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 ABSTRACT 

In this paper, we study graphs whose size of all maximal 2-regular subgraphs are the same. We call these 

graphs equi-2-regular. We characterize regular graphs which are equi-2-regular. We study claw-free equi-

2-regular graphs. Moreover, a family of 2-connected equi-2-regular graphs is constructed. 
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1 INTRODUCTION 

All graphs we consider are finite, simple and undirected. Let G be a graph. The minimum degree of 

G is denoted by . A graph G is called equimatchable if all maximal matchings in G, have the same 

size. For example Kn, n, where n is a positive integer, is an equimatchable graph. The concept of 

equimatchability was first considered by Meng [6], Lewin [5] and Grünbaum [2] in 1974. Since then, 

equimatchable graphs have been extensively studied by several authors. See for instance [1, 3, 4, 7]. 

 

Sumner [7], proved that a connected equimatchable graph has a 2-factor if and only if it is one of 

the graphs K2n and Kn, n, where n is a positive integer. Favaron also proved that every equimatchable 

factor-critical 2-connected graph is Hamiltonian. Equimatchable 3-regular graphs are characterized in [3].  

It is proved that the only connected 3-regular equimatchable graphs are K4 or K3, 3. 

 
In this paper, we intend to characterize all graphs whose size of all maximal 2-regular subgraphs are the 

same. We call these graphs equi-2-regular. For instance, the following graph is equi-2-regular and the 

size of its maximal 2-regular subgraphs is 18.  
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We study regular graphs which are equi-2-regular.  We investigate claw-free equi-2-regular graphs. 

Furthermore, a family of 2-connected equi-2-regular graphs is constructed. 

 
 

2 MAIN RESULTS 

Theorem 2.1. Let r be a positive integer and G be an r-regular graph. Then G is not equi-2-regular. 

Theorem 2.2.  Let G be a connected claw-free graph which is not a cycle. If  3, then G is     

not equi-2-regular. 
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