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 ABSTRACT 

Let D*(u,k) be the maximum number m such that there exist m STS(3u)s (S,B1),…, (S,Bm) such that for 

each 𝑖 ≠ 𝑗, 𝐵𝑖 ∩ 𝐵𝑗 = 𝐴, |𝐴| = 𝑢 + 𝑘, where u of the common triples form a parallel class. In this paper, 

we determine the number D*(2n+1,0) for each 𝑛 ≡ 0,1 (mod 3). 
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1 INTRODUCTION 

Let X be a set of v points. A (2,3)-packing on X is a pair (X,A), where A is a collection of 3-subsets 

of X called triples (blocks), such that every pair of distinct elements of X is contained in at most one triple 

of A. The leave of a (2,3)-packing (X,A) is the graph (X,E) where E consists of all the pairs which do not 

appear in any block of A. A Steiner triple system (STS) is a (2,3)-packing (S,B) such that its leave is the 

empty set, i.e. every 2-subset of S is contained in exactly one triple of B. The number |S| is called the order 

of Steiner triple system. It is well-known that a Steiner triple system of order v exists if and only if v≡1,3 

(mod 6). Let (S,B) be a STS(v). A subset P of B is called a parallel class if P partitions S. An STS(v) is 

called resolvable if all the triples can be partitioned into parallel classes. A resolvable STS(v) is usually 

called a Kirkman triple system of order v and denoted by KTS(v). The necessary and sufficient condition 

for the existence for the existence of a KTS(v) is v≡3 (mod 6). 

Two STSs (KTSs) (S,B1) and (S,B2) are said to intersect in k triples provided |B1∩B2 |=k,  Two STSs 

(KTSs) (S,B1) and (S,B2) are disjoint if |B1∩B2 |=0. The intersection problem for STSs (KTSs) can be 

considered in several different types of questions. Two most important of these types of questions are 

presented in the following. 

Question 1: Determine the set Jm(v) (JmR(v)) of all integers k such that there exists a collection of 

m STS(v)s mutually intersecting in the same set of k triples. 

Question 2: Determine the number D(v,k), the maximum number of STS(v)s such that any two of 

them have exactly k triples in common, these k triples are contained in each of the STSs. 
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Lindner and Rosa [10] completely determined the set J2(v) and Milici and Quattrocchi [14] 

determined the set J3(v) for all admissible values of v. The problem of determining the set J2R(v) has been 

solved by chang and Lo Faro in [2] except for only some undecided cases. Recently, the set J3R(v) has 

been characterized in [1] except for some values. Y. Li et al in [7] determined J1[u] the set of all integers k 

such that there is a pair of KTS(3u)s with a common parallel class intersecting in k+u triples, u of them 

being the triples of the common parallel class. For more studying on the intersection problem for Steiner 

systems, see [3,6,17]. 

 

 

Milici and Quattrocchi in [15] determined D(v,k) for k=tv-m with m≤11 and most admissible v. The 

first author [13] proved that D(v,tv-13)=3 for every admissible v≥15. The problem of determining the value 

of D(v,tv-14) has been solved in [16] for all admissible v≥13. The following theorem has been proved in 

[11,12,19]. 

 

Theorem 1. [11,12,19] For v≡1,3 (mod 6), v≠7, D(v,0)=v-2 and D(7,0)=2. 

 

Let D*(u,k) be the maximum number m such that there exist m STS(3u)s (S,B1),…, (S,Bm) such that 

for each i≠j, Bi∩Bj=A, |A|=u+k, where u of the common triples form a parallel class. In this paper, we 

determine the number D*(2n+1,0) for each n≡0,1 (mod 3). 

2 PAPER FORMAT 

The purpose of this section is to introduce the methods for constructing Steiner triple systems using special 

structures named quasigroups. 

A quasigroup of order n is a pair (𝑄,∘), where Q is a set of size n and " ∘ " is a binary operation on Q such 

that for each pair of elements 𝑎, 𝑏 ∈ 𝑄, the equations 𝑎 ∘ 𝑥 = 𝑏 and 𝑦 ∘ 𝑎 = 𝑏 have unique solutions. A 

quasigroup (𝑄,∘) is said to be commutative if for each pair of elements 𝑎, 𝑏 ∈ 𝑄, 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎. It is said to 

be idempotent if for each 𝑎 ∈ 𝑄, 𝑎 ∘ 𝑎 = 𝑎. Let Q={1,2,…,n} and let F be a 1-factor on the set Q. The two 

element subsets of F are called holes. A quasigroup with holes F is a quasigroup (𝑄,∘) of order 2n in which 

for each ℎ ∈ 𝐹, (ℎ,∘) is a subquasigroup of (𝑄,∘). The following is a quasigroup with holes F 

={{1,2},{3,4},{5,6}} of order 6. 
 

