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ABSTRACT 

A nonempty graph G is called nicely edge distance-balanced (NEDB), whenever there exists a 

positive integer γ′G, such that for any edge say e = ab we have: mGa(e) = mGb(e) = γ′G. Which  

mGa(e) denotes the number of edges laying closer to the vertex a than vertex b and mGb(e) is defined 

analogously. Also, a  nonempty graph G is strongly edge distance-balanced, for every edge say e = ab 

of G and  every i ≥ 0 the number of edges at distance i from a and at distance i + 1 from b is equal to 

the number of edges at distance  i + 1 from a and at distance i from b. In this paper, first we study on 

some properties of strongly edge distance-balanced graphs. Later, we discuss on some operations of 

graphs and at last by the help of definition of SEDB graph, classify the NEDB graphs with  γ’G = 3. 

 

KEYWORDS: Graph, Diameter of graph, Strongly distance-balanced graph, Strongly 
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1 INTRODUCTION 

Let G be a simple connected graph with vertex set V (G) and edge set E(G). If e = ab ϵ E(G), then 

dG(a, b) stands for the distance between a and b in G and it  means number of  vertices  which  are 

lying in the shortest path between a and b.  Also, consider any two edges in G, say e = ab and e′ = ab, 

the distance between e and e′ is defined as: 

d′G(e′) = min{d′G(e′, a), d′G(e', b)}. 

The quantities n0(e), na(e) and nb(e) are defined to be the number of vertices equidistant from a and b, 

the number of vertices whose closer  to vertex a than vertex b and the number of vertices closer to b 

than a, respectively. Similarly, the quantities m0(e), ma(e) and mb(e) are defined to be the number of 

edges equidistant from a and b, the number of edges whose closer  to vertex a  than b and the number 

of edges closer to b than a, respectively. Let ab be an arbitrary edge of G. Then for any two non-

negative integer i, j, we have: 

D ′ ij (e) = {e′ ϵ E(G) | d′G(e′, a) = i,  d′G(e′, b) = j}. 

By the definition of NEDB, D′11 (e)= ϕ. The triangle inequality implies that only the sets D′i-1i(e), 

D′i
i(e), D’ i-1i(e), for each (2 ≤ i ≤ d + 1) must be nonempty. 

Recall the definition of transmission, T(a) of a vertex u ϵ V (G) is defined as T(a) =ΣbϵV (G) d(a, b), see 

[10]. Also, consider a as an arbitrary vertex in G, defined the edge-transmission T′(a) defined as 

T′(a) = ΣeϵE(G)d′(e, a). 

The graph G is called distance-balanced (as brief DB), if for any arbitrary edge e = ab of G, the 

number of vertices are lying closer to a than to b is equal to the number of vertices which are lying 

closer to b than to a, [5, 7, 10]. 

The simple connected G is called strongly distance-balanced (SDB), if for any edge e = ab in G and 

any arbitrary integer i, the number of vertices at distance i from a and at distance i + 1 from b is equal 

to the number of vertices at distance i + 1 from a and at distance i from b, [1, 9]. 
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A nonempty graph G is called nicely distance-balanced (in short form NDB), whenever there exists a 

positive integer G, such that for any two adjacent vertices a and b in G, there are exactly G vertices of 

G which are closer to a than to b, and exactly G vertices of G which are closer to b than to a, see [11]. 

       Edge distance-balanced graphs (as brief EDB), are such graphs in which for every edge e = ab the 

number of edges closer to vertex a than to vertex b is equal to the number of edges closer to b than to 

a, [12]. In the other hand, one can easily find a graph G as an EDB graph, if and only if: 

mGa(e) = mGb(e), for any edge e = ab ϵ E(G). 

      The simple connected G is called strongly distance-balanced (SDB), if for any edge e = ab in 

G and any positive integer i, the number of vertices at distance i from a and at distance i+1 from 

b is equal to the number of vertices at distance i + 1 from a and at distance i from b, [1, 9]. 

       It was shown in [1] that a graph G with diameter d is strongly distance-balanced if and 

only if  |Si(a)| = |Si(b)|, for i ϵ{0, 1, 2,…, d} and every edge ab of G, where 

Si(a) = {x ϵ V (G)|dG(x, a) =i}. 

 By above definition, if |D′i
i-1(e)| = |D′i-1

i (e)|, for i ϵ {1, 2,…,d}, then G is edge distance-balanced. But 

the converse is not true. 

