt(n) be the set
of t-generalized quasi-trees with n vertices. In this paper, we determined the
extremal elements from the set QTt(n) with respect to the first and second
multiplicative Zagreb indices.

keyword: t-generalized quasi trees, multiplicative Zagreb indices, degree
of vertex, extremal graphs.
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1. Introduction

Let G = (V (G), E(G)) be a graph, where V (G) is the set of vertices and
E(G) represents the set of edges of the graph G. All graphs considered in
this paper are finite, simple, connected and undirected. For notations and
terminology not defined here see [3]. The degree of a vertex v ∈ V (G) in a
graph G is the number of vertices adjacent to the vertex v in G, it is denoted
as d(v). The minimum degree in a graph G is denoted as δ(G). For a vertex
v ∈ V (G), the graph G − v is a graph obtained from G by removing the
vertex v and its incident edges. Let Vt denotes the subset of vertex set V (G)
with cardinality t in a graph G, then G − Vt is the graph obtained from G
by removing all the t vertices in the subset Vt and its incident edges.

In a graph G, if there exist a vertex v ∈ V such that G − v is a tree
then such a vertex v is called a quasi vertex and the graph G is called a
quasi-tree. Similarly, a graph G is called a t-generalized quasi tree, if there
exist a subset Vt ⊂ V (G) such that G− Vt is a tree but for any other subset
Vt−1 ⊂ V (G), G−Vt−1 is not a tree. The vertices in Vt are called the t−quasi
vertices or simply quasi vertices. In a tree, deletion of any vertex with de-
gree one will deduce another tree it follows that any tree is a quasi-tree.
Trees are called trivial quasi-trees and other quasi-trees are called non-trivial
quasi-trees. QTt(n) is the collection of nontrivial t−generalized quasi-trees
with n vertices. The complete, path, star, double star graphs and tree with n
vertices are denoted as Kn, Pn, Sn, Sp,q (where p+q = n) and Tn, respectively.

Let G1 and G2 be two vertex disjoint graphs. G1 + G2 denoted the join
graph of G1 and G2 with vertex set V (G1 + G2) = V (G1) ∪ V (G2) and the
edge set E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv|u ∈ V (G1), v ∈ V (G2)}. Let
u, v ∈ V (G2), G1•u,vG2 represents the graph having vertex set V (G1)∪V (G2)
and obtained by joining every vertex of G1 to vertices u and v of G2.

In 1972, Gutman and Trinajstic̀ [8] introduced the oldest degree based
topological indices under the name first and second Zagreb index and defined
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as

M1(G) =
∑

v∈V (G)

d(v)2

M2(G) =
∑

uv∈E(G)

d(u)d(v)

In 2010, Todeschini and Consonni [12] proposed the multiplicative ver-
sions of Zagreb indices. The first and second multiplicative Zagreb indices of
a graph G are defined as∏

1

(G) =
∏

v∈V (G)

d(v)2

∏
2

(G) =
∏

uv∈E(G)

d(u)d(v) =
∏

v∈V (G)

d(v)d(v)

For history, mathematical properties and applications of the Zagreb in-
dices we refer [2, 4, 6, 7, 9, 11, 13, 14].

In [1] and [10] Jamil et. al. determined the bounds on first and second
Zagreb and Zeroth-order general Randic̀ index for t-generalized quasi-trees,
respectively. In this paper, we investigated the bounds on multiplicative
Zagreb indices and characterized the extremal graphs.

2. Main Results

In this section, first we will discuss some preliminaries lemmas which will
be useful in later to prove our main theorems.

By definition of first and second Multiplicative Zagreb indices we have
the following result.

Lemma 1. Let u, v ∈ V (G) such that uv /∈ E(G), then∏
i

(G+ uv) >
∏
i

(G), i = 1, 2∏
i

(G− uv) <
∏
i

(G), i = 1, 2
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Lemma 2. Let n,m,r and xi, where 1 ≤ i ≤ n, are positive integers such
that x1 + x2 + · · ·+ xn = r.
i) The function f(x1, x2, · · · , xn; r) =

∏n
i=1 x

2
i is maximum if and only if

x1, x2, · · · , xn are almost equal, i.e. |xi − xj| ≤ 1 for every 1 ≤ i, j ≤ n.
ii) If x1 ≥ x2 ≥ m, the minimum of the function f(x1, · · · , xn; r) reached
only when x1 = r−m−n+ 2, x2 = m and xj = 1 for 3 ≤ j ≤ n. The second
minimum is reached only for x1 = r−m− n+ 1, x2 = m+ 1 and xj = 1 for
3 ≤ j ≤ n.

Proof. i) For x > 0, g(x) = x2

(x+1)2
is a strictly increasing function. If

x ≥ y + 2 > 0 we deduce x − 1 > y, this implies g(x − 1) > g(y), or
x2y2 < (x − 1)2(y + 1)2. It follows that f(x1, x2, · · · , xn; r) =

∏n
i=1 x

2
i is

maximum if and only if x1, x2, · · · , xn are almost equal.
ii) If x ≥ y ≥ 2 then x > y − 1, then g(x) > g(y − 1) this implies that
x2y2 > (x+ 1)2(y − 1)2.

