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 ABSTRACT 

The partial differential equation with an integral condition in one, two or three space dimensions, 

arises in many physical phenomena. In this paper, we propose a numerical scheme to solve parabolic and 

hyperbolic equations with classical and integral boundary conditions using collocation points and 

approximating the solution using radial basis functions (RBFs). This method will be used to reduce the 

problem to a set of algebraic equations. The results of numerical experiments are presented, and are 

compared with the results of other methods to confirm the validity and applicability of the presented 

scheme. 
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1 INTRODUCTION 

Various problems arising in chemistry and physics can be modeled by nonlocal initial-boundary 

value problems with integral boundary conditions. However, these PDEs subject to nonclassical conditions 

were analyzed by mathematicians, but improvements of the existing techniques should be done to get more 

precise solutions. This class of boundary value problems has been attentioned in [2,8] for parabolic and in 

[1,3,5] for hyperbolic partial differential equations. It is important to be able to convert non-local boundary 

value problems to a more desirable form such as Bernstein Tau technique [10], Legendre collocation 

method [9], Crank-Nicolson scheme [8], parallel algorithm [2], non-polynomial spline method [1], optimal 

explicit method [3] and radial basis function based finite difference method [5].  

Consider the following non-classic parabolic equation: 

 (1)  ( , ) ( , ) ( , ) , 0 1,0 1,     t xxu x t u x t Q x t x t    

with the initial condition: 

(2)             ( ,0) ( ) , 0 1,  u x f x x  
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and nonlocal boundary conditions: 

(3)         
1

1 1 1
0

(0, ) ( , ) ( , ) ( ), 0 1,   u t k x t u x t dx g t t  

(4)                        
1

2 2 2
0

(1, ) ( , ) ( , ) ( ), 0 1.   u t k x t u x t dx g t t 

Also consider the following hyperbolic equation: 

(5)                      ( , ) ( , ) ( , ) , 0 1,0 1,     tt xxu x t u x t Q x t x t  

with the initial conditions: 

(6)                         ( ,0) ( ), ( ,0) ( ), 0 1,   tu x f x u x h x x  

and the nonlocal boundary conditions of integral type (3) and (4) where 
1( , ), ( ), ( ), ,Q x t f x h x   

2 1 2 1, ( , ) , ( , ) , ( )k x t k x t g t  and 2 ( )g t  r known functions, while the function u should be determined. 

2 RADIAL BASIS FUNCTION 

Radial basis functions (RBFs), in irregular domains or higher dimensional geometry, have attracted 

attention of analysts in science. Commonly used types of these functions include 2( || x x || ) :  ir   

 Multiquadric(MQ):   
2 2( )  r r    

 Inverse Quadratic(IQ):  
2 2

1
( )

( )



r

r



  

 Inverse Multiquadric(IMQ):  
2 2

1
( ) 


r

r



  

 Gaussian(GA):   
2 2

( )  rr e    

Where    is a free positive parameter, often referred to as the shape parameter. The optimal choice of the 

shape parameter is still an open question and it is most often selected by brute force. We remark that the 

RBFs method has received more and more attention in recent years for solving problems [6]. 

 

2.1 Definition of RBF 

Let 
2{ , 0},||.||   R x R x  denotes the Euclidean norm and :  R R  be a continuous 

function with (0) 0 . A radial basis function on 
dR  is a function of the form: 

2( ) (|| x x || ), i ix    

which depends only on the distance between x dR and a fixed point x  d

i R . So that the radial basis 

function i  is radially symmetric about the center x i . Let r  be the Euclidean distance between a fixed 

point x  d

i R  and x dR , i.e. 2|| x x || i , [4]. 
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2.2 Numerical procedure 

Let 
2 ([0,1] [0,1]) X L  and 

00 0 10 1 0{ ( , ) ,..., ( , ) , ( , ) ,..., ( , ) ,..., ( , ) ,..., ( , )}N N N NNx t x t x t x t x t x t X       

be the set of Gaussian radial basis functions where 
2 2 2(( ) ( ) )

