

*Proceedings of the 2<sup>nd</sup>* International Conference on Combinatorics, Cryptography and Computation (I4C2017)

# The maximum number of Steiner triple systems with one parallel class in common

Somayyeh Golalizadeh, Nasrin Soltankhah Alzahra University Vanak square, Tehran, Iran s.golalizadeh@gmail.com, soltan@alzahra.ac.ir

### ABSTRACT

Let  $D^*(u,k)$  be the maximum number m such that there exist m STS(3u)s (S,B<sub>1</sub>),..., (S,B<sub>m</sub>) such that for each  $i \neq j$ ,  $B_i \cap B_j = A$ , |A| = u + k, where u of the common triples form a parallel class. In this paper, we determine the number  $D^*(2n+1,0)$  for each  $n \equiv 0,1 \pmod{3}$ .

KEYWORDS: Quasigroup, Steiner triple system, Parallel class

## **1** INTRODUCTION

Let X be a set of v points. A (2,3)-packing on X is a pair (X,A), where A is a collection of 3-subsets of X called triples (blocks), such that every pair of distinct elements of X is contained in at most one triple of A. The leave of a (2,3)-packing (X,A) is the graph (X,E) where E consists of all the pairs which do not appear in any block of A. A Steiner triple system (STS) is a (2,3)-packing (S,B) such that its leave is the empty set, i.e. every 2-subset of S is contained in exactly one triple of B. The number |S| is called the order of Steiner triple system. It is well-known that a Steiner triple system of order v exists if and only if v=1,3 (mod 6). Let (S,B) be a STS(v). A subset P of B is called a parallel class if P partitions S. An STS(v) is called resolvable if all the triples can be partitioned into parallel classes. A resolvable STS(v) is usually called a Kirkman triple system of order v and denoted by KTS(v). The necessary and sufficient condition for the existence for the existence of a KTS(v) is v=3 (mod 6).

Two STSs (KTSs) (S,B<sub>1</sub>) and (S,B<sub>2</sub>) are said to intersect in k triples provided  $|B_1 \cap B_2| = k$ , Two STSs (KTSs) (S,B<sub>1</sub>) and (S,B<sub>2</sub>) are disjoint if  $|B_1 \cap B_2| = 0$ . The intersection problem for STSs (KTSs) can be considered in several different types of questions. Two most important of these types of questions are presented in the following.

**Question 1**: Determine the set Jm(v) (JmR(v)) of all integers k such that there exists a collection of m STS(v)s mutually intersecting in the same set of k triples.

Question 2: Determine the number D(v,k), the maximum number of STS(v)s such that any two of them have exactly k triples in common, these k triples are contained in each of the STSs.

Lindner and Rosa [10] completely determined the set J2(v) and Milici and Quattrocchi [14] determined the set J3(v) for all admissible values of v. The problem of determining the set J2R(v) has been solved by chang and Lo Faro in [2] except for only some undecided cases. Recently, the set J3R(v) has been characterized in [1] except for some values. Y. Li et al in [7] determined J1[u] the set of all integers k such that there is a pair of KTS(3u)s with a common parallel class intersecting in k+u triples, u of them being the triples of the common parallel class. For more studying on the intersection problem for Steiner systems, see [3,6,17].

Milici and Quattrocchi in [15] determined D(v,k) for  $k=t_v-m$  with  $m\le 11$  and most admissible v. The first author [13] proved that  $D(v,t_v-13)=3$  for every admissible  $v\ge 15$ . The problem of determining the value of  $D(v,t_v-14)$  has been solved in [16] for all admissible  $v\ge 13$ . The following theorem has been proved in [11,12,19].

**Theorem 1.** [11,12,19] For v≡1,3 (mod 6), v≠7, D(v,0)=v-2 and D(7,0)=2.

Let  $D^*(u,k)$  be the maximum number m such that there exist m STS(3u)s (S,B<sub>1</sub>),..., (S,B<sub>m</sub>) such that for each  $i\neq j$ ,  $B_i\cap B_j=A$ , |A|=u+k, where u of the common triples form a parallel class. In this paper, we determine the number  $D^*(2n+1,0)$  for each  $n\equiv 0,1 \pmod{3}$ .