 

 

Theorem 2. [9] For all 𝑛 ≥ 3, there exists a commutative quasigroup of order 2n with holes F where F is a 

1-factor on the set {1,2,…,2n}. 

In the next two constructions, we use commutative quasigroup with holes F. 
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Construction 1. [9] Let ({1,2, … ,2𝑛},∘) be a commutative quasigroup of order 2n with holes F. Then 

({∞1, ∞2, ∞3} ∪ ({1,2, … ,2𝑛} × {1,2,3}), 𝐵) is a STS(6n+3), where B is defined by 

1. For {𝑎, 𝑏} ∈ 𝐹 let 𝐵𝑎,𝑏 contain the triples in a STS(9) on the symbols {∞1, ∞2, ∞3} ∪ ({𝑎, 𝑏} ×

{1,2,3}) in which {∞1, ∞2, ∞3} is a triple, and let 𝐵𝑎,𝑏 ⊆ 𝐵. 

2. For each 1 ≤ 𝑎 < 𝑏 ≤ 2𝑛 and {𝑎, 𝑏} ∉ 𝐹 place the triples 

{(𝑎, 1), (𝑏, 1), (𝑎 ∘ 𝑏, 2)}, {(𝑎, 2), (𝑏, 2), (𝑎 ∘ 𝑏, 3)}, {(𝑎, 3), (𝑏, 3), (𝑎 ∘ 𝑏, 1)}. 
 

Construction 2. Let ({1,2, … ,2𝑛},∘) be a commutative quasigroup of order 2n with holes F. Then 

({∞1, ∞2, ∞3} ∪ ({1,2, … ,2𝑛} × {1,2,3}), 𝐵) is a STS(6n+3), where B is defined by replacing the triples of 

type (2) in Construction 1 with the triples 

(a) For each {𝑎, 𝑏} ∉ 𝐹 and 1 ≤ 𝑎 < 𝑏 < 𝑎 ∘ 𝑏 ≤ 2𝑛 place the triples 

{(𝑎, 1), (𝑏, 1), (𝑎 ∘ 𝑏, 1)}, {(𝑎, 2), (𝑏, 2), (𝑎 ∘ 𝑏, 2)}, {(𝑎, 3), (𝑏, 3), (𝑎 ∘ 𝑏, 31)} 

(b) For each {𝑎, 𝑏} ∉ 𝐹 and 1 ≤ 𝑎 < 𝑏 ≤ 2𝑛 place the triples 

{(𝑎, 1), (𝑏, 2), (𝑎 ∘ 𝑏, 3)}, {(𝑎, 2), (𝑏, 1), (𝑎 ∘ 𝑏, 3)} 

 

Proof. It is easy to check that if S is a set of size v and B is a set of 3-subsets of S such that each pair of 

distinct elements of S belongs to at least one triple in B and |𝐵| =
𝑣(𝑣−1)

6
, then (S,B) is a Steiner triple 

system of order v. Let  

 

𝑆 = {∞1, ∞2, ∞3} ∪ ({1,2, … ,2𝑛} × {1,2,3}). 

We begin proof by counting the number of triples in B. The number of 2-subsets {𝑎, 𝑏} ∉ 𝐹 is (2𝑛
2

) − 𝑛. 

Then the number of triples of type (a) is 3 ×
𝑛(2𝑛−2)

3
 and type (b) is 2𝑛(2𝑛 − 2). On the other hand, for 

each 2-subset {𝑎, 𝑏} ∈ 𝐹 there exist the triples of a STS(9) in B. The number of triples in a STS(9) is 12 

and |𝐹| = 𝑛, but the triple {∞1, ∞2, ∞3} is counted in each of n STS(9)s, so 

|𝐵| = 3 ×
𝑛(2𝑛 − 2)

3
+ 2𝑛(2𝑛 − 2) + 12𝑛 − (𝑛 − 1). 

Therefore B contains the right number of triples and so it remains to show that each pair of distinct symbols 

in S occurs together in at least one triple of B. Let x and y be such a pair of symbols. We consider all of 

possible cases. 

Suppose that 𝑥 = ∞𝑖 and 𝑦 = (𝑎, 𝑗). Since there exists an element b such that {𝑎, 𝑏} ∈ 𝐹, then x,y belong 

to a triple of STS(9) ({∞1∞2∞3} ∪ ({𝑎, 𝑏} × {1,2,3}), 𝐵𝑎,𝑏). 

Supose that 𝑥 = (𝑎, 𝑖) and 𝑦 = (𝑏, 𝑗). If {𝑎, 𝑏} ∈ 𝐹, then x,y belong to a triple of STS(9) ) ({∞1∞2∞3} ∪
({𝑎, 𝑏} × {1,2,3}), 𝐵𝑎,𝑏). If {𝑎, 𝑏} ∉ 𝐹, there exist three following cases: 

(1) If i=j, then x,y belong to a triple of type (a). 

