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 ABSTRACT 

For a given network G(V, A, c) and two specified nodes s and t, the inverse eccentric problem is to 

modify the edge length vector c as little as possible so that 𝑡 becomes the furthest node from 𝑠. In this paper, 

we study the inverse eccentric problem when the underlying network is a tree and the length modifications 

are measured by the Chebyshev distance. We present a polynomial-time algorithm based on the binary 

search technique to solve the problem. 
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1 INTRODUCTION 

Suppose that 𝐺(𝑉, 𝐴, 𝑐) is a connected and undirected network in which 𝑉 is the set of n nodes, 𝐴 =
{𝑒1, 𝑒2, … , 𝑒𝑚} is the set of edges. Each edge 𝑒𝑗 is associated with a nonnegative length 𝑐𝑗 . We designate a 

specified node 𝑠 as the origin and another node 𝑡 as the destination. For every two nodes 𝑣 and 𝑣′, we denote 

by 𝑑𝑐(𝑣, 𝑣′) the length of the shortest path from 𝑣 to 𝑣′ with respect to the length vector 𝑐. We say that 𝑡 is 

an eccentric node of 𝑠 if 𝑡 is the furthest node from 𝑠, i.e., 𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥{𝑑𝑐(𝑠, 𝑣) ∶  𝑣 ∈ 𝑉 }. The problem 

of finding the eccentric node of a node has some applications [3]. As an example, consider the location 

problem where one is interested in positioning a facility in a location such that maximum distance travelled 

to the facility is minimized. The problem can be solved by finding an eccentric node. Such a node is a 

possible candidate for the location of the facility. 

The inverse eccentric problem is to adjust minimally the edge length vector 𝑐 in such a way that 𝑡 

becomes an eccentric node of 𝑠. Various types of inverse combinatorial optimization problems are studied 

in the literature. We refer the reader to Demange and Monnot (2010) and Heuberger (2004) for a survey. 

To the best of our knowledge, the inverse eccentric problem is considered only when the modifications are 

measured by the Manhattan distance (see Nguyen and Chassein (2014)). In this paper, we consider the 

problem on trees under the Chebyshev distance. We design a polynomial-time algorithm to solve the 

problem. Since there exists a unique path 𝑃𝑠𝑣 from 𝑠 to each node 𝑣 in tree, the inverse eccentric problem 

under the Chebyshev distance can be formulated as follows: 

 

min 𝑧 = max
𝑒𝑗∈𝐴

|𝑐̂𝑗 − 𝑐𝑗| (1a) 
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∑ 𝑐̂𝑗

𝑒𝑗∈𝑃𝑠𝑣

≤ ∑ 𝑐̂𝑗

𝑒𝑗∈𝑃𝑠𝑡

   ∀𝑣 ∈ 𝑉, (1b) 

max{0, 𝑐𝑗 − 𝑙𝑗} ≤ 𝑐̂𝑗 ≤ 𝑐𝑗 + 𝑢𝑗    ∀𝑒𝑗 ∈ 𝐴, (1c) 

 

where 𝑐̂ is the new nonnegative length vector to be determined, 𝑙𝑗 and 𝑢𝑗 are respectively the lower and 

upper bounds on length modifications of each edge 𝑒𝑗. It is remarkable that the bound constraints (1c) 

guarantee the nonnegativity of 𝑐̂. 

2 AN EFFICIENT ALGORITHM 

To obtain a feasible solution of the problem (1), one has to increase the length of some edges 𝑒𝑗 ∈ 𝑃𝑠𝑡 and 

decrease the length of some edges 𝑒𝑗 ∉ 𝑃𝑠𝑡 to satisfy the constraints (1b). Suppose that  𝛼𝑗 = |𝑐̂𝑗 − 𝑐𝑗| for 

every 𝑒𝑗 ∈ 𝐴. Therefore, we have 

 𝛼𝑗 = 𝑐̂𝑗 − 𝑐𝑗 for every 𝑒𝑗 ∈ 𝑃𝑠𝑡. 

 𝛼𝑗 = 𝑐𝑗 − 𝑐̂𝑗 for every 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡. 

