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 ABSTRACT 

 

A nonempty graph  is called nicely edge distance-balanced (as brief we can say NEDB), 

whenever there exists a positive integer , such that for any edge say  we have: 

. Which  denotes the number of edges laying closer to the vertex  than 

vertex  and  is defined analogously. In this paper, we study on NEDB graph and it’s basic 

properties and some operations. Also, we try to classify some families of graphs with related .  

  

Keywords: Distance, Diameter, Distance-balanced graph, Edge distance-balanced graph, 

Nicely distance- balanced graph. 

 

1   Introduction  

 

Let  be a simple connected graph with vertex set  and edge set . If  and  are any 

two vertices in , then  stands for the distance between  and  and it means number of 

vertices which are lying in the shortest path between  and . In short  denoted the minimal 

path-length distance between  and . Also, if we consider for any edge in , say  and 

, the distance between  and  is defined as:  

 

, 

 

in such away that  means number of edges which are lying in the shortest path 

between  and , including . 

The quantities ,  and  defined as the number of edges equidistant from  

and , the number of edges whose distance to  is smaller than the distance to , and the number of 

edges closer to  than , respectively. Let  be any arbitrary edge of . Then for any two non-

negative integer , we have: 

. 
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By the definition of NEDB, , because our graphs are simple and have no multiple 

edges as well as loop. The triangle inequality implies that only the sets , , 

, for each  can be nonempty. 

Recall the definition of transmission,  of a vertex  is defined as 

, see [4, 7]. 

 

Consider  as an arbitrary vertex in , define the edge-transmission  defined as 

. 

Let us explain some fundamental definition which are needed in this paper: 

 

The graph  is called distance-balanced (as brief DB), if for any arbitrary edge  of , 

the number of vertices are lying closer to  than to  is equal to the number of vertices which are 

lying closer to  than to , [5, 7, 10]. 

The simple connected  is called strongly distance-balanced (SDB), if for any edge  in 

 and any arbitrary integer , the number of vertices at distance  from  and at distance  from  

is equal to the number of vertices at distance  from  and at distance  from , [1, 9]. 

A nonempty graph  is called nicely distance-balanced (in short form NDB), whenever there 

exists a positive integer , such that for any two adjacent vertices  and  in , there are exactly  

vertices of  which are closer to  than to , and exactly  vertices of  which are closer to  than to 

, see [11]. 

Edge distance-balanced graphs (as brief EDB), are such graphs in which for every edge  

the number of edges closer to vertex  than to vertex  is equal to the number of edges closer to  

than to , [13]. In the other hand, one can easily find a graph  as an EDB graph, if and only if:  

 

, for any edge . 

 

Now, we introduce some well-known operation between two graphs: 

The corona product of two graphs G and H, denoted by  is obtained by taking one copy of 

G and  copies of H; by joining each vertex of  copy of H to the  vertex of , 

. 

In this paper, if G and H are two graphs, the vertex set of Cartesian product of them is 

 and  is an edge of , if  and  or 

 and . 

Suppose  is a simple connected graph. We define the graphs S(G) and R(G) as below by 

following Yan et al, see [15]: 

i) S(G) is the graph, which is obtained by adding one additional vertex for each edge of G. For 

simplicity, dividing every edge into two parts by adding one new vertex. 

ii) R(G) is the graph, which is obtained by adding a new vertex corresponding to each edge of 

G, then joining each new vertex to the end vertices of the corresponding edge. 

In the next section of this paper, we tried to introduce some basic properties of NEDB graphs 

and show that under which conditions, we have NEDB graphs. Also, in third section, we discuss for 

finding a formula for  in some families of graphs, and in last section we try to classify some 

families of graphs with respect to related .  

 

 

2   Some basic properties of NEDB graphs 

In this section, we discuss some basic properties of NEDB (Nicely Edge Distance-Balanced) 

graphs regarding their diameter . Let start with the following observation: 
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Proposition 2.1 Let  be a connected NEDB graph,  edges and with diameter . 

Then for any edge e, this equality holds: 

 

.           (1) 

  

Proof. Let  and  be any edge in , which is fixed after selection. Except 

, the rest of edges are divided in three different sets. First set, some edges which are closer to  

than , so they belong to . Second set, some edges which are closer to  than , so they 

belong to . The last one, some edges that are equidistant to  as well as . With the triangle 

inequality the only nonempty sets are  and , for . Because  

is NEDB graph the first and second sets are equal to .   

 

It is necessary to mention that, if  is a NEDB graph, then  is an EDB graph. But the converse 

is not true, for example, the generalized Petersen graph GP(7,2) is a EDB graph which is not a NEDB 

graph. Which we will discuss in this paper. 

 

Proposition 2.2 Let  be a NEDB graph with diameter . Then .  

