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 ABSTRACT 

Recently, an exhaustive search has been used to find all of the possible non-isomorphic 4-cycle free 

column-weight three QC-LDPC codes with the shortest length. The drawback of this approach, however, 

is the complexity which increases sharply by extending the exponent matrices. Moreover, the minimum 

lifting degrees of these codes are not the same with the lower-bounds, in general, i.e. QC-LDPC codes with 

the same exponent matrix may have cycles of length 4, for some lifting degrees greater than the given 

shortest length. Here, an explicit ordering on the positions of the desired exponent matrix is proposed to 

construct some column-weight three QC-LDPC codes with girth 6 having the shortest length. The 

constructed codes have two main benefits: The lower-bound is the same with the minimum-lifting degree 

and the overall complexity is polynomial, in terms of the length of the constructed codes.  
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1 INTRODUCTION 

Low-density parity-check (LDPC) codes are a class of linear block codes which come from the 

characteristic of their parity-check matrices containing only a few 1’s in comparison to the number of 0’s. 

Their main advantages are that they provide a performance which is very close to the Shannon capacity [7] 

for different channels and encoding and decoding algorithms with linear time complexities. They were first 

introduced by Gallager in his PhD thesis in 1960. But, they were mostly ignored about 30 years [3], due to 

the computational effort in implementing coder and encoder for such codes and the introduction of Reed-

Solomon codes. In particular, the length of the shortest cycle in the graph, girth, is identified as one of the 

important factor to measure of the code’s performance. Related to this, lower bounds have been derived on 

the block length of QC-LDPC codes as a function of girth [4]- [6]. There are however, very few cases, for 

which these bounds have been proved to be tight. One example is the array-based codes [2], which are 

cyclic liftings of some degree n of fully-connected base graphs of size m n , where n  is a prime number.  
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2 PRELIMINARIES 

Let ,N s  be two positive integers with 0 s N   . By a circulant permutation matrix (CPM) of 

size N  and exponent s , denoted by 
s

NI  , or 
sI  when N  is known, we mean the matrix 

0

0

ss

N

N s

I
I

I 

 
  
 

, in which , { , },kI k s N s   is the identity matrix of order k . Now, For the given 

positive integers , , ,m n N m n , a ( , )m n QC-LDPC code with CPM size N  can be described by the 

following parity-check matrix: 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

,

n

n

m m m n

p p p

p p p

p p p

P N

I I I

I I

I I I

H
I





   

 
 
 

  
 
 
 

 

 

Where each exponent
i jp , 0 1, 0 1i m j n      , is a non-negative integer. We refer to the 

 m n  matrix 
,  ( )i jP p  as the exponent matrix with lifting-degree N . It is worth noted that some 

elements of P  in 
,P NH  may be greater than N  which are reduced in modulus of N  to construct the 

parity-check matrix 
,P NH .   

 It is well-known [1] that the necessary and sufficient condition for the existence of a cycle of 

length 2r  in the Tanner graph of C with parity-check matrix H  is  

 
1,

1

1

, 0
i i i im n

r

i

n mp p






  mod N         (1) 

 

  Now, to construct a QC LDPC code with girth at least 2g , we should find an exponent matrix 

,   ( )i jP p  such that (1) is not satisfied for each r g . Corresponding to each QC-LDPC code with girth 

2g  and exponent matrix P , the lower-bound (LB) 
L,PN

 
is defined as the minimum positive integer such 

that  , 2P Ng H g , for each CPM-size
L,PN N . However, we  may have 

,( ) 2P Ng H g
 
for some 

L,PN N , while  , ' 2P Ng H g , for some 
L,P'N N N  . For this, we use

min,PN  to denote the 

minimum lifting-degree (MLD) N  with this property that 
,P NH  has girth at least 2g . Clearly, MLD is not 

greater than LB, i.e. 
min, ,P L PN N . 

 

Example 2.1. The following matrix can be considered as the exponent matrix of a (3,4)QC 

LDPC code with girth 6, for each lifting-degree 
, 7L PN N  , so LB is 7. 

 

0 0 0 0

0 1 2 3

0 2 4 6

P

 
 

  
 
 
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 Moreover, it is easy to see that the MLD corresponding to the exponent matrix P  is 5, i.e we have 

,5( ) 6Pg H  . (It is noted that for 6N  , we have 
,6( ) 4Pg H  , so 5 is not a lower-bound). 

 

3 ORDERING MATRIX 

In this section, an ordering matrix is used to generate the elements of the exponent matrix P  

recursively such that the QC-LDPC code with parity-check matrix 
,P NH  has girth 6 for enough large N

such that the corresponding LB and MLD are small as possible.  

 

Definition 3.1.  Let 3n   be a positive integer. By an n ordering, we mean a 3 n   matrix 

 , 3i j n
O o


 ,  , 1,2, ,3i jo n   such that each element  1,2, ,3k n 

 
appears exactly once in the 

matrix O  , i.e. for each    1 1 2 2, ,i j i j , we have 
1 1 2 2, ,i j i jo o . 

