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ABSTRACT

Let D*(u,k) be the maximum number m such that there exist m STS(3u)s (S,B1)...., (S,Bm) such that for
eachi # j, B; N B; = A, |A| = u + k, where u of the common triples form a parallel class. In this paper,
we determine the number D*(2n+1,0) for each n = 0,1 (mod 3).

KEYWORDS: Quasigroup, Steiner triple system, Parallel class

INTRODUCTION
Let X be a set of v points. A (2,3)-packing on X is a pair (X,A), where A is a collection of 3-subsets

of X called triples (blocks), such that every pair of distinct elements of X is contained in at most one triple
of A. The leave of a (2,3)-packing (X,A) is the graph (X,E) where E consists of all the pairs which do not
appear in any block of A. A Steiner triple system (STS) is a (2,3)-packing (S,B) such that its leave is the
empty set, i.e. every 2-subset of S is contained in exactly one triple of B. The number |S] is called the order
of Steiner triple system. It is well-known that a Steiner triple system of order v exists if and only if v=1,3
(mod 6). Let (S,B) be a STS(v). A subset P of B is called a parallel class if P partitions S. An STS(v) is
called resolvable if all the triples can be partitioned into parallel classes. A resolvable STS(v) is usually
called a Kirkman triple system of order v and denoted by KTS(v). The necessary and sufficient condition
for the existence for the existence of a KTS(v) is v=3 (mod 6).

Two STSs (KTSs) (S,B1) and (S,B.) are said to intersect in k triples provided |B1NB; |=k, Two STSs

(KTSs) (S,B1) and (S,B») are disjoint if |B1NB, |=0. The intersection problem for STSs (KTSs) can be
considered in several different types of questions. Two most important of these types of questions are
presented in the following.

Question 1: Determine the set Jm(v) (JmR(Vv)) of all integers k such that there exists a collection of

m STS(v)s mutually intersecting in the same set of k triples.

Question 2: Determine the number D(v,k), the maximum number of STS(v)s such that any two of

them have exactly k triples in common, these k triples are contained in each of the STSs.
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Lindner and Rosa [10] completely determined the set J2(v) and Milici and Quattrocchi [14]
determined the set J3(v) for all admissible values of v. The problem of determining the set J2R(v) has been
solved by chang and Lo Faro in [2] except for only some undecided cases. Recently, the set J3R(v) has
been characterized in [1] except for some values. Y. Li et al in [7] determined J1[u] the set of all integers k
such that there is a pair of KTS(3u)s with a common parallel class intersecting in k+u triples, u of them
being the triples of the common parallel class. For more studying on the intersection problem for Steiner
systems, see [3,6,17].

Milici and Quattrocchi in [15] determined D(v,k) for k=t,-m with m<11 and most admissible v. The
first author [13] proved that D(v,t.-13)=3 for every admissible v>15. The problem of determining the value
of D(v,t-14) has been solved in [16] for all admissible v>13. The following theorem has been proved in
[11,12,19].

Theorem 1. [11,12,19] For v=1,3 (mod 6), v#7, D(v,0)=v-2 and D(7,0)=2.

Let D*(u,k) be the maximum number m such that there exist m STS(3u)s (S,B1),..., (S,Bm) such that
for each i#j, BiNB=A, |A|=u+k, where u of the common triples form a parallel class. In this paper, we
determine the number D*(2n+1,0) for each n=0,1 (mod 3).

2 PAPER FORMAT

The purpose of this section is to introduce the methods for constructing Steiner triple systems using special
structures named quasigroups.

A quasigroup of order n is a pair (Q,°), where Q is a set of sizenand " o " is a binary operation on Q such
that for each pair of elements a, b € Q, the equations a e x = b and y o a = b have unique solutions. A
quasigroup (Q,°) is said to be commutative if for each pair of elements a,b € Q,a° b = b o a. Itis said to
be idempotent if foreach a € Q, a o a = a. Let Q={1,2,...,n} and let F be a 1-factor on the set Q. The two
element subsets of F are called holes. A quasigroup with holes F is a quasigroup (Q,o) of order 2n in which
for each h € F, (h,0) is a subquasigroup of (Q,o). The following is a quasigroup with holes F

={{1,2},{3,4}.{5,6}} of order 6.
ol 2 3 4 5 6
1112 & 6 3 4
2(2 1 6 5 4 3
3|86 3 4 1 2
416 & 4 3 2 1
53 4 1 2 5 6
6(4 3 2 1 6 5

Theorem 2. [9] For all n > 3, there exists a commutative quasigroup of order 2n with holes F where F is a
1-factor on the set {1,2,...,2n}.

