

Proceedings of the 2nd International Conference on Combinatorics, Cryptography and

Computation (I4C2017)

824

An efficient algorithm for the inverse eccentric problem under the

Chebyshev distance

Javad Tayyebi, Seyed Mohammad Reza Kazemi

Department of Industrial Engineering, Birjand University of Technology,

 javadtayyebi@birjandut.ac.ir, kazemi@birjandut.ac.ir

 ABSTRACT

For a given network G(V, A, c) and two specified nodes s and t, the inverse eccentric problem is to

modify the edge length vector c as little as possible so that 𝑡 becomes the furthest node from 𝑠. In this paper,

we study the inverse eccentric problem when the underlying network is a tree and the length modifications

are measured by the Chebyshev distance. We present a polynomial-time algorithm based on the binary

search technique to solve the problem.

KEYWORDS: Eccentric problem; Inverse problem; Chebyshev distance.

Mathematics Subject Classification (2010): 90C27, 90C35, 11Y16.

1 INTRODUCTION

Suppose that 𝐺(𝑉, 𝐴, 𝑐) is a connected and undirected network in which 𝑉 is the set of n nodes, 𝐴 =
{𝑒1, 𝑒2, … , 𝑒𝑚} is the set of edges. Each edge 𝑒𝑗 is associated with a nonnegative length 𝑐𝑗 . We designate a

specified node 𝑠 as the origin and another node 𝑡 as the destination. For every two nodes 𝑣 and 𝑣′, we denote

by 𝑑𝑐(𝑣, 𝑣′) the length of the shortest path from 𝑣 to 𝑣′ with respect to the length vector 𝑐. We say that 𝑡 is

an eccentric node of 𝑠 if 𝑡 is the furthest node from 𝑠, i.e., 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑑𝑐(𝑠, 𝑣) ∶ 𝑣 ∈ 𝑉 }. The problem

of finding the eccentric node of a node has some applications [3]. As an example, consider the location

problem where one is interested in positioning a facility in a location such that maximum distance travelled

to the facility is minimized. The problem can be solved by finding an eccentric node. Such a node is a

possible candidate for the location of the facility.

The inverse eccentric problem is to adjust minimally the edge length vector 𝑐 in such a way that 𝑡

becomes an eccentric node of 𝑠. Various types of inverse combinatorial optimization problems are studied

in the literature. We refer the reader to Demange and Monnot (2010) and Heuberger (2004) for a survey.

To the best of our knowledge, the inverse eccentric problem is considered only when the modifications are

measured by the Manhattan distance (see Nguyen and Chassein (2014)). In this paper, we consider the

problem on trees under the Chebyshev distance. We design a polynomial-time algorithm to solve the

problem. Since there exists a unique path 𝑃𝑠𝑣 from 𝑠 to each node 𝑣 in tree, the inverse eccentric problem

under the Chebyshev distance can be formulated as follows:

min 𝑧 = max
𝑒𝑗∈𝐴

|𝑐̂𝑗 − 𝑐𝑗| (1a)

mailto:javadtayyebi@birjandut.ac.ir
mailto:kazemi@birjandut.ac.ir

825

∑ 𝑐̂𝑗

𝑒𝑗∈𝑃𝑠𝑣

≤ ∑ 𝑐̂𝑗

𝑒𝑗∈𝑃𝑠𝑡

 ∀𝑣 ∈ 𝑉, (1b)

max{0, 𝑐𝑗 − 𝑙𝑗} ≤ 𝑐̂𝑗 ≤ 𝑐𝑗 + 𝑢𝑗 ∀𝑒𝑗 ∈ 𝐴, (1c)

where 𝑐̂ is the new nonnegative length vector to be determined, 𝑙𝑗 and 𝑢𝑗 are respectively the lower and

upper bounds on length modifications of each edge 𝑒𝑗. It is remarkable that the bound constraints (1c)

guarantee the nonnegativity of 𝑐̂.

2 AN EFFICIENT ALGORITHM

To obtain a feasible solution of the problem (1), one has to increase the length of some edges 𝑒𝑗 ∈ 𝑃𝑠𝑡 and

decrease the length of some edges 𝑒𝑗 ∉ 𝑃𝑠𝑡 to satisfy the constraints (1b). Suppose that 𝛼𝑗 = |𝑐̂𝑗 − 𝑐𝑗| for

every 𝑒𝑗 ∈ 𝐴. Therefore, we have

 𝛼𝑗 = 𝑐̂𝑗 − 𝑐𝑗 for every 𝑒𝑗 ∈ 𝑃𝑠𝑡.

 𝛼𝑗 = 𝑐𝑗 − 𝑐̂𝑗 for every 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡.

