

Proceedings of the 2nd International Conference on Combinatorics, Cryptography and Computation (I4C2017)

Erratum to on the total graph of a finite commutative ring

Ali Ramin , Ahmad Abbasi Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran ramin2068@webmail.guilan.ac.ir, aabbasi@guilan.ac.ir

ABSTRACT

In 2012, Shekarriz et al. studied the total graph of a finite commutative ring and found the necessary and sufficient conditions for $\tau(R) \square C(R)$, but they have errors in its proof. In this paper, we examine this proof and reveal its errors.

KEYWORDS: Total graph, Cayley graph, Maximal cliques.

1 INTRODUCTION

Let *R* be a commutative ring with nonzero identity, R^+ its additive group, Z(R) its set of zerodivisors and $Cay(R^+, Z(R), 0)$, which is denoted by C(R), its Cayley graph. The total graph of *R* was introduced by Anderson and Badawi in [2], as the graph with all elements of *R* as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. Afterwards, in [3], [5] and [6], the authors determined some basic properties of total graph and studied $\tau(R)$, where *R* is a finite commutative ring.

In [1], G. Aalipour and S. Akbari studied the Cayley graph of a commutative ring with respect to its zero-divisors and determined some properties of it, where C(R) is a graph whose vertices are elements of R and in which two distinct vertices x and y are joined by an edge if and only if $x - y \in Z(R)$, $\{0\}$. But, prior to this, in [4], Shekarriz et al. tried to answer the naturally arising question: Under what conditions on a finite commutative ring R, do we have $\tau(R) \square C(R)$?

Before addressing the above question, let us remind some well-known facts about commutative rings: If R is an Artinian ring, then either R is local with its maximal ideal m, or $R \cong R_1 \oplus \cdots \oplus R_k$, where $k \ge 2$ and each R_i is a local ring with maximal ideal m_i ; this decomposition is unique up to permutation of factors, see [4, Theorem 8.7]. Moreover, if R is finite, then every element of R is either a unit or a zero-divisor. Furthermore, if R is also a local ring with maximal ideal m, then m = Z(R), there exists a prime p such that the characteristic of the residue field R / m is p, and |R|, |m|, and

 $|R / \mathbf{m}|$ are all powers of p. Moreover, if $R \cong R_1 \oplus \cdots \oplus R_k$, then (z_1, \cdots, z_k) is a zero-divisor in R if and only if there is an integer i with $1 \le i \le k$, such that $z_i \in Z(R_i)$.

The residue field R_i / m_i , is denoted by F_i , and $|F_i|$, is shown by f_i . A *clique* in a graph Γ is a subset of pairwise adjacent vertices. In this paper, we followed the notations used in the main article [5].

Shekarriz et al. answered the isomorphic question in [5, Theorem 5.2]: Let R be a finite commutative ring, then $\tau(R) \square C(R)$ if and only if at least one of the following conditions is true: (a) $R \cong R_1 \oplus \cdots \oplus R_k$, where $k \ge 1$ and each R_i is a local ring of an even order; (b) $R \cong R_1 \oplus \cdots \oplus R_k$, where $k \ge 2$ and each R_i is a local ring and $f_1 = 2$. But, they have errors in its proof when they conclude $\tau(R) \square C(R)$, supposed (a) and (b) do not hold for a finite commutative ring R. In what follows, we indicate that counting the number of vertices of a maximal clique of $\tau(R)$ is very complicated in this case. We also show errors underlying their proof.

2 COUNTING THE NUMBER OF VERTICES OF A MAXIMAL CLIQUE IN $\tau(R)$

In this section, an example will be provided to demonstrate defects of proof given in [5, Theorem 5.2], and we investigate the method of proof too. Hereinafter, the equivalence class $Z(R_i) + a_i$, is denoted by $[a_i]$.

Example 2.1. Let $R = F_4 \oplus F_4 \oplus \Box_3$ and $(1,1,1), (0,0,-1) \in R$, denoted by 1 and x, respectively. Then $\tau(F_4 \oplus F_4 \oplus \Box_3)$ has five maximal cliques, all containing the edge $\{1,x\}$, which are given separately as follows:

(a) Let $c_1 = ([1], [0], \square_3)$, $c_2 = (F_4, [0], [-1])$ and $c_3 = ([1], F_4, [1])$, then $c_1 \cup c_2 \cup c_3$ forms a maximal clique, where

$$|c_1 \cup c_2 \cup c_3| = |c_1| + |c_2| + |c_3| - |c_1 \cap c_2| - |c_1 \cap c_3| - |c_2 \cap c_3| + |c_1 \cap c_2 \cap c_3|$$

= 3+4+4-1-1-0+0=9.

By permuting the first two components, a new maximal clique will be generated: $([0], [1], \Box_3) \cup ([0], F_4, [-1]) \cup (F_4, [1], [1])$. Since, in this example, $|R|/f_1 = |R|/f_2$, these two cliques will be equal in size. Moreover, in these maximal cliques, vertices 1 and x are already counted.