( , )
   

 i jx x t t

ij x t e


  and  

00 0 10 1 0{ ( , ) ,..., ( , ) , ( , ) ,..., ( , ) ,..., ( , ) ,..., ( , )}, N N N NNH span x t x t x t x t x t x t        

suppose that h  be an arbitrary element in X . Since H  is a finite dimensional vector space, h  has the 

unique best approximation out of H  as NNh H , that is [7]: 

2 2,|| || || || .    NNg H h h h g   

Since ,NNh H  there exist unique coefficients 00 0 10 1 0,..., , ,..., ,..., ,...,N N N NNv v v v v v  such that: 

0 0

( , ) ( , ) ( , ) ,
 

    
N N

T T

NN ij ij NN NN

i j

h h v x t V x t x t V   

where V  and ( , )NN x t  are vectors with the form: 

          (7)                                   
00 0 10 1 0[ ,..., , ,..., ,..., ,..., ] , T

N N N NNV v v v v v v  

         (8)              
00 0 10( , ) [ ( , ),..., ( , ), ( , )..., ( , )] .  T

NN N NNx t x t x t x t x t     

In the rest of this section we discuss the application of the radial basis functions for solving 

nonlocal equation. Let , 0,1,..., ; , 0,1,..., .   i j

i j
x i N t j N

N N
 The solution of the problem is 

considered as: 

         (9)               
2 2 2(( ) ( ) )

0 0 0 0

( , ) ,
   

   

   i j

N N N N
x x t t

ij ij ij

i j i j

u x t e


    

where ( , )ij x t  is the GA-RBF and 
ij  are unknown which remain to be determined. By using Eq. (9) in 

(1)-(6), the collocation technique is used for finding unknown 
ij . We collocate (1) in ( 1) N N   

interior points {( , ) | 1,..., 1, 1,..., },  l kx t l N k N  we get: 

        (10)                       ( , ) ( , ) ( , ). t l k xx l k l ku x t u x t Q x t  

Now, collocating (2) in 1N  points , 1,2,..., 1 lx l N , we obtain: 

        (11)                          ( ,0) ( ).l lu x f x  

By collocating (3) and (4) in 1N  points , 0,1,2,..., ,kt k N  we have: 

        (12)                
1

1 1 1
0

(0, ) ( ( , ) ( , ) ) | ( ) ,  kk t t ku t k x t u x t dx g t  

        (13)         
1

2 2 2
0

(1, ) ( ( , ) ( , ) ) | ( ).  kk t t ku t k x t u x t dx g t 

Also we can collocate (5) in ( 1) ( 1)  N N  interior points {( , ) | 1,..., 1, 2,..., },  l kx t l N k N we get: 

        (14)                   ( , ) ( , ) ( , ). tt l k xx l k l ku x t u x t Q x t  

we obtain: , 1,2,..., 1, lx l Npoints  1NCollocating (6) in  

        (15)  ( ,0) ( ) , ( ,0) ( ), 0 1.   l l t l lu x f x u x h x x  

Eqs. (10)-(13) or (14),(15),(12) and (13) give an ( 1) ( 1)  N N  system of linear equations, which can be 

solved for , 0,1,..., , 0,1,..., . ij i N j N  So the approximate solution of problem (1)-(6) can be found. 
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3 NUMERICAL EXAMPLES 

In this section we give some computational results of numerical experiments with the method 

described in the preceding sections, to support our theoretical discussion. 

 

Example 1. Consider the nonlocal initial-boundary value problem [10,9] 

        (16)                 

2( 1) sin ( ) , 0 1,0 1

( ,0) sin ( ) ,

(0, ) 0, (1, ) 0.

       



  

t

t xxu u e x x t

u x x

u t u t

 

   

The exact solution of this problem is 

         (17)                            ( , ) sin ( ). tu x t e x  

In Table 1 we give the absolute errors for GA radial basis function method with 0.083 dx dt  

and 0.1  and 0.062 dx dt  with 0.3.  From this table one can see the efficiency of the 

proposed scheme with respect to the Bernstein Tau method of [10] and Legendre collocation method of 

[9]. The exact and estimated solutions at 0.25x  are given in Fig. 1. 