(2) If i=1 and j=2 or i=2 and j=1, then x,y belong to a triple of type (b). 

(3) If i=1 and j=3 or i=2 and j=3, for example i=1, since there exists an element c such that 𝑎 ∘ 𝑐 = 𝑏, 

then 𝑥, 𝑦 ∈ {(𝑎, 1), (𝑐, 2), (𝑏, 3)}. 

Then the assertion follows. 

 

3   The value of 𝑫∗(𝟐𝒏 + 𝟏, 𝟎) 
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In this section, we determine the value of 𝐷∗(2𝑛 + 1,0) for each 𝑛 ≡ 0,1 (mod 3) except n=3. 

Theorem 3. For each positive integer number n, 𝐷∗(2𝑛 + 1,0) = 6𝑛 − 3. 

Proof. Let S be a set of 6n+3 elements and let (𝑆, 𝐵1), … , (𝑆, 𝐵𝑡) be t Steiner triple systems mutually 

intersecting in a parallel class named P. Suppose that {x,y,z}and {u,v,w} are two blocks of P. The third 

element in block containing the pair x,u must be distinct in each of t systems and this element belongs to 

𝑆\{𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤}. Then 𝑡 ≤ 6𝑛 − 3. 

Since 𝑛 ≡ 0, 1 (mod 3), then 2𝑛 + 1 ≡ 1,3 (mod 6). Suppose that 𝑆 = {1,2, … ,2𝑛 + 1}. By Theorem 2 for 

𝑛 ≥ 4 there exist 2n-1 disjoint Steiner triple systems of order 2n+1 (𝑆, 𝐵1), … , (𝑆, 𝐵2𝑛−1) on the set S. Let 

𝐹𝑖 be the 1-factor on the set {1,2,…,2n} such that for each 2-subset {𝑎, 𝑏} ∈ 𝐹𝑖, {𝑎, 𝑏, 2𝑛 + 1} ∈ 𝐵𝑖 for 

i=1,2,…,2n-1. Suppose that (𝑄,∘𝑖) is the quasigroup of order 2n obtained from Steiner triple system (𝑆, 𝐵𝑖) 

with holes Fi  for i=1,2,…,2n-1. 

Let  

𝑆′ = {∞1, ∞2, ∞3} ∪ ({1,2, … ,2𝑛} × {1,2,3}) 

We use 𝑎𝑖 instead of (𝑎, 𝑖) and 𝑎𝑏𝑐 instead of the block {𝑎, 𝑏, 𝑐}. For 1 ≤ 𝑗 ≤ 2𝑛 − 1, k=1,2,3 and 

{𝑎, 𝑏} ∈ 𝐹𝑗, let 𝐴𝑎,𝑏
𝑗,𝑘

 contains the triples in a STS(9) on the symbols {∞1∞2∞3} ∪ ({𝑎, 𝑏} × {1,2,3}) with 