Lemma 3. Let n,m,r and xi, where 1 ≤ i ≤ n, are positive integers such
that x1 + x2 + · · ·+ xn = r.
i) The function f(x1, x2, · · · , xn; r) =

∏n
i=1 x

xi
i is minimum if and only if

x1, x2, · · · , xn are almost equal, i.e. |xi − xj| ≤ 1 for every 1 ≤ i, j ≤ n.
ii) If x1 ≥ x2 ≥ m, the maximum of the function f(x1, · · · , xn; r) reached
only for x1 = r −m− n+ 2, x2 = m+ 1 and xj = 1 for 3 ≤ j ≤ n.

Proof. i) For x > 0, h(x) = xx

(x+1)(x+1) is a strictly decreasing function.

If x ≥ y + 2 > 0 we deduce x − 1 > y, this implies h(x − 1) < h(y), or

xxyy < (x−1)(x−1)(y+1)(y+1). It follows that f(x1, x2, · · · , xn; r) =
∏n

i=1 x
(xi)
i

is minimum if and only if x1, x2, · · · , xn are almost equal.
ii) If x ≥ y ≥ 2 then x > y − 1, then h(x) < g(y − 1) this implies that
xxyy < (x+ 1)(x+1)(y − 1)(y−1).

Lemma 4. Let QTt(n). If
∏

i(G), i=1,2, is minimum then there exists a
spanning subgraphs K of G such that

∏
i(G) ≥ ∏i(K) and for any quasi

vertex z of G we have dG(z) ≥ dK(z)=2 and z is adjacent in K to at least
two other vertices in G−X, where x is the set of quasi vertices.

Proof. By definition of a t-generalized quasi tree, there exists a subset
Vt(G) ⊂ V (G) such that G− Vt is a tree and for any Vt−1 ⊂ V (G), G− Vt−1
is not a tree. It follows that d(z) ≥ 2 for any vertex z ∈ Vt(G). If m denotes
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the number of edges of G, then m ≥ 2t+ n− t− 1 = n+ t− 1 and equality
holds if and only if d(z) = 2 for any vertex z ∈ Vt and no two vertices in Vt
are adjacent. By Lemma 1, by deleting some edges it follows the existence
of the graph K, which is not necessarily in QTt(n).

Lemma 5. Let G ∈ QTt(n), where n ≥ 3, t ≥ 1 and
∏

i(G) (i=1,2) is as
large as possible and z is a quasi vertex of G then, d(z)=n-1.

Proof. LetG ∈ QTt(n),
∏

i(G) is as large as possible and z be a quasi vertex
of G. Suppose on contrary d(z) < n−1, then there is a vertex x ∈ V (G) such
that xz /∈ E(G). Now G+ xz is also in QTt(n) and

∏
i(G+ xz) >

∏
i(G), a

contradiction, hence d(z) = n− 1.

Lemma 6. Let G be a graph and u,w and x be three vertices of G such
that d(u) < d(w), xw /∈ E(G) and xu ∈ E(G). If we obtained a graph
G′ = G− xu+ xw then ∏

1

(G′) <
∏
1

(G)

Proof. By the definition of first multiplicative Zagreb index∏
1

(G′)−
∏
1

(G) =
∏

v∈V (G)
v 6=u,u 6=w

d(v)2
[
(d(u)− 1)2(d(w) + 1)2 − d(u)2d(w)2

]
=

∏
v∈V (G)
v 6=u,u 6=w

d(v)2
(
d(u)− d(w)− 1

)(
2d(u)d(w) + d(u)− d(w)− 1

)
< 0

Theorem 7. Let G ∈ QTt(n), where n ≥ 3 and t ≥ 1 then∏
1

(G) ≤ (n− 1)2t(t+ 1)4(t+ 2)2(n−t−2)

equality holds if and only if G = Kt + Pn−t.

Proof. Let G ∈ QTt(n) has the maximum
∏

1(G). Let Vt ⊂ V (G) be
the set of t quasi vertices. As

∏
1(G + uv) >

∏
1(G) for any uv /∈ E(G)
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this implies that Vt forms a complete graph. Then by Lemma 5 we have
G = Kt + Tn−t.∏

1

(G) =
∏
1

(Kt + Tn−t)

=
∏

v∈V (Kt)

(d(v) + n− t)2 ·
∏

v∈V (Tn−t)

(d(v) + t)2

= (n− 1)2t ·
∏

v∈V (Tn−t)

(d(v) + t)2

By Lemma 2,
∏

v∈V (Tn−t)
(d(v) + t)2 is maximum if and only if the degrees of

Tn−t are almost equal i.e. Tn−t = Pn−t. So we obtained∏
v∈V (Tn−t)

(d(v) + t)2 = (t+ 1)4(t+ 2)2(n−t−2)

Hence the right hand inequality∏
1

(G) ≤ (n− 1)2t(t+ 1)4(t+ 2)2(n−t−2)

and the equality holds if and only if G = Kt + Pn−t.