Table 1: Absolute values of error for u  from Example 1. 

( , )x t  Method [10] Method [9] present method with 
12, 0.1 16, 0.3   N N   

(0.1,0.1)  2.31 06e   7.87 05e   1.89 07e   3.55 13e   

(0.2,0.2)  2.52 06e   2.05 04e   9.28 07e   2.54 13e   

(0.3,0.3)  2.87 06e   3.11 04e   6.05 07e   1.31 13e   

(0.4,0.4)  3.20 06e   3.79 04e   6.50 07e   5.78 14e   

(0.5,0.5)  3.56 06e   4.03 05e   7.07 08e   2.11 14e   

(0.6,0.6)  3.97 06e   3.85 04e   2.81 07e   7.98 15e   

(0.7,0.7)  4.47 06e   3.28 04e   5.27 07e   2.86 15e   

(0.8,0.8)  5.02 06e   2.38 04e   6.64 07e   2.92 15e   

(0.9,0.9)  6.08 06e   1.2 04e   2.74 07e   7.98 16e   

(1,1)  7.63 30e   1.32 07e   3.00 07e   3.14 16e   

 

Figure. 1. Analytical and estimated solutions with 0.083 dx dt  and 0.1  at 0.25x for Example 1. 

 



 

106 

Example 2. Consider the nonlocal initial-boundary value problem [2,8] 

        (18)          

2

1 1

0 0

( 1) (sin ( ) cos ( )) , 0 1,0 1

( ,0) sin ( ) cos ( ) ,

2sin ( ) ( , ) 0, 2cos ( ) ( , ) 0.




       


 


  
  

t

t xxu u e x x x t

u x x x

x u x t dx x u x t dx

  

 

 

   

The exact solution of this problem is 

        (19)          ( , ) (sin ( ) cos( )). tu x t e x x   

In Table 2 we give the absolute errors at 0.25x  for GA radial basis function method with 

0.1 dx dt  and 0.6  and 0.062 dx dt  with 1.1.  We compared our result together with the 

absolute errors for Crank-Nicolson scheme [8] and parallel algorithm [2]. The exact and estimated 

solutions at 0.25x are given in Fig. 2. 

Table 2: Absolute values of error for u  from Example 2. 

t  Method [8] Method [2] present method with 

12, 0.1 16, 0.3   N N   

0.1   5.17 05e   4.8 06e   6.8 09e   1.73 11e   

0.2   6.19 05e   4.7 06e   4.75 09e   4.55 12e   

0.3   6.49 05e   3.9 06e   4.30 09e   3.11 13e   

0.4   6.45 05e   4.8 06e   3.98 09e   1.96 12e   

0.5   6.21 05e   5.3 06e   3.63 09e   2.41 12e   

0.6   5.64 05e   3.7 06e   3.28 09e   2.41 12e   

0.7   4.99 05e   2.3 06e   2.99 09e   2.27 12e   

0.8   4.49 05e   1.6 06e   2.68 09e   2.08 12e   

0.9  4.08 05e   1.1 06e   2.50 09e   1.89 12e   

1  3.64 05e   1.0 06e   1.81 09e   2.25 12e   

 

Figure. 2. Analytical and estimated solutions with 0.1 dx dt  and 0.6  at 0.25x  for Example 2. 



 

107 

Example 3. Consider the nonlocal initial-boundary value problem [1,3,5] 

 (20)                                           
2

1

0

0, 0 1,0 1

( ,0) , ( ,0) cos ( ),

(0, ) sin ( ), (1, ) ( , ) .