## 2 PAPER FORMAT

The purpose of this section is to introduce the methods for constructing Steiner triple systems using special structures named quasigroups.

A quasigroup of order n is a pair  $(Q, \circ)$ , where Q is a set of size n and " $\circ$ " is a binary operation on Q such that for each pair of elements  $a, b \in Q$ , the equations  $a \circ x = b$  and  $y \circ a = b$  have unique solutions. A quasigroup  $(Q, \circ)$  is said to be commutative if for each pair of elements  $a, b \in Q$ ,  $a \circ b = b \circ a$ . It is said to be idempotent if for each  $a \in Q$ ,  $a \circ a = a$ . Let Q={1,2,...,n} and let F be a 1-factor on the set Q. The two element subsets of F are called holes. A quasigroup with holes F is a quasigroup  $(Q, \circ)$  of order 2n in which for each  $h \in F$ ,  $(h, \circ)$  is a subquasigroup of  $(Q, \circ)$ . The following is a quasigroup with holes F ={{1,2},{3,4},{5,6}} of order 6.

| 0 | 1 | <b>2</b> | 3 | 4        | <b>5</b> | 6<br>4<br>3<br>2<br>1<br>6<br>5 |
|---|---|----------|---|----------|----------|---------------------------------|
| 1 | 1 | 2        | 5 | 6        | 3        | 4                               |
| 2 | 2 | 1        | 6 | <b>5</b> | 4        | 3                               |
| 3 | 5 | 6        | 3 | 4        | 1        | 2                               |
| 4 | 6 | 5        | 4 | 3        | <b>2</b> | 1                               |
| 5 | 3 | 4        | 1 | 2        | 5        | 6                               |
| 6 | 4 | 3        | 2 | 1        | 6        | 5                               |

**Theorem 2.** [9] For all  $n \ge 3$ , there exists a commutative quasigroup of order 2n with holes F where F is a 1-factor on the set  $\{1, 2, ..., 2n\}$ .

In the next two constructions, we use commutative quasigroup with holes F.

**Construction 1.** [9] Let  $(\{1, 2, ..., 2n\}, \circ)$  be a commutative quasigroup of order 2n with holes F. Then  $(\{\infty_1, \infty_2, \infty_3\} \cup (\{1, 2, ..., 2n\} \times \{1, 2, 3\}), B)$  is a STS(6n+3), where B is defined by

- 1. For  $\{a, b\} \in F$  let  $B_{a,b}$  contain the triples in a STS(9) on the symbols  $\{\infty_1, \infty_2, \infty_3\} \cup (\{a, b\} \times \{1, 2, 3\})$  in which  $\{\infty_1, \infty_2, \infty_3\}$  is a triple, and let  $B_{a,b} \subseteq B$ .
- 2. For each  $1 \le a < b \le 2n$  and  $\{a, b\} \notin F$  place the triples { $(a, 1), (b, 1), (a \circ b, 2)$ }, { $(a, 2), (b, 2), (a \circ b, 3)$ }, { $(a, 3), (b, 3), (a \circ b, 1)$ }.

**Construction 2.** Let  $(\{1, 2, ..., 2n\}, \circ)$  be a commutative quasigroup of order 2n with holes F. Then  $(\{\infty_1, \infty_2, \infty_3\} \cup (\{1, 2, ..., 2n\} \times \{1, 2, 3\}), B)$  is a STS(6n+3), where B is defined by replacing the triples of type (2) in Construction 1 with the triples

(a) For each {a, b} ∉ F and 1 ≤ a < b < a ∘ b ≤ 2n place the triples
{(a, 1), (b, 1), (a ∘ b, 1)}, {(a, 2), (b, 2), (a ∘ b, 2)}, {(a, 3), (b, 3), (a ∘ b, 31)}</li>
(b) For each {a, b} ∉ F and 1 ≤ a < b ≤ 2n place the triples
{(a, 1), (b, 2), (a ∘ b, 3)}, {(a, 2), (b, 1), (a ∘ b, 3)}</li>

