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 ABSTRACT 

The k edge-disjoint L-hop-constrained paths problem consists in finding a minimum cost subgraph 

such that between two given nodes s and t there exist at least  k edge-disjoint paths of at most L edges. 

We give an integer programming formulation for this problem.  
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1 INTRODUCTION 

Given a graph G = (N, E) with s, t ∈ N, a L-st-path in G is a path between s and t of length at most 

L, where the length of a path is the number of its edges (also called hops). Given a function c: E → ℝ 

which associates a cost c(e) to each edge e ∈ E, the k edge-disjoint L-hop-constrained paths problem 

(kHPP) is to find a minimum cost subgraph such that between s and t there exist at least k edge-disjoint 

L-st-paths. In this paper, we give an integer programming formulation for the (kHPP). 

 

2 DEFINITIONS AND PRELIMINARY INTRODUCTIONS  

2.1 Definition 

           Given a graph G = (N, E) and an edge subset F ⊆ E, the 0 - 1 vector ∈ , such that (e) = 1 

if e ∈ F and (e) = 0 otherwise, is called the incidence vector of F. the convex hull  if the incidence 

vectors of the solutions to the kHPP on G, denoted by , will be called the kHPP polytope.  

2.2 Definition  

Given a vector w ∈  and an edge subset F ⊆ E, we let w(F) = . For two node 

subsets ,  ⊂ N, we note [ , ] the set of edge having one node in  and the other in . If 

= { }, we will write [ , ] for [{ }, ]. If W ⊂ N is a node subset of G, we denote N\W by 

W̅.  
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2.3 Definition 

 The set of edge that have only one node in W is called a cut and denoted by δ(W). we will write 

δ(v) for δ({v}). A cut δ(W) such that s ∈ W and t ∈ W̅ will be called an st-cut. 

If  is the incidence vector of the edge set F of a solution to the kHPP, then clearly  satisfies 

the following inequalities: 

x(δ(W)) ≥ k       for all st-cut δ(W)                                                                                                    (1) 

0 ≤ x(e) ≤ 1       for all e ∈ E.                                                                                                             (2)                                                                                                             

Inequalities (1) will be called st-cut inequalities and inequalities (2) trivial inequalities. In [4], Dahl 

introduces a class of inequalities valid for the dominant of the hop-constrained path problem. For the 

special case of L= 2, they are as follows. 

Let , , ,  be a partition of N such that s ∈ , t ∈  and  ≠ ∅ for i=1,2. Let T be the set 

of edge e= uv where u ∈ , v ∈  and |i - j| > 1. Then the equality 

x(T) ≥ 1                                                                                                                                                      

is valid for the 2-path polyhedron. Using the same partition, this inequality can be generalized in a 

straightforward way to the kHPP polytope as  

x(T) ≥ k.                                                                                                                                      (3) 

The set T is called a 2-path-cut and a constraint of type (3) is called a 2-path-cut inequality. See 

Fig.1 for an example of a 2-path-cut inequality with ={s} and = {t}.                                                        

 

  

 

 

 

Note that the 2-path-cut T intersects each 2-st-path in exactly one edge. Let  be the set of edges 

involved in a 2-st-path in G. Thus,  consists of the edge in [s, t] and [s, v], [v, t] for all those nodes v 

for which G contains these edges. Let = (N, ) be the subgraph of G induced by .  

Observe that it is equivalent to consider the kHPP on G and on . More precisely an optimal 

solution in G will consist of negative costs, if any. Also, it is hard to see that T (in G) corresponds to the 

st-cut δ( ∪ ) in . Therefore, we will consider the inequalities 

 

x( (W)) ≥ k              for all W ⊂ N, s ∈ W, t ∉ W                                                                     (4) 

where (W) stands for the cut induced by W in . Clearly, inequalities (4) dominate inequalities 

(1) and (3). Let  be a solution set of the system given by inequalities (2), (4). In the next section, 

we show that inequalities (2), (4), together with inequality constraints, give an integer programming 

formulation.  