 

2   Some properties of SEDB graphs 
In this section, we study on some basic properties of strongly edge distance-balanced graphs and try to 

understand under which conditions we have SEDB graph. 

 

Proposition 2.1  If G be a connected and strongly edge distance-balanced graph, then G is regular. 

 

Proof. Let G be a connected strongly edge distance-balanced graph. Let e = ab ϵ E(G), 

by definition of SEDB graph we have | D′01 (e′) |=|D′01(e) |. But we know that, | D′01 (e) |= deg(a) - 1 

and | D′01(e) |= deg(b) - 1. Thus, deg(a) = deg(b), for any a, b ϵ V (G). Hence the result.■ 

 

Proposition 2.2 Let G be a graph with diameter d and Ti(a) ={e ϵ E(G) | dG(e, a) = i}. If G be strongly 

edge distance-balanced, then | Ti(a) |=| Ti(b) |, for any edge e = ab in G and for i ϵ{1, 2,…, G}. The 

converse holds if G be a regular graph. 

 

Proof. Let us assume that G is strongly edge distance-balanced and let ab ϵ E(G). By definition, we 

have | D′i-1
i(e) |=|D′ii

-1(e) |, for i ϵ{1, 2,…, d}. Since |Ti(a)| =|D′ i 
i-1(e)| +| D′i

i(e)| + |D′i-1
i(e)|, and |Ti(b)| 

= |D′i
-+1(e)|+ | D′i

i(e)| +|D′ i
i-1(e)|. So  |Ti(a) |=| Ti(b) |, for i ϵ{1, 2,…, d}. For next part, assume that G 

is regular. Using induction on i, we now show that |D′i-1
i (e, e′) |= 

|D′ i
i-1(e )|, holds for every edge say e = ab ϵ E(G), for any i ϵ{1, 2,…, d}.  If  i = 1, then |D′ 01 (e) |= 

deg(a) – 1 and | D′01(e) |= deg(b) - 1 and G is regular, we have | D′01 (e)|=\ D′10 (e)|. By hypothesis of 

induction we have | D′k-1
k(e)|=| D′k 

k-1(e)|, for 1 ≤ k ≤ d-1. Observe that, 

| D′k+1
k(e) |=| Tk(a) | - | D′k-1 

k(e) | - | D′k
k(e) |, 

| D′k
k+1(e) |=| Tk(b) | - | D′ k 

k-1(e) | -| D′k
k(e) |. 

 By | D′ k-1 
k(e) |=| D′k 

k-1(e) |, hence the result. ■ 

 

Proposition 2.3 Let G be a connected graph with diameter d. If G be strongly edge distance-

balanced, then G is strongly distance-balanced. 

 

Proof. Let G be a connected graph which is strongly edge distance-balanced and for any 

a, b ϵ V (G) and i ϵ{ 1, 2,…, d}, we define   

Aa
i= {u ϵ V (G)|Ǝe = (u,v),  e′ = (u, v′) ϵ Ti(a) such that dG(e, a) = dG(e′, a) =dG(u,, a) = i},  

Ba
i ={u ϵ V (G) | Ǝe = (u, v), e′ = (u, v′) ϵ Ti(a) such that dG(e, a) = dG(e′, a) = i =dG(u,a)},   

Cai = {u ϵ V (G)| Ǝ!e = (u, v) ϵTi(a) such that dG(e,a) = dG(u, a) = i}. 

If a ϵ Aa
i or a ϵ Ca

i , then a ϵ Si(a) and if a ϵBa
i , then a ϵ Si+1(a). Thus we have 

| Si(a) |=| Aa
i |+| Ba 

i-1 |+ | Ca
i|-| C

a
i∩Ba

i-1|. 

Similarly, we have: 

|Si(b) |=| Ab
i| + | B b 

i-1| + | Cb
i| -| C

b
i∩ Bb

i-1}. 

Since G is connected strongly edge distance-balanced graph, we have 
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 | Aa
i| =| Ab

i |, | B
a
i |=| Bb

i |, | C
a
i |=| Cb

i |, | C
a
 I ∩Ba

i-1|=| Cb
i∩Bb

i-1|. Thus, | Si(a) |=| Si(b) |. Hence the 

result.■ 

The converse of the above theorem is not true, for example Generalized Petersen graph GP(7, 2) is 

strongly distance-balanced graph which is not strongly edge distance-balanced graph. 