Proof. It is easy to check that if S is a set of size v and B is a set of 3-subsets of S such that each pair of distinct elements of S belongs to at least one triple in B and  $|B| = \frac{\nu(\nu-1)}{6}$ , then (S,B) is a Steiner triple system of order v. Let

$$S = \{\infty_1, \infty_2, \infty_3\} \cup (\{1, 2, \dots, 2n\} \times \{1, 2, 3\}).$$

We begin proof by counting the number of triples in B. The number of 2-subsets  $\{a, b\} \notin F$  is  $\binom{2n}{2} - n$ . Then the number of triples of type (a) is  $3 \times \frac{n(2n-2)}{3}$  and type (b) is 2n(2n-2). On the other hand, for each 2-subset  $\{a, b\} \in F$  there exist the triples of a STS(9) in B. The number of triples in a STS(9) is 12 and |F| = n, but the triple  $\{\infty_1, \infty_2, \infty_3\}$  is counted in each of n STS(9)s, so

$$|B| = 3 \times \frac{n(2n-2)}{3} + 2n(2n-2) + 12n - (n-1).$$

Therefore B contains the right number of triples and so it remains to show that each pair of distinct symbols in S occurs together in at least one triple of B. Let x and y be such a pair of symbols. We consider all of possible cases.

Suppose that  $x = \infty_i$  and y = (a, j). Since there exists an element b such that  $\{a, b\} \in F$ , then x,y belong to a triple of STS(9) ( $\{\infty_1 \infty_2 \infty_3\} \cup (\{a, b\} \times \{1, 2, 3\}), B_{a, b}$ ).

Suppose that x = (a, i) and y = (b, j). If  $\{a, b\} \in F$ , then x,y belong to a triple of STS(9) ) ( $\{\infty_1 \infty_2 \infty_3\} \cup (\{a, b\} \times \{1, 2, 3\}), B_{a, b}$ ). If  $\{a, b\} \notin F$ , there exist three following cases:

- (1) If i=j, then x,y belong to a triple of type (a).
- (2) If i=1 and j=2 or i=2 and j=1, then x,y belong to a triple of type (b).
- (3) If i=1 and j=3 or i=2 and j=3, for example i=1, since there exists an element c such that a ∘ c = b, then x, y ∈ {(a, 1), (c, 2), (b, 3)}.
  Then the assertion follows.

#### 3 The value of $D^*(2n + 1, 0)$

In this section, we determine the value of  $D^*(2n + 1,0)$  for each  $n \equiv 0,1 \pmod{3}$  except n=3.

**Theorem 3.** For each positive integer number n,  $D^*(2n + 1,0) = 6n - 3$ .

**Proof.** Let S be a set of 6n+3 elements and let  $(S, B_1), ..., (S, B_t)$  be t Steiner triple systems mutually intersecting in a parallel class named P. Suppose that  $\{x,y,z\}$  and  $\{u,v,w\}$  are two blocks of P. The third element in block containing the pair x,u must be distinct in each of t systems and this element belongs to  $S \setminus \{x, y, z, u, v, w\}$ . Then  $t \le 6n - 3$ .

Since  $n \equiv 0, 1 \pmod{3}$ , then  $2n + 1 \equiv 1, 3 \pmod{6}$ . Suppose that  $S = \{1, 2, ..., 2n + 1\}$ . By Theorem 2 for  $n \ge 4$  there exist 2n-1 disjoint Steiner triple systems of order 2n+1  $(S, B_1), ..., (S, B_{2n-1})$  on the set S. Let  $F_i$  be the 1-factor on the set  $\{1, 2, ..., 2n\}$  such that for each 2-subset  $\{a, b\} \in F_i, \{a, b, 2n + 1\} \in B_i$  for i=1,2,...,2n-1. Suppose that  $(Q, \circ_i)$  is the quasigroup of order 2n obtained from Steiner triple system  $(S, B_i)$  with holes  $F_i$  for i=1,2,...,2n-1.

