

Proceedings of the 2nd International Conference on Combinatorics, Cryptography and Computation (I4C2017)

Total dominator chromatic number in graphs

D.A. Mojdeh¹, E. Nazari², S. Askari²

¹ Department of Mathematics, University of Mazandaran, Babolsar, Iran ² Department of Mathematics, University of Tafresh, Tafresh, Iran

Tue Nov 21 16:12:42 2017

ABSTRACT

A given graph G has a total dominator coloring if it has a proper coloring in which each vertex of G is adjacent to every vertex (or all vertices) of some color class. The total dominator chromatic number $\chi_d^t(G)$ of G is the minimum number of color classes in a total dominator coloring of a graph G. In this paper we study the total dominator chromatic number on several classes of graphs.

Keywords: Graph, Total Domination, Coloring, Total dominator coloring.

1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to [10] Throughout this note, all graphs are simple, connected and undirected. Let G = (V, E) be a graph with the vertex V and the edge set E. A *proper coloring* of a graph G is an assignment of colors to the vertices of G in such a way that no two adjacent vertices receive the same color. The *chromatic number* $\chi(G)$ is the minimum number of colors required for a proper coloring of G. A color class is the set of all vertices, having the same color. The color class corresponding to the color i is denoted by V_i . A set $S \subseteq V(G)$ is a *total dominating set* of G if every vertex of V(G) is adjacent to at least one vertex of S. The cardinality of the smallest total dominating set of G, denoted by $\gamma_i(G)$, is called the *total domination number* of G. Total domination is now well studied in graph theory. The literature on the subject on total domination in graphs has been surveyed and detailed in the recent book [3]. A survey of total domination in graphs can also be found in [2]. A dominator coloring, of a graph G is a

proper coloring of G such that every vertex of V(G) dominates all vertices of at least one color class. The dominator chromatic number $\chi_d(G)$ of G is the minimum number of color classes in a dominator coloring of G. The concept of dominator coloring was introduced and studied by Gera, Horton and Rasmussen [6] and studied further, for example, by Gera [5, 4] and Chellali and Maffray [1].

A total dominator coloring of a graph G with no isolated vertex is a proper coloring of G in which every vertex of the graph is adjacent to every vertex of some (other) color class. The total dominator chromatic number $\chi_d^t(G)$ of G is the minimum number of color classes in total dominator coloring of G. A $\chi_d^t(G)$ - coloring of G is any total dominator coloring with $\chi_d^t(G)$ colors.

The complement of a graph G is denoted by \overline{G} and is a graph with the vertex set V(G) and for every two vertices v and w, $vw \in E(\overline{G})$ if and only if $vw \notin E(G)$.

A cycle on n vertices is denoted by C_n and a path on n vertices by P_n . A complete graph on n vertices is denoted by K_n . A wheel graph on n+1 vertices is denoted by $W_{1,n}$.

The complete *K*-partite graph K_{a_1,a_2,\ldots,a_k} is a simple graph whose vertices can be partitioned into sets such that two vertices are adjacent if and only if they are not in the same partite sets.

A complete bipartite graph on m+n vertices is denoted by $K_{m,n}$.

The multi-star graph $K_m(a_1, a_2, ..., a_m)$ is formed by joining a_i end-vertices to each vertex x_i of a complete graph K_m for $(1 \le i \le m)$, where $V(K_m) = \{x_1, x_2, ..., x_m\}$.

A double star graph on $a_1 + a_2 + 2$ vertices is denoted by $K_2(a_1, a_2)$.

The fan graph $F_{m,n}$ is defined as the graph join $\overline{K_m} + P_n$ where $\overline{K_m}$ is the complement of K_m with vertex set $\{u_1, \dots, u_m\}$ and P_n is a path with vertex set $\{v_1, \dots, v_n\}$.

Multi-star $K_3(a_1, a_2, a_3)$

Fan graph $F_{2,5}$

The helm graph H_n is the graph obtained from a wheel graph $W_{1,n}$ by adjoining a pendant edge at each node of the cycle C_n .

A flower graph Fl_n is the graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

The Sun flower graph Sf_n is the resultant graph obtained from the flower graph of wheels $W_{1,n}$ by adding n pendant edges to the central vertex .

The crown graph S_n^0 for an integer $n \ge 3$ is the graph with vertex set $\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and edge set $\{(u_i, v_j): 1 \le i, j \le n, i \ne j\}$.

The windmill graph $W_n^{(m)}$ is the graph obtained by taking m copies of the complete graph K_n with a vertex in common.

Helm graph H_4

Windmill graph $W_4^{(4)}$

The *n*-barbell graph B_n is the simple graph obtained by connecting two copies of a complete graph K_n by a bridge.

The double complete bipartite graph R_2 is obtained by connecting two copies of a complete graph $K_{m,n}$ $(m,n \ge 2)$ by a bridge.