 

3       SEDB graph and graph products 

 

In this paper, if G and H are two graphs, the vertex set of Cartesian Product of them is  

V (G□H) = V (G) * V (H) and (x, y)(x′, y′) is an edge of G□H,  if x = x′ and yy′ ϵ E(H) 

or xx′ ϵ E(G) and y = y′. 

 

Proposition 3.1 Let G and H be strongly edge distance-balanced as well as vertex distance- 

balanced graphs. Then G□H is strongly edge distance-balanced graph 

. 

Proof. Let us assume that the below partition of E(G□H): 

A = {(a, x)(b, y) ϵ E(G□H) | ab ϵ E(G), x = y}, 

B = {(a,x)(b, y) ϵ E(G□H) | xy ϵ E(G), a = b}. 

Again, assume that G and H are strongly vertex and edge distance-balanced graphs and  

(a, x)(b, y) ϵ A, for any i ϵ {0, 1, 2, … d}, in graph G□H we have, 

| D′i-1
i ((a, x)(b, y))|=| D′i-1

i(e) | .| E(H) | +| D′i-1
i  (e)| .| V (H) |, 

| D′i
i ((a, x)(b, y)) |=| D′i

i (e)| . | E(H) | + | D′i
i (e) | . | V (H) |, 

| D′i+1
i((a, x)(b, y)) |=| D′i+1

i(e) | . | E(H)|+ | D′i+1
i(e) | . |V (H) |. 

In same way we have: 

| D′i
i-1((a, x)(b, y)) |=| D′i

i-1 (e) | . | E(H) | + | D′i 
i-1 (e) | . | V (H) |, 

| D′i
i((a, x)(b, y)) |=| D′i

i(e) | . | E(H) | + | Di
i(e) | .| V (H) |, 

| D′i 
i+1((a, x)(b, y)) |=|D′i

i+1(e) | .| E(H) | + | D′i
i+1(e) | : | V (H) |. 

Therefore, 

 | T(G□H)
i (a, x) |=| Si(a) | .| E(H) | + | Ti(a) | . | V (H) |, 

| T (G□H)
i (b, y) |=| Si(b) | .| E(H) | + | Ti(b) | . | V (H) |. 

Since G is strongly vertex and edge distance-balanced, we have | Si(a) |=| Si(b) | and 

| Ti(a) |=| Ti(b) |. Therefore | T (G□H)
i (a, x) |=| T (G□H)

i (b, y) |.  

Similarly, this result is going to be true for any arbitrary edge say e = (a, x)(b, y) in B. Hence the 

result.■ 

 

Let G and H be two graphs. The corona product G◦H is obtained by taking one copy of G and |V (G)| 

copies of H, and by  joining each vertex of the i-th copy of H to the i-th vertices of G, i = 1, 2,…, |V 

(G)|, [12]. 

By the help of definition, every strongly edge distance-balanced graph is edge distance-balanced 

graph. Also, by [11] next result is clear. 

 

Proposition 3.2 The corona product of any two nontrivial, connected graphs is not strongly edge 

distance-balanced. 

  

Theorem 3.1 If G is connected and has diameter 2, then the following statements are equivalent: 

a) G is edge distance-balanced, 

b) G is strongly edge distance-balanced, 

c) G is regular. 

 

Proof. Condition (b) and (c) are equivalent for graphs with diameter 2. Since G has 

diameter 2, for any vertex b ϵ V (G), we have De(b,G) = |E(G)| - deg(b), where 

 De(b,G) =ΣeϵE(G)dG(e, b). Thus, deg (a) = deg (b) if and only if De(a,G) =De(b,G). It was proved in 5 

that G is edge-distance-balanced if and only if for every a, b ϵ V (G), De(a,G) = De(b,G). Thus the 

equivalent (a) and (c) follows.■ 
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4     Classification 

 

Theorem 4.1 A graph G is NEDB graph with γ ′ G = 3, if and only if it is one of the following graphs: 

ii) the complete bipartite graph k 4,4 , 

iii) the Johnson graph  J(5, 1) ≈ complete graph K5, 

iv) the Generalized Petersen GP(3, 1) ≈ GP(3, 2), 

v) multipartite graph  K  3*2. 