Theorem 8. Let G ∈ QTt(n), where n ≥ 3 and t ≥ 1. We have
i) If t = 1 then

(n− 1)2(t+ 1)24t ≤
∏
1

(G)

equality holds if and only if Kt •u,v Sn−1, where u is the center of Sn−1 and v
is a pendant vertex of Sn−1.
ii) If n ≥ 4 and t ≥ 2 then

(n− 2)2(t+ 2)24t ≤
∏
1

(G)

equality holds if and only if G = Kt •u,v Sn−t−2,2, where u and v are vertices
of degree n− t− 2 and 2 of Sn−t−n,2(u, v), respectively.
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Proof. Let G ∈ QTt(n) has the minimum
∏

1(G). Let Vt ⊂ V (G) be the
set of t quasi vertices. As,

∏
1(G − uv) <

∏
1(G) for any uv ∈ E(G) this

implies that Vt forms an empty graph, i.e. Kt. But by Lemma 4 every
quasi vertex has degree 2 and by Lemma 6 quasi vertices must have common
neighbors y1, y2 /∈ Vt(G), since G is minimum. We represent the graph G as
G = Kt •y1,y2 Tn−t∏

1

(Kt • Tn−t) =
∏

v∈V (Kt•Tn−t)

d(v)2

=
∏

v∈V (Kt)

d(v)2 ·
∏

v∈V (Tn−t)

v 6=y1,v 6=y2

d(v)2 · (d(y1) + t)2 · (d(y2) + t)2

By Lemma 2, the product∏
v∈V (Tn−t)

v 6=y1,v 6=y2

d(v)2 · (d(y1) + t)2 · (d(y2) + t)2 (1)

is minimum only if Tn−t = Sn−t and y1 and y2 are the center and a pendent
vertex of Sn−t. For t = 1, this graph is a t−generalized quasi-tree, but for
t ≥ 2 this property is no longer valid. We must consider the second minimum
of Eq. 1. This time H ∈ QTt(n), G = H and Tn−t = Sn−t−2,2(u, v), y1 = u
and y2 = v. Hence the result.

Theorem 9. Let G ∈ QTt(n), where n ≥ 3 and t ≥ 1 then∏
2

(G) ≤ (n− 1)(n−1)(t+1)(t+ 1)(t+1)(n−t−1)

equality holds if and only if G = Kk + Sn−k.

Proof. Let G ∈ QTt(n) has the maximum
∏

2(G). Let Vt ⊂ V (G) be the set
of t-quasi vertices. As

∏
2(G+ uv) >

∏
2(G) for any uv /∈ E(G) this implies

that Vt forms a complete graph. Then by Lemma 5 we have G = Kt + Tn−t.∏
2

(G) =
∏
2

(Kt + Tn−t)

=
∏

v∈V (Kt)

(d(v) + n− t)d(v) ·
∏

v∈V (Tn−t)

(d(v) + t)d(v)

= (n− 1)(n−1)t ·
∏

v∈V (Tn−t)

(d(v) + t)d(v)
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By Lemma 3, the product ∏
v∈V (Tn−t)

(d(v) + t)d(v)

is maximum only if Tn−t = Sn−t. Hence, we obtained∏
2

(G) ≤ (n− 1)(n−1)(t+1)(t+ 1)(t+1)(n−t−1)

equality holds if and only if G = Kt + Sn−t

Theorem 10. Let G ∈ QTt(n), where n ≥ 3 and t ≥ 1 then∏
2

(G) ≥ 22(n−2t−2) · 36(t−1)

equality holds if and only if G has n-2t+2 vertices of degree 2 and 2t-2 vertices
of degree 3..

Proof. Suppose that
∏

2(G) is minimum. By Lemma 4 there exists a span-
ning subgraph K of G such that

∏
2(G) ≥ ∏2(K) and every quasi vertex z

has dK(z) = 2, which implies that
∑

v∈V (G) dK(v) = 2(n+t−1). By Lemma 3∏
2(K) is minimum if the degrees of K are almost equal to 2 or 3. Let ni is the

number of vertices having degree i we can write 2n2+3(n−n2) = 2n+2t−2,
which implies n2 = n− 2t + 2 and n3 = n− n2 = 2t− 2. Consequently, the
minimum of

∏
2(G) is reached if and only if there exist n − 2t + 2 vertices

(including quasi vertices) of degree 2 and 2t− 2 vertices of degree 3 (in this
case K = G). Such a graph is depicted in Fig. 1.

t− 1 cycles n− 3t vertices

Figure 1: An example of t-generalized quasi-tree with almost equal degree ver-
tices.
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