We study total dominator coloring of family of graphs. We need the following theorems

Theorem 1.1 [9] Let G be a graph of order n and without isolated vertices. Then

 $max\{\gamma_t(G), \chi_d(G)\} \le \chi_d^t(G) \le n.$

Theorem 1.2 [9] If G is a connected graph of order n and without isolated vertices, then $2 \le \chi_d^t(G) \le n$. Furthermore, $\chi_d^t(G)$ is 2 or n if and only if G is a complete bipartite graph, or is isomorphic to the complete graph K_n , respectively.

Theorem 1.3 [4] (i) The multistar $K_m(a_1, a_2, ..., a_m)$ has $\chi_d(K_m(a_1, a_2, ..., a_m)) = m+1$.

(ii) The complete k -partite graph K_{a_1,a_2,\ldots,a_k} has $\chi_d(K_{a_1,a_2,\ldots,a_k}) = k$.

Theorem 1.4 [8] (i) For the helm graph H_n , $(n \ge 3)$, $\chi_d(H_n) = n+1$. (ii) For the flower graph Fl_n , $\chi_d(Fl_n) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$

(iii) For Sun flower graph Sf_n , $\chi_d(Sf_n) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$

Theorem 1.5 [7](*i*) Let B_n be *n*-barbel graph. Then $\chi_d(B_n) = n+1$ for $n \ge 3$. (*ii*) Let S_n^0 be a crown graph. Then $\chi_d(S_n^0) = 4$ for $n \ge 3$.

Theorem 1.6 [9] Let $G = W_n^{(m)}$ be a windmill graph with $n, m \ge 2$, then $\chi_d(G) = n$.

2 Total dominator chromatic number

The following theorems appeared in [9]. **Theorem 2.1** (*i*) Let $W_{1,n}$ be a wheel of order $n+1 \ge 4$. Then

$$\chi_d^t(W_{1,n}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd.} \end{cases}$$

(ii) Let C_n be a cycle of order $n \ge 3$. Then $\begin{aligned}
& if \quad n = 4 \\
& 2 \\
& 4 \lfloor \frac{n}{6} \rfloor + r \\
& 4 \lfloor \frac{n}{6} \rfloor + r \\
& if \quad n \ne 4 \text{ and for } r = 0,1,2,4, \quad n \equiv r \pmod{6} \\
& 4 \lfloor \frac{n}{6} \rfloor + r - 1 \\
& if \quad n \equiv r \pmod{6} , \text{ where } r = 3,5.
\end{aligned}$ (iii) Let P_n be a path of order $n \ge 2$. Then $\begin{aligned}
& \chi_d^t(P_n) = \begin{cases} 2 \lceil \frac{n}{3} \rceil - 1 & \text{if } n = 1 \pmod{3} \\ 2 \lceil \frac{n}{3} \rceil & \text{otherwise.} \end{cases}$

Now we present the total dominator chromatic number of other classes for completeness in this section. Note that in this graphs $\chi_d^t = \chi_d$.

Theorem 2.2 (i) The multistar $K_m(a_1, a_2, ..., a_m)$ has $\chi_d^t(K_m(a_1, a_2, ..., a_m)) = m+1$.

(ii) The complete k-partite graph K_{a_1,a_2,\ldots,a_k} has $\chi_d^t(K_{a_1,a_2,\ldots,a_k}) = k$. (iii) For fan graph $F_{m,n}$, $n \ge 2$, $m \ge 1$ $\chi_d^t(F_{m,n}) = 3$. (iv) For the helm graph H_n , $n \ge 3$, $\chi_d^t(H_n) = n+1$.

(v) For the flower graph $\operatorname{Fl}_n n \geq \chi_d^t (\operatorname{Fl}_n) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd.} \end{cases}$ (vi) For the sun flower graph $\operatorname{Sf}_n n \geq \chi_d^t (\operatorname{Sf}_n) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd.} \end{cases}$ (vii) For the barbell graph B_n with $n \geq 3$, $\chi_d^t (B_n) = n+1$. (viii) For the crown graph S_n^0 with $n \geq 2$, $\chi_d^t (S_n^0) = 4$. (ix)For the windmill graph $G = W_n^{(m)}$ with $n, m \geq 2$ $\chi_d^t (G) = n$. (x) Let $\overline{K_2(a_1, a_2)}$ be the complement of a double star $K_2(a_1, a_2)$. Then

$$\chi_{d}^{t} \overline{(K_{2}(a_{1},a_{2}))} = \begin{cases} 3 & \text{if } a_{1} = a_{2} = 1 \\ 4 & \text{if } a_{1} = 2, a_{2} = 1 \\ a_{1} + a_{2} & \text{if } a_{1}, a_{2} \ge 3. \end{cases}$$

(xi) The double complete bipartite graph R_2 has $\chi_d^t(R_2) = 4$.

Proof.