By assuming 𝜆 = max
𝑒𝑗∈𝐴

{|𝑐̂𝑗 − 𝑐𝑗}, we can convert the problem (1) into the following linear 

programming problem: 

 
min 𝑧 = 𝜆 (2a) 

∑ 𝛼𝑗

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

   ∀𝑣 ∈ 𝑉, (2b) 

0 ≤ 𝛼𝑗 ≤ 𝑢𝑗    ∀𝑒𝑗 ∈ 𝑃𝑠𝑡 , (2c) 

0 ≤ 𝛼𝑗 ≤ 𝑙𝑗    ∀𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡 , (2d) 

0 ≤ 𝛼𝑗 ≤ 𝜆   ∀𝑒𝑗 ∈ 𝐴, (2e) 

   

where 𝑃𝑠𝑣Δ𝑃𝑠𝑡 = (𝑃𝑠𝑣 ∪ 𝑃𝑠𝑡) − (𝑃𝑠𝑣 ∩ 𝑃𝑠𝑡). We define a special solution 𝛼𝜆 of the problem (2) as follows: 

 

𝛼𝑗
𝜆 = {

min{𝜆, 𝑢𝑗}     𝑒𝑗 ∈ 𝑃𝑠𝑡 ,

min{𝜆, 𝑙𝑗}     𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡 .
 

 

(3) 

 

It is notable that 𝛼𝜆 satisfies the constraints (2c), (2d), (2e) and its objective value is 𝜆. Thus, 𝛼𝜆 is feasible 

only if it satisfies the constraints (2b). 

 

Lemma 2.1. If the problem (2) contains a feasible solution with objective value less than or equal 

to 𝜆, then the solution 𝛼𝜆
 defined by (3) is feasible to the problem. 

Proof. Suppose that the problem (2) contains a feasible solution whose objective value is at most 

𝜆. Based on the definition of 𝑎𝜆 and the bound constraints of the problem,  𝛼𝑗
𝜆 ≥ 𝛼𝑗 for every 𝑒𝑗 ∈

𝐴.This implies that 

∑ 𝛼𝑗
𝜆

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝛼𝑗
 

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

 

for each 𝑣 ∈ 𝑉. Therefore, 𝛼𝜆 is feasible to the problem (2).          

 

Based on Lemma 2.1, we can restrict our attention to solutions 𝛼𝜆
 and look for an optimal 

solution among such solutions. The following corollary states formally this result. 
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Corollary 2.2. If the optimal value of the problem (2) is 𝜆∗, then  𝛼𝜆∗
 is an optimal solution to it. 

 

Corollary 2.3. The problem (2) is feasible if  𝛼𝜆𝑚𝑎𝑥 satisfies the constraints (2b) where 𝜆𝑚𝑎𝑥 =
𝑚𝑎𝑥{𝑚𝑎𝑥{𝑙𝑗: 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} , 𝑚𝑎𝑥 {𝑢𝑗: 𝑒𝑗 ∈ 𝑃𝑠𝑡}}. 

Proof. The result is immediate based on Lemma 2.1 and the fact that  𝛼𝜆𝑚𝑎𝑥 = 𝛼𝜆 for each 𝜆 >
𝜆𝑚𝑎𝑥.                  

 

Note that if 𝜆 = 0 is the optimal value of the problem (2), then 𝑡 is an eccentric node of 𝑠 with 

respect to the initial length vector 𝑐. As an immediate result of Corollary 2.2, the problem (2) is 

reduced to finding the least value 𝜆 ∈ [0, 𝜆𝑚𝑎𝑥] so that the solution 𝛼𝜆 satisfies the constraints 

(2b). Suppose that 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑚 is a sorted list of elements of the set {𝑙𝑗 ∶  𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} ∪

{𝑢𝑗 ∶  𝑒𝑗 ∈ 𝑃𝑠𝑡} ∪ {0}. Obviously, 𝜆0 = 0 and 𝜆𝑚 = 𝜆𝑚𝑎𝑥. Our proposed algorithm contains two 

phases. In the first phase, the algorithm finds an interval (𝜆𝑖−1, 𝜆𝑖] for some 𝑖 ∈ {1,2, … , 𝑚} so that 

the optimal value belongs to it. In the second phase, the optimal objective value is computed by 

using the result obtained from the first phase. For finding an interval (𝜆𝑖−1, 𝜆𝑖]  containing the 

optimal objective value, it is sufficient to look for an index 𝑖 ∈ {1,2, … , 𝑚} so that 𝛼𝜆𝑖−1 is not 

feasible while 𝛼𝜆𝑖  is feasible. This index 𝑖 is identified by using the binary search technique. 