 

Proof. Let consider all possible cases for γ ′G = 3. By [Proposition 2.2], d ≤  γ ′G = 3. On the other 

hand, d can get  0, 1, 2 or 3. The result for d = 0 is clear. Now assume other cases: 

First case: If d = 1, then G is a complete graph, so γ’G = n-2, since  γ′G = 3 which means a complete 

graph on 5 nodes, so G is K5, which is congruent to J(5, 1), hence the proof  for (iv). 

Second case: If d = 2 then we can consider two subcases:  

Subcase 1: D′22 (e)= ϕ. 

First if we assume D’3
3 (e)= ϕ, then we  conclude  Σ 

i=2 
d+1| D′ i

i (e)|= 0. By using Proposition 1.1 

 and γ′G = 3, so number of edges in G must be 7. Now, let us consider the cases which may occurs : If 

| D′12 (e)|=| D′21(e) |= 3, then D′i 
i+1  (e) or D′ i+1 

i(e) must be empty. So we have a tree which is not 

NEDB. 

If | D′21 (e) |=| D′12 (e) |= 2, since γ′G = 3, so | D′32(e) |=| D′23(e) |= 1. This graph is possible when 

these two edges in D′32 (e) and D′23(e) are adjacent, ( O.W. it is contradiction to D′33 (e)= ϕ). By 6 

these assumptions, graph is not regular so it cannot be NEDB, which is a contradiction to Proposition 

2.3. Here, | D′33(e) |= 1, if |D′21(e) |=| D′12(e) |= 3 then G is a tree and it is irregular. 

 If | D′21(e) |=| D′12(e) |= 2 then | D′32 (e)|=| D′23(e) |= 1. Since, γ′G = 3, here we have two vertices of 

degree 3 and the rest 4 have degree 2, which is not regular graph. At last, consider | D′12(e) |=| 

D′21(e)|= 1, again graph is irregular. 

Subcase 2:D′22 (e)= ϕ. 

Also, assume D′33 (e) = ϕ. Again, if we consider | D′12(e) |=| D′21(e) |= 3, we get tree, which is 

contradiction to NEDB. The all remaining cases as above are irregular except when | D′22 (e) |= 2 and 

| D′12(e) |=| D′21(e)|= 2 and | D′23(e) |=| D′32(e) |= 1 then we get GP(3, 1), which satisfies (v). 

By same argument, if | D′12(e) |=| D′21(e) |= 3, one can see for only | D′22(e) |= 5 and | D′22(e) |= 9, we 

have 6 and 8 vertices so the graphs are K3*2 and K4,4, respectively. Hence , (iii) and (iv). 

Third case: d = 3. 

Subcase 1: D′22(e) = ϕ. First, consider D′33(e) = ϕ , so | D′11(e) |= 0. Suppose | D′12(e) |=|D′21(e) |= 1 

and | D′23(e) |=| D′32(e) |= 1. Because  γ′G = 3 and here d = 3 so | D′34 |=| D′43(e) |= 1, which is C7. 

Hence the proof of (i). 

By considering same subcases as before, we can observe that all the other cases are irregular, which 

are not NEDB. 

Forth case: d = 4. 

Same as before, we can consider two subcases: and if | D′12 (e)|=| D′21 (e)|= 1 and | D′23 (e)|=|D′32  (e) 

|= 1 and | D′34 (e) |=| D′43(e) |= 1, then we have a cycle on 8 nodes. This is the proof of (ii).  

1)D′22 (e)= ϕ and 2)D′22 (e)≠ ϕ. By same argument, the only possible case occurs when D′22 (e)= ϕ. By 

considering same subcases as before, we can observe that all the other cases are irregular, which are 

not NEDB. 

Forth case: d = 4. 

Same as before, we can consider two subcases: 

1)D′2 2 (e)= ϕ and 2)D′22 (e)≠ ϕ. 

By same argument, the only possible case occurs when D′22 (e)≠ ϕ and if | D′12 (e)|=|D′21 (e)|= 1 and 

 | D′23 (e)|=| D′32 (e)|= 1 and | D′34 (e)|=| D′43 (e)|= 1, then we have a cycle on 8 nodes. 

This is the proof of (ii). ■ 
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CONCLUSION 

The most important conclusion of this paper is the classification of Nicely Edge Distance- 

Balanced Graphs according to γ’G   =3. By this assumption we can classify the graphs and also by 

more calculation we can continue this work for γ’G  ≥4 in next work. 

 

 

 