     


 


 

 

tt xx

t

u u x t

u x x u x x

u t t u t u x t dx

 



  

The exact solution of this problem is 

       (21)                    ( , ) cos( )sin ( ).u x t x t    

In Table 3 we give the absolute errors at 0.5t  for Gaussian radial basis function with 

0.090 dx dt   and 0.062 dx dt with 0.4.  We compared our method together with non-

polynomial spline method [1], optimal explicit method [3] and radial basis function based finite 

difference method [5]. The exact and estimated solutions at 0.5t  are given in Fig. 3.  

Table 3: Absolute values of error for u   from Example 3. 

x Method [1] Method [3] Method [5] present method with 

11, 0.4 16, 0.4   N N   

0.1  7.3 07e  3.3 05e   2.61 06e   2.03 09e   4.03 15e   

0.2  1.1 06e  3.0 05e   3.99 08e   2.08 09e   1.60 15e   

0.3  1.0 06e  3.2 05e   4.61 06e   7.93 10e   2.99 15e   

0.4  6.6 07e  3.1 05e   6.65 06e   1.73 10e   5.89 15e   

0.5  7.9 13e  3.3 05e   4.72 12e   1.30 10e   2.50 15e   

0.6  5.6 07e  3.4 05e   6.65 06e   5.45 11e   3.66 15e   

0.7  1.0 06e  3.1 05e   4.61 06e   6.54 10e   5.66 15e   

0.8  1.1 06e  3.2 05e   3.99 08e   1.87 09e   9.64 16e   

0.9  8.5 07e  3.4 05e   2.61 06e   2.03 09e   4.33 15e   

1.0  9.9 08e  3.2 05e   1.83 10e   2.05 10e   5.97 15e   
 

 

Figure. 3. Analytical and estimated solutions with 0.090 dx dt  and 0.4  at 0.5t for Example 3. 
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Example 4. Consider the nonlocal initial-boundary value problem [5] 

       (22)                                              

1

0

0, 0 1,0 1

( ,0) cos ( ), ( ,0) 0,

(0, ) cos ( ), ( , ) 0.


     


 


 

 

tt xx

t

u u x t

u x x u x

u t t u x t dx





      

The exact solution of this problem is 

       (23)                                       ( , ) cos( )cos( ).u x t x t   

In Table 4 we give the absolute errors at 0.0001t  for Gaussian radial basis function with 

0.125 dx dt  and 0.067 dx dt  with 0.8.  We compared our result together with the absolute 

errors for radial basis function based finite difference method [5]. The exact and estimated solutions at 

0.0001t  are given in Fig. 4. 

Table 4: Absolute values of error for u  from Example 4. 

x Method [5] present method with 
MQ-RBF IMQ-RBF GA-RBF 8, 0.8 15, 0.8   N N   

0.1  8.18 06e  7.66 06e   1.61 05e  1.43 07e   3.82 16e   

0.2  1.17 05e  1.09 05e   2.29 05e   7.55 08e   1.06 16e   

0.3  1.07 05e  1.00 05e   2.10 05e   3.62 08e   1.60 16e   

0.4  6.29 06e  5.91 06e   1.24 05e   1.48 08e   4.7 17e   

0.5  1.27 09e  5.33 11e   1.37 10e   1.80 12e   7.90 18e   

0.6  6.29 06e  5.91 06e   1.24 05e   1.48 08e   1.60 16e   

0.7  1.07 05e  1.00 05e   2.10 05e   3.62 08e   9.75 17e   

0.8  1.17 05e  1.09 05e   2.29 05e   7.55 08e   2.70 16e   

0.9  8.18 06e  7.66 06e   1.61 05e   1.43 07e   2.17 16e   

1.0  1.11 10e  6.99 12e   2.10 11e   2.03 11e   7.68 17e   
 

 

Figure. 4. Analytical and estimated solutions with 0.125 dx dt  and 0.8  at 0.0001t  for Example 4. 
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4 CONCLUSION 

A RBF-based numerical method has been proposed for the solution of two space dimensional linear 

parabolic and hyperbolic equations subject to appropriate initial and nonlocal boundary conditions. This 

numerical method uses collocation points and approximates the solution using GA-RBFs. The obtained 

results showed that this approach using GA-RBFs can solve the problem effectively. 
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