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ABSTRACT

In 2012, Shekarriz et al. studied the total graph of a finite commutative ring and found the
necessary and sufficient conditions for 7(R)[1 C (R), but they have errors in its proof. In this paper, we
examine this proof and reveal its errors.
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1 INTRODUCTION

Let R be a commutative ring with nonzero identity, R " its additive group, Z (R) its set of zero-

divisors and Cay (R*,Z (R), 0), which is denoted by C (R), its Cayley graph. The total graph of

R was introduced by Anderson and Badawi in [2], as the graph with all elements of R as vertices, and
two distinct vertices X,y €R are adjacent if and only if X +y € Z (R). Afterwards, in [3], [5] and [6],

the authors determined some basic properties of total graph and studied z(R), where R is a finite

commutative ring.
In [1], G. Aalipour and S. Akbari studied the Cayley graph of a commutative ring with respect to its
zero-divisors and determined some properties of it, where C (R) is a graph whose vertices are elements

of Rand in which two distinct vertices X and Yy are joined by an edge if and only if
X —y eZ(R), {0}. But, prior to this, in [4], Shekarriz et al. tried to answer the naturally arising
question: Under what conditions on a finite commutative ring R , do we have z(R)[JC (R) ?

Before addressing the above question, let us remind some well-known facts about commutative
rings: If R is an Artinian ring, then either R is local with its maximal ideal m,or R =R, ®---®R, ,
where k >2and each R, is a local ring with maximal ideal m,; this decomposition is unique up to

permutation of factors, see [4, Theorem 8.7]. Moreover, if R is finite, then every element of R is either a
unit or a zero-divisor. Furthermore, if R is also a local ring with maximal ideal m, then m=2Z (R),

there exists a prime p such that the characteristic of the residue field R /mis p,and |R |, [m], and
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|R /' m]|are all powers of p . Moreover, if R =R, ®---®R, , then (z,,---,z, ) is a zero-divisor in R if
and only if there is an integer i with 1<i <k ,suchthat z, e Z (R;).

The residue field R, / m,, is denoted by F, , and | F; |, is shown by f. . A clique inagraph ["isa
subset of pairwise adjacent vertices. In this paper, we followed the notations used in the main article [5].

Shekarriz et al. answered the isomorphic question in [5, Theorem 5.2]: Let R be a finite
commutative ring, then z(R) T C (R) if and only if at least one of the following conditions is true: (a)

R=R,®---®R, , where k >1and each R;is a local ring of an even order; (b) R =R, ®---®R, ,
where k > 2and each R, isalocal ringand f, =2. But, they have errors in its proof when they conclude
7(R)[/C(R), supposed (a) and (b) do not hold for a finite commutative ring R . In what follows, we

indicate that counting the number of vertices of a maximal clique of z(R)is very complicated in this
case. We also show errors underlying their proof.

2 COUNTING THE NUMBER OF VERTICES OF A MAXIMAL CLIQUE IN z(R)

In this section, an example will be provided to demonstrate defects of proof given in [5, Theorem
5.2], and we investigate the method of proof too. Hereinafter, the equivalence class Z (R,)+a,, is
denoted by [a ].
Example 2.1. Let R =F, ®F, ®[ ;and (1,11),(0,0,-1) R, denoted by 1 and x , respectively.
Then z(F, ®F, ®L ;)has five maximal cliques, all containing the edge {1,Xx}, which are given
separately as follows:

(@) Let ¢, =([1],[0].[',), ¢, =(F,,[0],[-1])and c,=([1],F,.[1]), then c,uc,wc,forms a

maximal clique, where
|C1 JC, UG, |:|C1|+|Cz |+|C3 |—|ClﬁC2 |_|C1mC3 |_|Cz MC; |+|ClmCZ ﬁC3|

=3+4+4-1-1-0+0=09.
By permuting the first two components, a new maximal clique will be generated:
([0],[1],20 ;) v (0], F,,[-1]) W (F,,[1].[1]) . Since, in this example, |R |/f, =R |/f,, these

two cliques will be equal in size. Moreover, in these maximal cliques, vertices 1 and X are
already counted.

(b) Let ¢, =([1],F,,[1])and c,=([O],F,,[-1]), then c, uc,forms a maximal clique, where
|c,wc, |IHc, |+|c,|—|c,nC,|=4+4—-0=8. By permuting the first two components, a
new maximal clique will be generated: (F,,[1],[1]) w (F,,[0],[-1]) . Since, in this example,
R |/f, =R |/f,, these two cliques will be equal in size. Moreover, in these maximal cliques,
vertices 1 and X are already counted.

(¢) Let ¢, =([.[0L.[0]). ¢, =([OLMLIOD). c,=([lMAlL[A)and c,=([0].[0L[-1]). then
c, Uc, uc, uc,forms a cliqgue of maximal size 4. It should be noted that, the mutual

intersection of every pair of c;'s is empty, for i =1,---,4, and vertices 1 and X are already
counted.

147



Remark 2.2. Let R =R, ®R, ®R;where R,and R,are even such that R, /Z(R;)=F,, for

i =1,2and t > 2, and R,is odd. Then the layouts of equivalence classes of maximal cliques containing
the edge {1, x }are as the above example.

Now, let us return to the main subject concerning the flaws in the proof of [5, Theorem 5.2]. The
findings discussed in the proof are well-reasoned until they were going to show that for i =1,---,k , the

edge {1, x }does not belong to a maximal (|R |/f;)-clique in z(R).

In that proof, it is supposed that {y, |S €S} is a set of elements of R of maximal size which are
adjacent to both 1 and x and also to themselves. It is also cited that if {y|s €S}U{l x}forms a
clique of maximal size (|R |/f;), then there must be 1<m, <m, <---<m_ <k;0<q <k such that all
Yy, 's belong to

(2.1) R,®--®R, ,®[a,]®R, ,, D@ qu_1®[amq]®R @---OR,

Now, according to this direct sum and ambiguity in the assumption, Y 's could be chosen in three

following ways:
(1) y,'sbelongto (2.1) in which ay, and m, are fixed forall i =1,---,q . Based on maximal

m;+1 mg +1

cliques in the example 2.1(a), 2.1(b) and 2.1(c), {y, |s € S}U{L x} is not a maximal clique.
It shows that the argument can not be true.
(2) Y, 'sbelongto (2.1) in which only m, are fixed forall i =1,---,q . Now, example 2.1(a)

shows that {y |s €S} U{l x} is not a maximal clique.

(3) Y, 'sbelong to (2.1) in such away a, , m and q can vary. Thus g will be replaced with g, in
(2.1), for some A e Asuchthat 1<q, <k ,and y; ={y,|s €S,}'sare contained in the
representation (2.1), where S, =S such that forall s €S, , the elements of Ys, in(2.1) have
a fixed representation (i.e. m;. and q, are fixed). In Example 2.1, Ys, is the set of vertices of a

IR

q; !

Hfmi
i=1

clique c; . Based on deduction in [5, Theorem 5.2], q, #1.1f q, 22, then [y, |=

and the required number is calculated by |Uysl | as in Example 2.1.

The counting method given in [5, Theorem 5.2] implies that the authors have considered either
conditions (1) or (2). Moreover, in the proof, where it is supposed that 2<q <k , if [amp ] :[—lmp] and

[a, 1=[-X,, ] forsomev =p,1<p<jand j+1<v <k ,then 1 may belongto {y, s €S}.
Correspondingly, if 1<v < jand j +1<p <k, then X may belongto {y, |S €S}. Therefore, it is

generally incorrect to add 2 in counting the total number of vertices of maximal cliques.
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