the specified triples  

𝐴𝑎,𝑏
𝑗,1

= ⋃ {∞1𝑎𝑖𝑏𝑖 , ∞2𝑎𝑖𝑏𝑖+1, ∞3𝑎𝑖𝑏𝑖+2
3
𝑖=1 }⋃{∞1∞2∞3, 𝑎1𝑎2𝑎3, 𝑏1𝑏2𝑏3}, 

𝐴𝑎,𝑏
𝑗,2

= ⋃ {∞1𝑎𝑖𝑏𝑖+1, ∞2𝑎𝑖𝑏𝑖+2, ∞3𝑎𝑖𝑏𝑖
3
𝑖=1 }⋃{∞1∞2∞3, 𝑎1𝑎2𝑎3, 𝑏1𝑏2𝑏3}, 

𝐴𝑎,𝑏
𝑗,3

= ⋃ {∞1𝑎𝑖𝑏𝑖+2, ∞2𝑎𝑖𝑏𝑖 , ∞3𝑎𝑖𝑏𝑖+1
3
𝑖=1 }⋃{∞1∞2∞3, 𝑎1𝑎2𝑎3, 𝑏1𝑏2𝑏3}, 

And  

𝐶𝑎,𝑏
𝑗,1

= {𝑎1𝑏1(𝑎 ∘𝑗 𝑏)
2

, 𝑎2𝑏2(𝑎 ∘𝑗 𝑏)
3

, 𝑎3𝑏3(𝑎 ∘𝑗 𝑏)
1

|1 ≤ 𝑎 < 𝑏 ≤ 2𝑛} 

𝐶𝑎,𝑏
𝑗,2

= {𝑎1𝑏1(𝑎 ∘𝑗 𝑏)
3

, 𝑎2𝑏2(𝑎 ∘𝑗 𝑏)
1

, 𝑎3𝑏3(𝑎 ∘𝑗 𝑏)
2

|1 ≤ 𝑎 < 𝑏 ≤ 2𝑛} 

𝐶𝑎,𝑏
𝑗,3

= {𝑎1𝑏1(𝑎 ∘𝑗 𝑏)
1

, 𝑎2𝑏2(𝑎 ∘𝑗 𝑏)
2

, 𝑎3𝑏3(𝑎 ∘𝑗 𝑏)
3

|1 ≤ 𝑎 < 𝑏 < 𝑎 ∘𝑗 𝑏 ≤ 2𝑛} 

⋃ {𝑎1𝑏2(𝑎 ∘𝑗 𝑏)
3

, 𝑎2𝑏1(𝑎 ∘𝑗 𝑏)
3

|1 ≤ 𝑎 < 𝑏 ≤ 2𝑛}. 

Let  

𝐴𝑘
𝑗

= ⋃ 𝐴𝑎,𝑏
𝑗,𝑘

{𝑎,𝑏}∈𝐹𝑗
,     𝐶𝑘

𝑗
= ⋃ 𝐶𝑎,𝑏

𝑗,𝑘
{𝑎,𝑏}∉𝐹𝑗

. 

𝐵𝑘
𝑗

= 𝐴𝑘
𝑗

⋃𝐶𝑘
𝑗
. 

By Constructions 1 and 2, (𝑆′, 𝐵𝑘
𝑗
) is a Steiner triple system of order 6n+3 for 1 ≤ 𝑗 ≤ 2𝑛 − 1 and 

k=1,2,3. We claim that for each two Steiner triple systems (𝑆′, 𝐵𝑘
𝑗
) and (𝑆′, 𝐵𝑙

𝑖)  

𝐵𝑘
𝑗
⋂𝐵𝑙

𝑖 = {𝑎1𝑎2𝑎3|1 ≤ 𝑎 ≤ 2𝑛}⋃{∞1∞2∞3}. 
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That form a parallel class. Obviously 𝐶𝑘
𝑗

∩ 𝐶𝑙
𝑖 = ∅ and 𝐴𝑘

𝑗
⋂𝐴𝑙

𝑖 = {𝑎1𝑎2𝑎3|1 ≤ 𝑎 ≤ 2𝑛}⋃{∞1∞2∞3} for 

each 𝑖, 𝑗 ∈ {1,2, … ,2𝑛 − 1} and 𝑘, 𝑙 ∈ {1,2,3} and 𝑘 ≠ 𝑙. So 

𝐵𝑘
𝑗
⋂𝐵𝑙

𝑖 = {𝑎1𝑎2𝑎3|1 ≤ 𝑎 ≤ 2𝑛}⋃{∞1∞2∞3}. 

Now we show that the claim is true for 1 ≤ 𝑖 < 𝑗 ≤ 2𝑛 − 1 and k=l. We prove the claim for k=3 and the 

other cases are similar. Since 𝐹𝑖 ∩ 𝐹𝑗 = ∅, then 𝐴𝑘
𝑗

⋂𝐴𝑙
𝑖 = {𝑎1𝑎2𝑎3|1 ≤ 𝑎 ≤ 2𝑛}⋃{∞1∞2∞3}. We show 

that 𝐶𝑘
𝑗

∩ 𝐶𝑙
𝑖 = ∅. If there exist the pairs {𝑎, 𝑏} ∉ 𝐹𝑗 and {𝑐, 𝑑} ∉ 𝐹𝑖 such that 𝑎ℎ𝑏ℎ(𝑎 ∘𝑗 𝑏)ℎ =

𝑐ℎ𝑑ℎ(𝑐 ∘𝑖 𝑑)ℎ, then {𝑎, 𝑏, 𝑎 ∘𝑗 𝑏} = {𝑐, 𝑑, 𝑐 ∘𝑖 𝑑} and this is in contradiction to our hypothesis. By 

constructing these 6n-3 Steiner triple systems with one parallel class in common, we conclude that the 

assertion is true for 𝑛 ≥ 4. 

For n=1, an STS(9) (S,B) is listed as  

𝐵 = 123,456,789,147,258,369,159,267,348,168,249,357 

Consider the permutations 𝛼 = (123)(456)(789) and 𝛽 = (132)(465)(798). It is readily checked that  

𝐵 ∩ 𝛼𝐵 = 𝐵 ∩ 𝛽𝐵 = 𝛼𝐵 ∩ 𝛽𝐵 = {123,456,789}. 

So 𝐷∗(3,0) = 3. 
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