Figure 1. Support graph 2-path-cut inequality. 
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3 FORMULATION 

In this section, we show that the trivial inequalities and inequalities (4), together with the inequality 

constraints, suffice to formulate the kHPP as a 0 - 1 linear program. To this aim, we first give a lemma.  

 

3.1 Lemma 

Let G = (N, E) be a graph, and s, t two nodes of N, and L ∈ {2, 3}. suppose that there do not exist k 

edge-disjoint L-st-paths in G, with k ≥ 2. Then there exists a set of at most k - 1 edges that intersects 

every L-st-path. 

Proof.   We first show the statement for L= 3. Consider the capacitated directed graph D= ( , A) 

obtained from G in the following way. The set  consisits of a copy ,  of s, t and two copies ,  

of N\{s, t}. For u ∈ N\{s, t}, let ,  be the corresponding nodes in  and , respectively. To each 

edge e ∈ [s, u], with u ∈ N\{s, t}, we associate an arc  from  to  of capacity 1. To each edge e ∈ [v, 

t], with v ∈ N\{s, t}, we associate an arc  from  to  of capacity 1. For an edge e ∈ [u, v], with u, v ∈ 

N\{s, t}, we consider two arcs, one from  to  and the other from  to , both of capacity1. Finally, 

we consider in D an arc from  to  of capacity1 for every edge in [s, t] and an arc from each node of  

to its peer in  with infinite capacity (see Figure 2 for an illustration). Note that multiple edges in G 

yield multiple arcs in D. Observe that is a one-to-one correspondence between the 3-st-paths in G and the 

directed -paths in D.  

Now consider a maximum flow  ∈  from  to  in D. As the capacities of D are integer,  

can be supposed to be integer. Hence the flow value of each arc of capacity 1 either 0 or 1. We claim that 

 can be chosen so that no two arcs ( , ) and ( , ), corresponding to the same edge uv in G, have 

a positive value. Indeed, suppose that  ( , ) =1 and ϕ( , ) =1. Let  ∈  be the flow given by  

 

 

(e) =        

         

As ( , ) and ( , ) have infinite capacity and the flow going into  and  has not changed,  

 is still feasible. Moreover,  has the same value as . 

As a consequence, an -flow of value q in D corresponds to q edge-disjoint 3-st-paths in G. 

Since there do not exist, in G, k edge-disjoint 3-st-paths, the maximum flow in D is of value at most k - 1. 

Hence a minimum st-cut in D is of value at most k-1 as well. Observe that such a cut does not contain 

arcs with infinite capacity. Hence a minimum cut corresponds to a set of at most k - 1 edges that intersects 

all the 3-st-paths of G, and the proof for L= 3 is complete. 
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Figure 2. 

  If L= 2, then we can similarly show the statement by considering the digraph D= ( ,A), where 

 is a copy of N and to every edge e ∈ [s, u] (resp.,[u, t]), where u ∈ N\{s, t}, corresponds an arc from 

 to  (resp.,  to ) of capacity 1 in D. Here  is the copy of u in  for every u ∈ N.■    

  

3.2 Theorem 

Let G = (N, E) be a graph and k ≥ 2. Then the kHPP is equivalent to the integer program 

 

                  Min{cx: x ∈ , x ∈ }. 

 

Proof. To prove the theorem, it is sufficient to show that every 0 – 1 solution x of induces solution 

of the kHPP. To see the overall proof of this theorem, see [1]. 

 

4 SOLVABILITY AND CONCLUDING REMARKS 

Note that, if the graph has no parallel edges, the problem can also be solved polynomially by 

enumerating the (at most) |N| - 1 different 2-st-paths in G and picking the k of these paths with smallest 

cost. In fact, for this problem, we can suppose that the underlying graph does not contain multiple edges. 

A natural extension of the kHPP is to consider paths of length at most L where L is a fixed integer. The 

case studied in this paper corresponds to the case where L=2, 3. 
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