In the next two constructions, we use commutative quasigroup with holes F.
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Construction 1. [9] Let ({1,2,...,2n},°) be a commutative quasigroup of order 2n with holes F. Then
({ooq, 00,, 05} U ({1,2, ...,2n} X {1,2,3}), B) is a STS(6n+3), where B is defined by

1. For{a, b} € F let B, contain the triples in a STS(9) on the symbols {oo,, 00,, 003} U ({a, b} X
{1,2,3}) in which {oo,, 00,, 003} is a triple, and let B, , € B.
2. Foreach1 <a < b <2nand{a,b} ¢ F place the triples
{(a,1),(b,1),(a°b,2)},{(a,2),(b,2),(acb,3)}{(a3),(b,3)(aeb 1}

Construction 2. Let ({1,2,...,2n},0) be a commutative quasigroup of order 2n with holes F. Then
({ooq, 05,05} U ({1,2, ...,2n} x {1,2,3}), B) is a STS(6n+3), where B is defined by replacing the triples of
type (2) in Construction 1 with the triples

(@) Foreach{a,b} ¢ Fand1 <a < b < a°b < 2n place the triples

{(a,1),(b,1),(a°b, 1)} {(a,2),(b,2),(acb,2)}{(a3),(b,3)(acb31)}
(b) Foreach{a,b} ¢ Fand 1 < a < b < 2n place the triples

{(a, 1), (b,2),(a°b,3)},{(a,2),(b,1),(a°b,3)}

Proof. It is easy to check that if S is a set of size v and B is a set of 3-subsets of S such that each pair of
distinct elements of S belongs to at least one triple in B and |B| = @ then (S,B) is a Steiner triple
system of order v. Let

S = {001’ 0021 003} Y ({1,2, ,Zn} X {152:3})
We begin proof by counting the number of triples in B. The number of 2-subsets {a, b} & F is (22”) —n.

Then the number of triples of type (a) is 3 x "(2+_2) and type (b) is 2n(2n — 2). On the other hand, for

each 2-subset {a, b} € F there exist the triples of a STS(9) in B. The number of triples in a STS(9) is 12
and |F| = n, but the triple {oo;, 00,, 3} is counted in each of n STS(9)s, so

B n(2n—2)
|B| = BXT+2n(2n—2)+12n—(n—1).

Therefore B contains the right number of triples and so it remains to show that each pair of distinct symbols
in S occurs together in at least one triple of B. Let x and y be such a pair of symbols. We consider all of
possible cases.

Suppose that x = oo; and y = (a, ). Since there exists an element b such that {a, b} € F, then x,y belong
to a triple of STS(9) ({oo; 0,003} U ({a, b} x {1,2,3}), By p).

Supose that x = (a,i) and y = (b, ). If {a, b} € F, then X,y belong to a triple of STS(9) ) ({o0;00,005} U
({a, b} x {1,2,3}), B, ). If {a, b} & F, there exist three following cases:

(1) If i=j, then x,y belong to a triple of type (a).
(2) Ifi=1 and j=2 or i=2 and j=1, then X,y belong to a triple of type (b).
(3) Ifi=1and j=3 or i=2 and j=3, for example i=1, since there exists an element ¢ such that a o ¢ = b,
then x,y € {(a, 1), (c, 2), (b, 3)}.
Then the assertion follows.

3 Thevalue of D*(2n + 1,0)
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In this section, we determine the value of D*(2n + 1,0) for each n = 0,1 (mod 3) except n=3.
Theorem 3. For each positive integer number n, D*(2n + 1,0) = 6n — 3.