Suppose that the algorithm has identified such the index 𝑖. In the second phase, the algorithm 

computes the optimal objective value 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖]. Based on Corollary 2.2, 𝛼𝜆∗
is an optimal 

solution of the problem. By Substituting 𝛼𝜆∗
 in the constraints (2b), for each 𝑣 ∈ 𝑉, we have 

∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

≤ ∑ 𝛼𝜆∗

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

 

= ∑ min{𝜆∗, 𝑙𝑗}

𝑒𝑗∈𝑃𝑠𝑣\𝑃𝑠𝑡

+ ∑ min{𝜆∗, 𝑢𝑗}

𝑒𝑗∈𝑃𝑠𝑡\𝑃𝑠𝑣

  

= 𝜆∗|(𝑃𝑠𝑣\𝑃𝑠𝑡)\𝐴𝜆∗

| + ∑ 𝑙𝑗

𝑒𝑗∈(𝑃𝑠𝑣\𝑃𝑠𝑡)∩𝐴𝜆∗
 

 

+𝜆∗|(𝑃𝑠𝑡\𝑃𝑠𝑣)\𝐴𝜆∗
| + ∑ 𝑢𝑗

𝑒𝑗∈(𝑃𝑠𝑡\𝑃𝑠𝑣)∩𝐴𝜆∗
 

 

= 𝜆∗|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗
| + ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗
 

 

where 𝐴𝜆∗
= {𝑒𝑗 ∈ 𝐴: 𝜆𝑗 < 𝜆∗} = {𝑒𝑗 ∈ 𝐴: 𝜆𝑗 < 𝜆𝑖}.  Consequently,  

𝜆∗ ≥
1

|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗|
( ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

− ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗
 

) . 

Note that the right handed side of the last inequality is dependent on 𝑣 ∈ 𝑉. Therefore, the optimal 

objective value can be computed as follows: 

𝜆∗ = max
𝑣∈𝑉

{
1

|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗|
( ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

− ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗
 

)} 

 

(4) 

The fact that 𝛼𝜆𝑖−1 is not feasible together with the feasibility of 𝛼𝜆𝑖 guarantee that 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖]. 
The second phase computes the optimal objective value of the problem (2) by using (4). We are 

ready to state formally our proposed algorithm (see Algorithm 1). 
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Algorithm 1. An efficient algorithm to solve the problem (2) 

Input: A tree 𝐺(𝑉, 𝐴) with the edge length vector 𝑐; the lower bound 𝑙𝑗 and the upper bound 

𝑢𝑗 for each 𝑒𝑗 ∈ 𝐴. 

Step 1: Sort elements of {𝑙𝑗 ∶  𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} ∪ {𝑢𝑗 ∶  𝑒𝑗 ∈ 𝑃𝑠𝑡} ∪ {0} in increasing order. 

Suppose that 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑚 is the sorted list. 

Step 2: If  𝛼𝜆𝑚 is not feasible, then the problem (2) is infeasible (see Corollary 2.3) and stop. 

Step 3: If   𝛼𝜆0 is feasible, then this solution is an optimal solution to the problem (2) and 

stop. 

Step 4: Set 𝑙 =  0 and 𝑢 =  𝑚. 

Step 5: Set 𝑖 = [
𝑙+𝑢

2
]. If the solution  𝛼𝜆𝑖 is feasible, then set 𝑢 =  𝑖 else set 𝑙 =  𝑖. Repeat 

this step until 𝑢 − 𝑙 > 1. 

Step 6: Set 𝑖 =  𝑢. Compute 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖] by using (4) and stop. 

Output: If the problem (2) is feasible then, the solution 𝛼𝜆∗
is an optimal solution to the 

problem with the optimal value 𝜆∗. 

 

We now analyze the complexity of the algorithm. Obviously, the bottleneck operation is Step 5 

which uses the binary search technique. The number of iterations of this step is 𝑂(log 𝑚)  =
 𝑂(log 𝑛). On the other hand, the feasibility of 𝛼𝜆𝑖 can be checked in 𝑂(𝑛2) time. We thus establish 

the following result. 

 

Theorem 2.4. Algorithm 1 solves the problem (2) in 𝑂(𝑛2 log 𝑛). 

 

3 CONCLUDING REMARKS 

In this paper, we considered the inverse eccentric problem on trees under the Chebyshev distance 

and presented an efficient algorithm to solve the problem. Our proposed algorithm cannot be 

extended in the case that the network is not a tree. Therefore, it is meaningful to consider the 

inverse eccentric problem under the Chebyshev distance in the general case. 
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