- (b) Let $c_1 = ([1], F_4, [1])$ and $c_2 = ([0], F_4, [-1])$, then $c_1 \cup c_2$ forms a maximal clique, where $|c_1 \cup c_2| = |c_1| + |c_2| |c_1 \cap c_2| = 4 + 4 0 = 8$. By permuting the first two components, a new maximal clique will be generated: $(F_4, [1], [1]) \cup (F_4, [0], [-1])$. Since, in this example, $|R|/f_1 = |R|/f_2$, these two cliques will be equal in size. Moreover, in these maximal cliques, vertices 1 and x are already counted.
- (c) Let $c_1 = ([1], [0], [0])$, $c_2 = ([0], [1], [0])$, $c_3 = ([1], [1], [1])$ and $c_4 = ([0], [0], [-1])$, then $c_1 \cup c_2 \cup c_3 \cup c_4$ forms a clique of maximal size 4. It should be noted that, the mutual intersection of every pair of c_i 's is empty, for $i = 1, \dots, 4$, and vertices 1 and x are already counted.

Remark 2.2. Let $R = R_1 \oplus R_2 \oplus R_3$ where R_1 and R_2 are even such that $R_i / Z(R_i) \cong F_{2'}$, for i = 1, 2 and $t \ge 2$, and R_3 is odd. Then the layouts of equivalence classes of maximal cliques containing the edge $\{1, x\}$ are as the above example.

Now, let us return to the main subject concerning the flaws in the proof of [5, Theorem 5.2]. The findings discussed in the proof are well-reasoned until they were going to show that for $i = 1, \dots, k$, the edge $\{1, x\}$ does not belong to a maximal $(|R|/f_i)$ -clique in $\tau(R)$.

In that proof, it is supposed that $\{y_s | s \in S\}$ is a set of elements of R of maximal size which are adjacent to both 1 and x and also to themselves. It is also cited that if $\{y_s | s \in S\} \cup \{1, x\}$ forms a clique of maximal size $(|R|/f_i)$, then there must be $1 \le m_1 < m_2 < \cdots < m_q \le k$; $0 \le q \le k$ such that all y_s 's belong to

(2.1)
$$R_1 \oplus \cdots \oplus R_{m_1-1} \oplus [a_{m_1}] \oplus R_{m_1+1} \oplus \cdots \oplus R_{m_q-1} \oplus [a_{m_q}] \oplus R_{m_q+1} \oplus \cdots \oplus R_k$$

Now, according to this direct sum and ambiguity in the assumption, y_s 's could be chosen in three following ways:

- (1) y_s 's belong to (2.1) in which a_{m_i} and m_i are fixed for all $i = 1, \dots, q$. Based on maximal cliques in the example 2.1(a), 2.1(b) and 2.1(c), $\{y_s \mid s \in S\} \cup \{1, x\}$ is not a maximal clique. It shows that the argument can not be true.
- (2) y_s 's belong to (2.1) in which only m_i are fixed for all $i = 1, \dots, q$. Now, example 2.1(a) shows that $\{y_s \mid s \in S\} \cup \{1, x\}$ is not a maximal clique.
- (3) y_s 's belong to (2.1) in such away a_{m_i} , m_i and q can vary. Thus q will be replaced with q_{λ} in (2.1), for some $\lambda \in \Lambda$ such that $1 \le q_{\lambda} \le k$, and $y_{S_{\lambda}} = \{y_s \mid s \in S_{\lambda}\}$'s are contained in the representation (2.1), where $S_{\lambda} \subseteq S$ such that for all $s \in S_{\lambda}$, the elements of $y_{S_{\lambda}}$ in (2.1) have a fixed representation (i.e. $m_{i_{\lambda}}$ and q_{λ} are fixed). In Example 2.1, $y_{S_{\lambda}}$ is the set of vertices of a

clique c_i . Based on deduction in [5, Theorem 5.2], $q_{\lambda} \neq 1$. If $q_{\lambda} \ge 2$, then $|y_{S_{\lambda}}| = \frac{|K|}{\prod_{i=1}^{q_{\lambda}} f_{m_i}}$,

and the required number is calculated by $|\bigcup y_{s_1}|$ as in Example 2.1.

The counting method given in [5, Theorem 5.2] implies that the authors have considered either conditions (1) or (2). Moreover, in the proof, where it is supposed that $2 \le q \le k$, if $[a_{m_p}] = [-1_{m_p}]$ and $[a_{m_v}] = [-x_{m_v}]$ for some $v \ne p$, $1 \le p \le j$ and $j+1 \le v \le k$, then 1 may belong to $\{y_s \mid s \in S\}$. Correspondingly, if $1 \le v \le j$ and $j+1 \le p \le k$, then x may belong to $\{y_s \mid s \in S\}$. Therefore, it is generally incorrect to add 2 in counting the total number of vertices of maximal cliques.

REFERENCES

[1] G. G. Aalipour, S. Akbari, On the Cayley graph of a commutative ring with respect to its zerodivisors, \textit{Comm.Algebra}, to appear.

[2] Anderson, D. F., Badawi, A. (2008). The total graph of a commutative ring. \textit{J. Algebra} 320:2706-2719.

[3] Asir, T., Tamizh Chelvam, T. (2013). On the Total Graph and Its Complement of a Commutative Ring. \textit{Comm. Algebra} 41(10):3820-3835.

[4] Atiyah, M. F., Macdonald, I. G. (1969). Introduction to Commutative Algebra. London: Addison-Wesley Publishing Co.

[5] Shekarriz, M. H., Shirdareh Haghighi, M. H., Sharif, H. (2012). On the total graph of a finite commutative ring. \textit{Comm. Algebra} 40(8):2798-2807.

[6] Ramin, A. (2013). The total graph of a finite commutative ring. \textit{Turk J Math} 37:391-397.