Proof. Let S be a set of 6n+3 elements and let (S, B;), ..., (S, B;) be t Steiner triple systems mutually
intersecting in a parallel class named P. Suppose that {x,y,z}and {u,v,w} are two blocks of P. The third
element in block containing the pair x,u must be distinct in each of t systems and this element belongs to

S\{x,y,z,u,v,w}. Thent < 6n — 3.

Sincen = 0,1 (mod 3), then 2n + 1 = 1,3 (mod 6). Suppose that S = {1,2, ...,2n + 1}. By Theorem 2 for
n > 4 there exist 2n-1 disjoint Steiner triple systems of order 2n+1 (S, B,), ..., (S, Bon—1) On the set S. Let
F; be the 1-factor on the set {1,2,...,2n} such that for each 2-subset {a, b} € F;, {a,b,2n + 1} € B; for
i=1,2,...,2n-1. Suppose that (Q,°;) is the quasigroup of order 2n obtained from Steiner triple system (S, B;)
with holes F; fori=1,2,...,2n-1.

Let
§" = {00y, 005,03} U ({1,2,...,2n} x {1,2,3})
We use q; instead of (a, i) and abc instead of the block {a, b, c}. For 1 <j < 2n —1, k=1,2,3 and

{a,b} € Fj, let A{{,IZ contains the triples in a STS(9) on the symbols {c0; 0,003} U ({a, b} X {1,2,3}) with

the specified triples
i1 _ 3
Agp = Uizq{oora;b;, 002a;b;41, 03a;b;4 2 }U{00 00,003, a1 a5a3, byby bs},
j2 _ 3
Agp = Uiz1{e01a;b;11, 02, bi 4, 003a;b; }U{00 00,003, a1 a5 a3, byb; bs},

J3 _ 3
Aa_b = U;=1{01a;bj 43, 0,a;b;, 03a;b; 4 1}U{00,00,03,a1a,a3, b1by b3},

And
s = {aby(a o b), azby(a;b),, ashs(ae;b) |1 <a<b<2n}
CJp = {arbi(ao; b) ,azby(ae; b) ,azhs(a;b) |1 <a<b<2n}
¢y ={abi(a; b)  azbs(ac;b)  ashy(ac;b) [1<a<b<aob<on}
Ufaiby(ac;b), azbi(ae;b) |1 <a<b<2n).
Let

j_ jk J_ jk
Ay = U{a:b}EFjAa,b' Ci = U{a.b}eF,- Ca,b'

i _ duc)
B] = AlUc].

By Constructions 1 and 2, (S’, B,{) is a Steiner triple system of order 6n+3 for 1 < j < 2n — 1 and
k=1,2,3. We claim that for each two Steiner triple systems (S’, B) and (S’, BH

B,{ﬂBli ={a;a,a3|1 < a < 2n}U{oo 00,003},
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That form a parallel class. Obviously C/ n ¢} = @ and A/ NA} = {a,a,a5|1 < a < 2n}U{o0, 00,005} for
eachi,j € {1,2,..,2n—1}and k,l € {1,2,3}and k # [. So

B]inBll = {a1a2a3|1 <a< Zn}U{001002003}_

Now we show that the claim is true for 1 < i < j < 2n — 1 and k=I. We prove the claim for k=3 and the
other cases are similar. Since F; N F; = @, then A{;ﬂA;' ={a,a,a3|1 < a < 2n}U{o0;0,005}. We show
that C,{ N C} = @. If there exist the pairs {a, b} & F; and {c,d} & F; such that a,by(a °; b), =

cndn(c o; d)p, then{a,b,a o; b} = {c,d, ¢ o; d} and this is in contradiction to our hypothesis. By
constructing these 6n-3 Steiner triple systems with one parallel class in common, we conclude that the
assertion is true for n > 4.

For n=1, an STS(9) (S,B) is listed as
B =123,456,789,147,258,369,159,267,348,168,249,357
Consider the permutations a = (123)(456)(789) and f = (132)(465)(798). It is readily checked that
BnaB=BnNnB=aBnNfB={123,456,789}.
So D*(3,0) = 3.
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