For a given n ordering matrix  , 3i j n
O o


 , we propose an algorithm which generates the elements 

of the exponent matrix 
, 3( )i j nP p   recursively as follows. 

 

Algorithm 1. 

 

1- Let 

1 1 2 2 3 3, , ,1 2 3
n ni j i j i jo o o n      

 

2- Set 
1 1, 0i jp  . 

 

3- For each 1 3 1k n   , the element 
1 1,k ki jp
 

is defined recursively from 
2 21 1, , ,, ,...,

k ki j i j i jp p p , as 

follow: 

1 1

0

, : min{
k ki j N Zp
 

   : if
1 1,k ki jp N
 

 , then         1 1 2 2 1 1, ; , ; ; , , ,k k k kH i j i j i j i j   is free 

of 4-cycle} 

in which,       1 1 2 2 1 1, ; , ; ; ,k kH i j i j i j   in the algorithm is the parity-check matrix induced by the 

elements of the exponent matrix which are appeared in the positions      1 1 2 2 1 1, ; , ; ; ,k ki j i j i j  . 

Moreover, after constructing 
2 21 1, , ,, ,...,

k ki j i j i jp p p , the element 
1 1,k ki jp
 

is selected as the minimal non-

negative integer with this property that the        1 1 2 2 1 1, ; , ; ; ,k kH i j i j i j 
 
has no 4-cycle. In fact, if 

1kA 
 is the set of all ' '

1 1, , ,k k k k k k
i j i j i j

p p p
    with 

     1 1 1 1 2 2{( , ), ( , ), ( , )} { , , , , , , }k k k k k k k ki j i j i j i j i j i j 
      , 

 then 1kA   contains the values which lead to 4-cycles in the induced Tanner graph, so 

1 1

0

, 1min{ : }
k ki j kp N N A
 



   . 

 

4 AN EXPILICIT CONSTRUCTION FOR QC-LDPC CODES WITH GIRTH 6. 

For 3n   , let 
,( )i jO o  be the following n ordering matrix. For even n , define 
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,

/ 2 1, 1,1 / 2

1, / 2

2,1 / 2

5 / 2 1, 2, / 2

5 / 2 1, 3,1 / 2

3, /

,

,
(2

, 2

)

2

i j

n j i j n

i n j n

i j n

n j i n j n

n j i j n

i n

j

n j

j n

o

n j

    

  

  

    

    

 




 

 




 
 

And for odd n , 

 

,

/ 2 1, 1,1 / 2

1, / 2

2,1 / 2

5 / 2 1, 2, / 2

5 / 2 1, 3,1 / 2

3, /

)

2 , 2

,

,
(3i j

n j i j n

i n j n

i j n

n j i n j n

n j i j n

i

j

n j
o

nj n jn

          

    

     

          

          

    







 



   

 

It can be seen easily that O  is an n ordering matrix, since 
, ,1 3,1 3i jo i j n     are distinct 

elements belong to the set {1,...,3 }n . Now, applying Algorithm 1 on the orderingO , let ( )P P O  be the 

corresponding exponent matrix. 

 

Example 4.1: For 6,n   let O  be the following 6 ordering defined by Eq. 2. 

 

3 2 1 4 5 6

7 8 9 12 11 10

15 14 13 16 17 18

O

 
 

  
 
 

 

Then, applying Algorithm 1, the corresponding exponent matrix ( )P P O  is as follows. 

 

0 0 0 0 0 0

0 1 2 5 4 3

2 1 0 4 5 6

P

 
 

  
 
   

Moreover, it can be seen easily that 
, min, 7L P PN N   

 

5 THE ALGORITHM OUTPUTS. 

 
In [8], the authors have introduced an exhaustive search to find all of possible non-isomorphic 4-

cycle free column-weight three QC-LDPC codes with the shortest lengths. For 4 8n  , Table 1 provides 

all of non-isomorphic3 n  exponent matrices of girth-6 QC-LDPC codes along with dimension, minimum 

distance, LB and MLD. The first row of the exponent matrices is zero, so for simplicity, the second and 
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third rows of the exponent matrix are given, such that the upper and lower indices of the given matrices 

correspond to the minimum distance and dimension of the constructed QC-LDPC codes.  