By assuming 𝜆 = max
𝑒𝑗∈𝐴

{|𝑐̂𝑗 − 𝑐𝑗}, we can convert the problem (1) into the following linear

programming problem:

min 𝑧 = 𝜆 (2a)

∑ 𝛼𝑗

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

 ∀𝑣 ∈ 𝑉, (2b)

0 ≤ 𝛼𝑗 ≤ 𝑢𝑗 ∀𝑒𝑗 ∈ 𝑃𝑠𝑡 , (2c)

0 ≤ 𝛼𝑗 ≤ 𝑙𝑗 ∀𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡 , (2d)

0 ≤ 𝛼𝑗 ≤ 𝜆 ∀𝑒𝑗 ∈ 𝐴, (2e)

where 𝑃𝑠𝑣Δ𝑃𝑠𝑡 = (𝑃𝑠𝑣 ∪ 𝑃𝑠𝑡) − (𝑃𝑠𝑣 ∩ 𝑃𝑠𝑡). We define a special solution 𝛼𝜆 of the problem (2) as follows:

𝛼𝑗
𝜆 = {

min{𝜆, 𝑢𝑗} 𝑒𝑗 ∈ 𝑃𝑠𝑡 ,

min{𝜆, 𝑙𝑗} 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡 .

(3)

It is notable that 𝛼𝜆 satisfies the constraints (2c), (2d), (2e) and its objective value is 𝜆. Thus, 𝛼𝜆 is feasible

only if it satisfies the constraints (2b).

Lemma 2.1. If the problem (2) contains a feasible solution with objective value less than or equal

to 𝜆, then the solution 𝛼𝜆
 defined by (3) is feasible to the problem.

Proof. Suppose that the problem (2) contains a feasible solution whose objective value is at most

𝜆. Based on the definition of 𝑎𝜆 and the bound constraints of the problem, 𝛼𝑗
𝜆 ≥ 𝛼𝑗 for every 𝑒𝑗 ∈

𝐴.This implies that

∑ 𝛼𝑗
𝜆

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝛼𝑗

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

≥ ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

for each 𝑣 ∈ 𝑉. Therefore, 𝛼𝜆 is feasible to the problem (2). 

Based on Lemma 2.1, we can restrict our attention to solutions 𝛼𝜆
 and look for an optimal

solution among such solutions. The following corollary states formally this result.

826

Corollary 2.2. If the optimal value of the problem (2) is 𝜆∗, then 𝛼𝜆∗
 is an optimal solution to it.

Corollary 2.3. The problem (2) is feasible if 𝛼𝜆𝑚𝑎𝑥 satisfies the constraints (2b) where 𝜆𝑚𝑎𝑥 =
𝑚𝑎𝑥{𝑚𝑎𝑥{𝑙𝑗: 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} , 𝑚𝑎𝑥 {𝑢𝑗: 𝑒𝑗 ∈ 𝑃𝑠𝑡}}.

Proof. The result is immediate based on Lemma 2.1 and the fact that 𝛼𝜆𝑚𝑎𝑥 = 𝛼𝜆 for each 𝜆 >
𝜆𝑚𝑎𝑥. 

Note that if 𝜆 = 0 is the optimal value of the problem (2), then 𝑡 is an eccentric node of 𝑠 with

respect to the initial length vector 𝑐. As an immediate result of Corollary 2.2, the problem (2) is

reduced to finding the least value 𝜆 ∈ [0, 𝜆𝑚𝑎𝑥] so that the solution 𝛼𝜆 satisfies the constraints

(2b). Suppose that 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑚 is a sorted list of elements of the set {𝑙𝑗 ∶ 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} ∪

{𝑢𝑗 ∶ 𝑒𝑗 ∈ 𝑃𝑠𝑡} ∪ {0}. Obviously, 𝜆0 = 0 and 𝜆𝑚 = 𝜆𝑚𝑎𝑥. Our proposed algorithm contains two

phases. In the first phase, the algorithm finds an interval (𝜆𝑖−1, 𝜆𝑖] for some 𝑖 ∈ {1,2, … , 𝑚} so that

the optimal value belongs to it. In the second phase, the optimal objective value is computed by

using the result obtained from the first phase. For finding an interval (𝜆𝑖−1, 𝜆𝑖] containing the

optimal objective value, it is sufficient to look for an index 𝑖 ∈ {1,2, … , 𝑚} so that 𝛼𝜆𝑖−1 is not

feasible while 𝛼𝜆𝑖 is feasible. This index 𝑖 is identified by using the binary search technique.

Suppose that the algorithm has identified such the index 𝑖. In the second phase, the algorithm

computes the optimal objective value 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖]. Based on Corollary 2.2, 𝛼𝜆∗
is an optimal

solution of the problem. By Substituting 𝛼𝜆∗
 in the constraints (2b), for each 𝑣 ∈ 𝑉, we have

∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

≤ ∑ 𝛼𝜆∗

𝑒𝑗∈𝑃𝑠𝑣Δ𝑃𝑠𝑡

= ∑ min{𝜆∗, 𝑙𝑗}

𝑒𝑗∈𝑃𝑠𝑣\𝑃𝑠𝑡

+ ∑ min{𝜆∗, 𝑢𝑗}

𝑒𝑗∈𝑃𝑠𝑡\𝑃𝑠𝑣

= 𝜆∗|(𝑃𝑠𝑣\𝑃𝑠𝑡)\𝐴𝜆∗

| + ∑ 𝑙𝑗

𝑒𝑗∈(𝑃𝑠𝑣\𝑃𝑠𝑡)∩𝐴𝜆∗

+𝜆∗|(𝑃𝑠𝑡\𝑃𝑠𝑣)\𝐴𝜆∗
| + ∑ 𝑢𝑗

𝑒𝑗∈(𝑃𝑠𝑡\𝑃𝑠𝑣)∩𝐴𝜆∗

= 𝜆∗|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗
| + ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗

where 𝐴𝜆∗
= {𝑒𝑗 ∈ 𝐴: 𝜆𝑗 < 𝜆∗} = {𝑒𝑗 ∈ 𝐴: 𝜆𝑗 < 𝜆𝑖}. Consequently,

𝜆∗ ≥
1

|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗|
(∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

− ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗

) .

Note that the right handed side of the last inequality is dependent on 𝑣 ∈ 𝑉. Therefore, the optimal

objective value can be computed as follows:

𝜆∗ = max
𝑣∈𝑉

{
1

|(𝑃𝑠𝑣Δ𝑃𝑠𝑡)\𝐴𝜆∗|
(∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑣

− ∑ 𝑐𝑗

𝑒𝑗∈𝑃𝑠𝑡

− ∑ 𝜆𝑗

𝑒𝑗∈(𝑃𝑠𝑣Δ𝑃𝑠𝑡)∩𝐴𝜆∗

)}

(4)

The fact that 𝛼𝜆𝑖−1 is not feasible together with the feasibility of 𝛼𝜆𝑖 guarantee that 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖].
The second phase computes the optimal objective value of the problem (2) by using (4). We are

ready to state formally our proposed algorithm (see Algorithm 1).

827

Algorithm 1. An efficient algorithm to solve the problem (2)

Input: A tree 𝐺(𝑉, 𝐴) with the edge length vector 𝑐; the lower bound 𝑙𝑗 and the upper bound

𝑢𝑗 for each 𝑒𝑗 ∈ 𝐴.

Step 1: Sort elements of {𝑙𝑗 ∶ 𝑒𝑗 ∈ 𝐴\𝑃𝑠𝑡} ∪ {𝑢𝑗 ∶ 𝑒𝑗 ∈ 𝑃𝑠𝑡} ∪ {0} in increasing order.

Suppose that 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑚 is the sorted list.

Step 2: If 𝛼𝜆𝑚 is not feasible, then the problem (2) is infeasible (see Corollary 2.3) and stop.

Step 3: If 𝛼𝜆0 is feasible, then this solution is an optimal solution to the problem (2) and

stop.

Step 4: Set 𝑙 = 0 and 𝑢 = 𝑚.

Step 5: Set 𝑖 = [
𝑙+𝑢

2
]. If the solution 𝛼𝜆𝑖 is feasible, then set 𝑢 = 𝑖 else set 𝑙 = 𝑖. Repeat

this step until 𝑢 − 𝑙 > 1.

Step 6: Set 𝑖 = 𝑢. Compute 𝜆∗ ∈ (𝜆𝑖−1, 𝜆𝑖] by using (4) and stop.

Output: If the problem (2) is feasible then, the solution 𝛼𝜆∗
is an optimal solution to the

problem with the optimal value 𝜆∗.

We now analyze the complexity of the algorithm. Obviously, the bottleneck operation is Step 5

which uses the binary search technique. The number of iterations of this step is 𝑂(log 𝑚) =
 𝑂(log 𝑛). On the other hand, the feasibility of 𝛼𝜆𝑖 can be checked in 𝑂(𝑛2) time. We thus establish

the following result.

Theorem 2.4. Algorithm 1 solves the problem (2) in 𝑂(𝑛2 log 𝑛).

3 CONCLUDING REMARKS

In this paper, we considered the inverse eccentric problem on trees under the Chebyshev distance

and presented an efficient algorithm to solve the problem. Our proposed algorithm cannot be

extended in the case that the network is not a tree. Therefore, it is meaningful to consider the

inverse eccentric problem under the Chebyshev distance in the general case.

REFERENCES

Demange M. and Monnot J. (2010) An introduction to inverse combinatorial problems, In: Vangelis Th.

Paschos, Paradigms of Combinatorial Optimization (Problems and New approaches), Wiley,London-

Hoboken.

Heuberger C. (2004) Inverse combinatorial optimization: a survey on problems, methods, and results.

Journal of Combinatorial Optimization 8, 329-361.

Mneimneh M. and Sakallah K. (2003) Computing vertex eccentricity in exponentially large graphs: QBF

formulation and solution. In: Proceedings of 6th international conference SAT03. Volume 2919 of LNCS.

Nguyen K.T. and Chassein A. (2014). Inverse eccentric vertex problem on networks. Central European

Journal of Operations Research, DOI 10.1007/s10100-014-0367-2.