 

Proof. Consider a path . Also, we have  as a sequence of 

edges, such that . Now, let  be any edge in , which is fixed after selection. 

Then . Hence the result follows. 

 

Proposition 2.3 If  is a NEDB graph, then  has no pendant vertex.  

 

Proof. Proof is by contrary. Let  has a vertex say  which is a pendant vertex, so . 

Since   is NEDB, there is a vertex  which is adjacent to  such that  .  

If , then  and . So,  is not NEDB, which is a contradiction.   

 

Corollary 2.1 Trees are not NEDB.  

 

Let  and  be any arbitrary adjacent vertices in  and . Consider  

 and . Obviously, if 

, then . 

 

Theorem 2.1 A graph G with diameter d is EDB if and only if  

,  

holds for any , which are adjacent.  

  

Proof. Suppose that  is a EDB graph. Then , where . Also, we can 

written:  

         (2) 

 

Note that for any ,  and observe that 

. For  by further computing 

. Hence,  

 .  
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Also, by the same argument for , we have:  

 .  

 

Since  is a subset of both  and . Then 

, if and only 

if .    

Hence the proof is over.    

 

Corollary 2.2 Let  be a regular graph of diameter d. Then  is EDB if and only if  

 ,  

holds for any edge .  

 

Corollary 2.3 Let  be a graph with . Then  is EDB if and only if  is regular.  

 

Proposition 2.4 If  is a NEDB graph with , then  is regular. 

Moreover, .  

 

Proof. Assume that  is a NEDB as well as EDB. Thus by Corollary 2.3,  is regular. For the 

rest, without loss of generality, we can divide this proof into two part. 

Part 1: Let . By definitions, we have the only sets  and . Since  is a regular 

and NEDB graph, . The equality holds. 

Part 2: Let . So for any edge  in , we have , 

which , for each , elsewhere is empty. We know 

. Hence the inequality holds.  

  

 

Note that the converse of the above proposition is not true. The counter examples are 

Generalized Petersen graphs  and  which are both regular but not NEDB, which will 

be discussed in the next section of this paper. 

 

Proposition 2.5 Let  be a connected and NEDB graph that has at least two edges, and  be 

its complement. If  and , then  and  are not NEDB graphs.  

  

Proof. As  is a connected NEDB graph, by Proposition 2.4.  is regular. If we omit an edge 

from , then we have two vertices which have one degree less than the others. So  is not regular 

graph. With the same argument by adding one edge from , therefore two vertices which have one 

degree more than rest of vertices. Again it is irregular, contrapositive of Proposition 2.4. Hence the 

result follows.    

 

 

3   NEDB in Some Families of Graphs 

 

In this section, we tried to finding an exact formula for a positive integer , in some families 

of graphs which mentioned as below. Also at the end of this section, we study on corona product and 

Cartesian product of such graphs. Next, we tried to find an answer to the question that; if  is NEDB, 

whether the  and  are NEDB or not? 

First, we consider the complete graph, . Then we have: 
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Lemma 3.1 If  is a complete graph , then  is a NEDB graph and . Also: 

 

.           (3) 

  

Proof. If , then  and . 

Let  be any arbitrary edge. So  can be an edge lying closer to  or closer to  or 

equidistant. Since  is a regular graph. Then  

. 

By substitution in Proposition 2.1, the number of edges which are equidistant from  and  is 

equal to .   

 

In the second step, we study on complete bipartite graph family, Kn,n: 

 

Lemma 3.2 Let  be a complete bipartite graph . Then  is NEDB with . 

Moreover,  

.                (4) 

  

Proof. Consider , then  is a n- regular graph with ,  and the 

diameter of  is . Let  be any arbitrary edge in . Then  and  must belong to two 

disjoint sets in a complete bipartite graph. So . Again by 

substitution in Proposition 2.1, the number of edges which are equidistant is  .   

 

Now, consider the cycle graphs on  vertices, :  

Lemma 3.3 Let  be the n-cycle graph . Then  is NEDB with . Also, depends 

on ,  is an odd or even cycle graph,  or , respectively. 

  

Proof. Let  be a cycle graph on  vertices as well as  edges. Let  be any 

arbitrary edge in . Then we have 2 cases: 

Case 1: Let  be any odd number. Then, we have  edges in  except . Let 

 be NEDB. Then . Therefore  edges are near to  and 

 near to . Thus . Therefore, there are 

no edges equidistant to  as well as . Hence . 

Case 2: Let  be any even number. Then, we have an odd number  edges except 

. Since  is NEDB, thus . Therefore, , the rest of the edges 

are  which can be divided by 2. Hence .    