 

Table1 

All of non-isomorphic 3 n  exponent matrices of some girth-6 QC-LDPC codes in [8] along with 

dimension, minimum distance, LB and MLD  
 

Size of 

base matrix 
 

3 4  

 

3 5  

 

3 6  

 

3 7  

 

3 8  

min,PN   5  5  7  7  9  

 

 

 
 

 

 
 

 

 
 

 

 
Second and 

Third Rows 

of 
the 

Exponent 

Matrix 

 
 
 
 
 
 
 
 
 
 
 

6

7

,

0, 2, 3, 4

0, 3, 2

5

,1

L PN 

 
 
    

 
 
 
 
 
 
 
 
 
 
 

6

12

,

0,1, 2, 3, 4

0, 3,1, 4, 2

5L PN 

 
 
    

 
 
 
 
 
 
 

6

23

,

0,1, 3, 4, 5, 6

0, 5,1, 6, 4, 2

9L PN 

 
 
    

6

23

,

0,1, 3, 4, 5, 6

0, 4, 5, 2, 6, 3

9L PN 

 
 
    

4

23

,

0,1,3, 4,5,6

0,3,6,5, 2, 4

7L PN 

 
 
    

4

26

,

0,1,3, 4,5,6

0,5,6, 2, 4 1

10

,

L PN 

 
 
    

 
 
 
 
 
 
 
 
 
 
 

6

30

,

0,1, 2, 3, 4, 5, 6

0, 2, 4, 6,1, 3, 5

7L PN 

 
 
   

4

30

,

0,1, 2, 3, 4, 5, 6

0, 3, 6, 4, 2,1, 5

9L PN 

 
 
    

6

47

,

0,1, 2, 3, 4, 5, 6,8

0, 2, 5,1,8, 7, 3, 4

9L PN 

 
 
   

6

47

,

0,1, 2, 3, 4, 5, 6,8

0, 3,8, 7, 5,1, ,

13

4 2

L PN 

 
 
    

6

47

,

0,1, 2, 3, 4, 5, 6,8

0, 7, 4,8, 5, 3, ,

13

1 2

L PN 

 
 
    

6

47

,

0,1, 2, 3, 4, 5, 6, 8

0, 5, 4, 6, 2,1, 3, 7

9L PN 

 
 
   

4

47

,

0,1, 2, 3, 4, 5, 6,8

0, 7, 5, 4,8, 3, ,

14

2 1

L PN 

 
 
   

4

47

,

0,1, 2, 3, 4, 5, 6,8

0, 5, 7, 4,1, 3, ,

12

8 2

L PN 

 
 
   

4

47

,

0,1, 2, 3, 4, 5, 6,8

0, 5, 3,8,1, 7, ,

12

4 2

L PN 

 
 
   

,

0,1, 2,3, 4,5, 6,8

0, 4,8,5, 2

4

47

1

,1, 7,

2

3

L PN 

 
 
   
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Table2 

Some 3 n  exponent matrices of girth-6 QC-LDPC codes constructed by Algorithm1 along with dimension, 

minimum distance, LB and MLD 
Size of 
base 

matrix 

3 4  3 5  3 6  3 7  3 8  

min,PN  5  5  7  7  9  

Second 

and Third 
Rows of 

the 

Exponent 
Matrix 

6

7

,

0,1,3, 2

1, 0,3

5

, 4

L PN 

 
 
   

6

12

,

0,1, 4,3, 2

1, 0, 2,3, 4

5L PN 

 
 
   

6

23

,

0,1, 2,5, 4,3

2,1,0, 4,5,6

7L PN 

 
 
   

6

30

,

0,1, 2,6,5, 4,3

2,1,0,3, 4,5,6

7L PN 

 
 
   

6

47

,

0,1, 2,3,7, 6,5, 4

3, 2,1,0,5,6,7,8

9L PN 

 
 
   

 

For example, by

6

23

0,1,3, 4,5,6

0,5,1,6, 4, 2

 
 
 

, we mean the code with the exponent matrix 

0,0,0,0,0,0

0,1,3, 4,5,6

0,5,1,6, 4, 2

P 

 
 
 
 
 

   having 

minimum-distance 6, dimension 23, LB 
, 9L PN   and MLD 

min, 7PN  . 

 

  Against, for 4 8n  , some of the constructed exponent matrices ( )P P O
 
(obtained by Algorithm 1) 

are provided in Table 2. Based on the ordering O  reported in Eq.1, the first row of the constructed exponent 

matrix ( )P P O
 
is zero, so the second and third rows of P are just reported. As Table II shows, the 

constructed exponent matrices have better LB rather than the exponent matrices reported in Table I, while 

they have the same MLD, minimum distance and dimension. In addition, the constructed exponent matrices 

in Table II have another benefit rather than the exponent matrices given in Table I in terms of the 

complexity. In fact, the exponent matrices in Table II have constructed explicitly and no computer search 

is needed to generate such exponent matrices. Against, the complexity to generate the exponent matrices in 

Table I increases exponentially by enlarging n .  

   

 

6 COCLUSIONS. 

In this paper, an n ordering matrix is defined which is helpful to construct some 3 n  

exponent matrices recursively, such that the corresponding QC-LDPC codes are free of 4-cycles. 

Interestingly, the constructed codes have better LB and complexity rather than the previously 

reported codes, while the MLD, minimum-distance and dimension are the same.  
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