Let

$$S' = \{\infty_1, \infty_2, \infty_3\} \cup (\{1, 2, \dots, 2n\} \times \{1, 2, 3\})$$

We use  $a_i$  instead of (a, i) and *abc* instead of the block  $\{a, b, c\}$ . For  $1 \le j \le 2n - 1$ , k=1,2,3 and  $\{a, b\} \in F_j$ , let  $A_{a,b}^{j,k}$  contains the triples in a STS(9) on the symbols  $\{\infty_1 \infty_2 \infty_3\} \cup (\{a, b\} \times \{1,2,3\})$  with the specified triples

$$\begin{split} A_{a,b}^{j,1} &= \bigcup_{i=1}^{3} \{ \infty_{1} a_{i} b_{i}, \infty_{2} a_{i} b_{i+1}, \infty_{3} a_{i} b_{i+2} \} \bigcup \{ \infty_{1} \infty_{2} \infty_{3}, a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3} \}, \\ A_{a,b}^{j,2} &= \bigcup_{i=1}^{3} \{ \infty_{1} a_{i} b_{i+1}, \infty_{2} a_{i} b_{i+2}, \infty_{3} a_{i} b_{i} \} \bigcup \{ \infty_{1} \infty_{2} \infty_{3}, a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3} \}, \\ A_{a,b}^{j,3} &= \bigcup_{i=1}^{3} \{ \infty_{1} a_{i} b_{i+2}, \infty_{2} a_{i} b_{i}, \infty_{3} a_{i} b_{i+1} \} \bigcup \{ \infty_{1} \infty_{2} \infty_{3}, a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3} \}. \end{split}$$

And

$$C_{a,b}^{j,1} = \{a_1b_1(a \circ_j b)_2, a_2b_2(a \circ_j b)_3, a_3b_3(a \circ_j b)_1 | 1 \le a < b \le 2n\}$$

$$C_{a,b}^{j,2} = \{a_1b_1(a \circ_j b)_3, a_2b_2(a \circ_j b)_1, a_3b_3(a \circ_j b)_2 | 1 \le a < b \le 2n\}$$

$$C_{a,b}^{j,3} = \{a_1b_1(a \circ_j b)_1, a_2b_2(a \circ_j b)_2, a_3b_3(a \circ_j b)_3 | 1 \le a < b < a \circ_j b \le 2n\}$$

$$\cup \{a_1b_2(a \circ_j b)_3, a_2b_1(a \circ_j b)_3 | 1 \le a < b \le 2n\}.$$

Let

$$A_{k}^{j} = \bigcup_{\{a,b\}\in F_{j}} A_{a,b}^{j,k}, \quad C_{k}^{j} = \bigcup_{\{a,b\}\notin F_{j}} C_{a,b}^{j,k}$$
$$B_{k}^{j} = A_{k}^{j} \bigcup C_{k}^{j}.$$

By Constructions 1 and 2,  $(S', B_k^j)$  is a Steiner triple system of order 6n+3 for  $1 \le j \le 2n-1$  and k=1,2,3. We claim that for each two Steiner triple systems  $(S', B_k^j)$  and  $(S', B_l^i)$ 

$$B_k^{j} \cap B_l^{i} = \{a_1 a_2 a_3 | 1 \le a \le 2n\} \cup \{\infty_1 \infty_2 \infty_3\}.$$

That form a parallel class. Obviously  $C_k^j \cap C_l^i = \emptyset$  and  $A_k^j \cap A_l^i = \{a_1 a_2 a_3 | 1 \le a \le 2n\} \cup \{\infty_1 \infty_2 \infty_3\}$  for each  $i, j \in \{1, 2, ..., 2n - 1\}$  and  $k, l \in \{1, 2, 3\}$  and  $k \ne l$ . So

$$B_k^{j} \cap B_l^{i} = \{a_1 a_2 a_3 | 1 \le a \le 2n\} \cup \{\infty_1 \infty_2 \infty_3\}.$$