 

Next, we study on complete multipartite graph, , which is a complete graph which set of 

vertices decomposed into  disjoint sets such that there are 2 vertices in each -disjoint sets and also, 

no two graphs vertices within the same set are adjacent: 

 

Lemma 3.4 Let  be the complete multipartite graph . Then it is a NEDB graph with 

. Moreover, 

 

.               (5) 

 

Proof. Prove by induction on . 
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Let . Then  is a p-partite, -regular graph with diameter 2. 

Further,  is NEDB, so for any arbitrary vertices  and  which are adjacent, we have:  

  

. 

  

Hence, . Since , the rest of edges are equidistant which belong to 

 (e), for each . As we know, number of edges in  is , by Proposition 

2.1, . 

Now, let . Then  is a complete p-partite -regular graph with diameter , 

which in every disjoint set have 3 vertices. Therefore, . 

Also, , by substitution in Proposition 2.1. The result follows. 

Now, let us assume that the result is true for . We want to show that if we take , 

then we have -regular graph which in each p-disjoint sets, there are  vertices. 

Suppose that  is any arbitrary edge in . Then  is adjacent to all vertices in  except 

 vertices in the set which  belongs to. So  and the rest of edges in  are in 

. By Proposition 2.1, proof is over.   

 

Here, to state the next result, first we recall the definition of the generalized Petersen graphs. 

Let us take  denote a positive integer and let . The generalized 

Petersen graph GP(n,k) is defined to have vertex set and edge set as below: 

 

 , 

.  

   

Lemma 3.5 The generalized Petersen graph GP(n,1) is a NEDB graph if and only if .  

 

Proof. If  or , then obviously we can see those graphs are NEDB. 

Conversely, we consider . By [2], we have three types of edges: 1) outer-cycle 

edges, 2) inner -cycle edges, 3) bridge, which the first and the last are isomorphic to each other. So, 

continue the proof by taking two cases for these two types of the edges. 

Case 1: Let  be any odd number and assume that  be any arbitrary edge  in outer 

(inner)-cycle. Then the only two edges are equidistant to  and , which one of them belongs to inner 

(outer)-cycle and the other belongs to the bridge edges. Thus always . By 

substitution in Proposition 2.1, . 

Now, assume that  is a bridge edge. Then all the bridges in  except  are equidistant 

with  and . So, . Again by using Proposition 2.1, we get . Since  is 

NEDB, these two amount for  must be equal, therefore .  

Case 2:  be any even number. If  belongs to outer (inner)-cycle, then two edges in 

inner (outer)-cycle and one belongs to outer (inner)-cycle are equidistant to  and . So always 

. Using Proposition 2.1, we find .  

Next, consider  as a bridge edges, all of the bridge edges except  are equidistant to  

and . So . Again by Proposition 2.1, we have . Since  is NEDB, these 

two different amount of  must be equal, so .   

 

Now, by the definitions of some types of graph products, we work on NEDB graphs in 

framework of the corona product and the Cartesian product. 



 

XXX-939 

It is known that the corona product of two NEDB graphs is not NEDB. For example  

and  are both NEDB graphs. Clearly, one can see  is not a regular. Hence, this is 

contrapositive of Proposition 2.4, so it is not NEDB. In general, by [13, Proposition 2.2], if  and  

be any two simple connected graphs, then  is not  EDB. Therefore  is not NEDB. 

 

Proposition 3.1 Let G and H be two simple connected graphs which both are NEDB as well as 

NDB. Then the Cartesian product of  and , say  is NEDB. 

  

Proof. Let G and H be any two connected and NEDB as well as NDB graphs. Assume that two 

partitions are: 

 , 

 . 

 If  is any edge in A, then by [11, theorem 2.1],  

               .                     (*)  

 Also we have:       

           .                      (**)  

Since  and  both are NDB as well as NEDB, we have , 

. By (*) and (**), we have .  

Hence  is a NEDB graph.  

 

NDB is a necessary condition, as a counter example, suppose  which is a NDB as well 

as NEDB graph and  which is NEDB, but not NDB. One can observe that  is not 

regular, therefore it is not NEDB.   

   

Proposition 3.2 Let  be a NEDB graph. Then  is a NEDB graph if and only if  is a 

cycle graph on  vertices. Also, .  

 

Proof. If G is a NEDB graph on  vertices and  edges, then by Proposition 2.4,  is regular. 

By definition of , we have  vertices and  edges, which all new added vertices have 

degree 2. By the regularity, the rest of vertices must have degree two. But this condition will happen 

only for cycle graph on  vertices.  

For the next part, we have already introduced , (for ). It is known that, if  

is a cycle graph on  vertices, then  and , which . So 

number of edges and vertices in  is always an even number, say , for each . 

Again, it is in form of a cycle graph on  edges, which . Hence the result 

follows. 

  

Proposition 3.3 If  is a nontrivial and connected NEDB graph, then  is a NEDB graph if 

and only if . 