Now we show that the claim is true for  $1 \le i < j \le 2n - 1$  and k=l. We prove the claim for k=3 and the other cases are similar. Since  $F_i \cap F_j = \emptyset$ , then  $A_k^j \cap A_l^i = \{a_1a_2a_3 | 1 \le a \le 2n\} \cup \{\infty_1 \infty_2 \infty_3\}$ . We show that  $C_k^j \cap C_l^i = \emptyset$ . If there exist the pairs  $\{a, b\} \notin F_j$  and  $\{c, d\} \notin F_i$  such that  $a_h b_h (a \circ_j b)_h = c_h d_h (c \circ_i d)_h$ , then  $\{a, b, a \circ_j b\} = \{c, d, c \circ_i d\}$  and this is in contradiction to our hypothesis. By constructing these 6n-3 Steiner triple systems with one parallel class in common, we conclude that the assertion is true for  $n \ge 4$ .

For n=1, an STS(9) (S,B) is listed as

B = 123,456,789,147,258,369,159,267,348,168,249,357

Consider the permutations  $\alpha = (123)(456)(789)$  and  $\beta = (132)(465)(798)$ . It is readily checked that  $B \cap \alpha B = B \cap \beta B = \alpha B \cap \beta B = \{123, 456, 789\}.$ 

So  $D^*(3,0) = 3$ .

#### REFERENCES

- H. Amjadi, N. Soltankhah, The 3-way intersection problem for Kirkman triple systems, Graphs and Combinatorics. DOI 10.1007/s00373-017-1801-8.
- Y. Chang, G. Lo Faro, Intersection numbers of Kirkman triple systems, J. Combin. Theory (A) 86 (1999) 348-361.
- Y. Chang, G. Lo Faro, The flower intersection problem for Kirkman triple systems, J. Statist. Plann. Inference. 110 (2003) 159-177.
- [4] D. Chen, C.C. Lindner, D.R. Stinson, Further results on large sets of disjoint group-divisible designs , Discrete Math. 110 (1992) 35-42.
- [5] D. Chen, D.R. Stinson, On the construction of large sets of disjoint group divisible designs, Ars Combin. 35 (1993) 103-115.
- [6] C. J. Colbourn, A. Hartman, Intersections and supports of quadruple systems, Discrete Math. 97 (1991) 119-137.
- [7] Y. Li, Y. Chang, B. Fan, The intersection numbers of KTSs with a common parallel class, Discrete Math. 312 (2012) 2893-2904.
- [8] J. Lei, Completing the spectrum for LGDD(M<sup>v</sup>), J. Combin. Designs. 5 (1997) 1-11.
- [9] C. C. Lindner, C. A. Rodger, Steiner triple systems, Design theory, CRC Press. (1997) 53-63.
- [10] C. C. Lindner, A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math. 27 (1975) 1166-1175.
- [11] J. X. Lu, On large sets of disjoint Steiner triple systems I, II, and III, J. Combin. Theory (A) 34 (1983) 140-146, 147-155, 156-182.
- [12] J. X. Lu, On large sets of disjoint Steiner triple systems IV, V, and VI, J. Combin. Theory (A) 37 (1984) 136-163, 164-188, 189-192.
- [13] S. Milici, On the parameter D(v, t<sub>v</sub> 13) for Steiner triple systems, Ann. Discrete Math. 30 (1986), 311-330.
- [14] S. Milici, G. Quattrocci, On the intersection problem for three Steiner triple systems, Ars Combin. 24a (1987) 175-194.
- [15] S. Milici, G. Quattrocchi, Some results on the maximum number of STSs such that any two of them intersect in the same block-set, J. Inf. Opt. Sciences. 7 (1986), 291-302.
- [16] S. Milici, G. Quattrocchi, D(v, t<sub>v</sub> 14) for Steiner triple systems, Le Matematiche. XL (1985), 93-105.
- [17] S. Rashidi, N. Soltankhah, The 3-way intersection problem for S(2,4,v) designs, Util. Math. 102 (2017), 169-187.
- [18] H. Shen, Intersections of Kirkman triple systems, J. Statist. Plann. Inference. 94 (2001), 313-325.
- [19] L. Teirlinck, A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems, J. Combin. Theory (A) 57, (1991) 302-305.