  

Proof. One way is clear, if  so G has a path of length 1,then  is a NEDB graph. 

For converse part, suppose R(G) is a NEDB graph, by contrary we assume that , by 

the definition of , related to each edge we add a new vertex, which is adjacent to primary 

vertices. Hence, we can find at least one vertex with degree at least  and the rest are of degree , 

which is contrapositive to Proposition 2.4. It shows  is not NEDB, it is contradiction.  

 

Corollary 3.1 If G is any NEDB graph with , then  is not a NEDB graph. 
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 4   Classification 

 

In this section, our aim is to classify the graphs with respect to their . Although most of the 

mentioned graphs are isomorphic to each other but to list all of them feel necessary. 

 

Theorem 4.1 A graph  is a NEDB graph with  if and only if it is one of the following: 

i) the complete graph K_3 (  Johnson graph J(3,1)), 

ii) the 4-cycle C_4. 

 

Proof. Let  denote the diameter of . By Proposition 2.2, we have . Thus 

these cases may occur: , . 

Case 1: If , then  is a complete graph. Since , for any edge  in , we can 

assume . It means ,  and  are the only members in those 

sets which are adjacent. So,  is a  which is isomorphic to  and . 

Case 2: Let  and  are not adjacent. Then, there is another edge say  which 

is adjacent to both of them simultaneously, so we get a cycle on 4 vertices. Hence the proof is over. 

 

Theorem 4.2 A graph  is NEDB graph with  if and only if it is one of the following 

graphs: 

i) the Johnson graph  complete graph ), 

ii) the 5-cycle  5-paley graph), 

iii) complete bipartite graph , 

iv) the 6-cycle . 

  

Proof. Let consider possible cases when . If  is a diameter of , then by 

Proposition 2.2, . Therefore,  can be equal to 1, 2 or 3. Now, consider different 

cases as below: 

If , then  is a complete graph  and by Lemma 3.1, . On the other side, 

, so . Which means  is . 

If , then we can consider two cases: 

Case 1: . 

Subcase 1: We can assume that . Then . By using Proposition 2.1, the 

number of edges in  must be equal to 5.  

Since , we can consider two assumption, which may occur: 

First assumption,  and the rest sets are empty. Then we have a tree on 

6 vertices, by Corollary 2.1,  is not NEDB. 

Second assumption,  and . Then each edge in 

(e) with  must be adjacent. So we get cycle on 5 nodes which is  as well as 5-paley 

graph. 

Subcase 2: Let . Then by the above conditions, we get , which has , but 

 which is contradiction to . (We accept this part in case d=3). 

Subcase 3: Let . Then we have  and 

, we get multiple edges and that is a contradiction. 

Case 2: . 

Subcase 1: Let  and . 
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First assumption, , the graph is irregular. So it is a contradiction. 

Second assumption,  and , the graph is not 

regular. 

Subcase 2: Consider  and let . 

If we get  be any edge of  and , then graph is not regular. 

Also, we can assume that  and . Then we get 

multiple edge, which is a contradiction. 

Subcase 3: Let  and . Then, for any arbitrary edge , let 

, then we have two different edges in  say  adjacent to  and two other 

edges in  say  adjacent to . Hence . Since , there are 3 

other edges say  which  is adjacent to ,  and  is adjacent to  and  and  must 

be a multiple edges. The regularity is not satisfied. So  is not NEDB which is not a contradiction. 

Subcase 4: Assume  and . Then add one edge between  and . 

Thus, all the vertices have degree 3 in this graph, and so the regularity condition is satisfied. Hence, 

we have 9 edges and 6 nodes such that we can divide them to 2 equal part, 3 by 3, in such away none 

of them in one part are adjacent, so it means . 

Now, consider . Suppose that , the only possible case may occur for 

, which has  and  and . But it 

is contradiction to Propositions 2.4 and 3.5.  

If d=3, then again we must assume different cases: 

Case 1: . 

Since , we can assume that . So . Since , then two 

subcases may occur. 

Subcase 1: . Then these two edges must be adjacent, which make an 

irregular graph which is contradiction to NEDB assumption. 

Subcase 2:  and , we have a cycle on 6 nodes 

which is . 

Now, consider , suppose , by above condition we get  which is a 

cycle on 6 nodes. 

Case 2:  and .  

First assumption, , again we have an irregular graph. 

Second assumption,  and , so we get two 

vertices on degree 3 and two vertices on degree 2 and two vertices on degree 1. Hence the graph is not 

NEDB. 

The proof is over. 

 

 

4 CONCLUSION 

In this research, first we define new kind of graph which is very close to the definition of NDB 

graphs [11], then try to classify some graphs families according to γ’G. 

 

 

. 
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