(i) Let $K_m(a_1, a_2, ..., a_m)$ be the multi-star graph, and let $V(K_m(a_1, a_2, ..., a_m)) = \{v_1, v_2, ..., v_{m+\sum_{i=1}^{m} a_i}\}$ where $\{v_1, v_2, ..., v_m\}$ be the vertices of K_m and $\{v_{m+1}, v_{m+2}, ..., v_{m+\sum_{i=1}^{m} a_i}\}$ be the end-vertices incident on K_m such that $\{v_{m+1}, v_{m+2}, ..., v_{m+a_1}\}$ are adjacent to the vertex v_1 and $\{v_{m+1+\sum_{i=1}^{j-1} a_i}, v_{m+2+\sum_{i=1}^{j-1} a_i}, ..., v_{m+\sum_{i=1}^{j} a_i}\}$ are adjacent to the vertex v_j for each $(2 \le j \le m)$.

By Theorem 1.3 (i) we have $\chi_{d}(K_{m}(a_{1},a_{2},...,a_{m})) = m + 1$. Now it follows from Theorem 1.1 that $\chi_{d}^{t}(K_{m}(a_{1},a_{2},...,a_{m})) \ge m + 1$. Hence it is sufficient to show that $\chi_{d}^{t}(K_{m}(a_{1},a_{2},...,a_{m})) \le m + 1$. Let $C = \{V_{1},V_{2},...,V_{m+1}\}$ be the class colorings of $K_{m}(a_{1},a_{2},...,a_{m})$ in which $V_{i} = \{v_{i}\}(1 \le i \le m)$ and $V_{m+1} = \{v_{m+1},v_{m+2},...,v_{m+\sum_{i=1}^{m}a_{i}}\}$. Since v_{i} is adjacent to all vertices of color class $V_{i}(1 \le i, i \le m, i \ne i')$ and each vertex $v_{k}(m+1 \le k \le m+a_{1})$ is adjacent to all vertices of color class V_{1} and for $(2 \le j \le m)$ each vertex of vertices $\left\{v_{m+1+\sum_{i=1}^{j-1}a_{i}}, v_{m+2+\sum_{i=1}^{j-1}a_{i}}, \cdots, v_{m+\sum_{i=1}^{j}a_{i}}\right\}$ is adjacent to all vertices of color class V_{j} , then the coloring C is a χ_{d}^{t} – coloring of $K_{m}(a_{1},a_{2},...,a_{m})$ with m+1 colors and $\chi_{d}^{t}(K_{m}(a_{1},a_{2},...,a_{m})) \le m+1$.

(ii) Let $K_{a_1,a_2,..,a_k}$ be a complete k -partite graph and $V(K_{a_1,a_2,..,a_k}) = \{v_1, v_2, ..., v_{\sum_{i=1}^{k}a_i}\}$ where $\{v_1, v_2, ..., v_{a_1}\}$ be the vertices of first partite set and $\{v_{(\sum_{i=1}^{j-1}a_i)+1}, v_{(\sum_{i=1}^{j-1}a_i)+2}, ..., v_{(\sum_{i=1}^{j}a_i)}\}$ be the j-th partite set of $K_{a_1,a_2,..,a_k}$ for every $(2 \le j \le k)$. By Theorem 1/ \mathbb{Y} (ii) we have $\chi_d(K_{a_1,a_2,..,a_k}) = k$. Now it follows from Theorem 1/ \mathbb{Y} that $\chi_d^t(K_{a_1,a_2,..,a_k}) \ge k$.

Hence it is sufficient to show that $\chi_d^t(K_{a_1,a_2,...,a_k}) \le k$. Let $C = \{V_1, V_2, ..., V_k\}$ be the

Since each vertex in *i*-th partite set is adjacent to all vertices of color class V_j for every $(1 \le i, j \le k, i \ne j)$, then the coloring C is a χ_d^t -coloring of K_{a_1, a_2, \dots, a_k} with k colors and $\chi_d^t(K_{a_1, a_2, \dots, a_k}) \le k$. Therefore $\chi_d^t(K_{a_1, a_2, \dots, a_k}) = k$.

(iii) Let $V(F_{m,n}) = \{v_1, v_2, ..., v_{n+m}\}$, where $\{v_1, v_2, ..., v_n\}$ be the vertices of the path P_n and $\{v_{n+1}, v_{n+2}, ..., v_{n+m}\}$ be the vertices of $\overline{K_m}$. Since K_3 is a subgraph of $F_{m,n}$ it follows that at least three colors are needed to color the fan graph. then we have $\chi_d^t(F_{m,n}) \ge 3$. Hence it is sufficient to show that $\chi_d^t(F_{m,n}) \le 3$. Consider a proper coloring of $F_{m,n}$ in which $V_1 = \{v_{n+1}, v_{n+2}, ..., v_{n+m}\}$ and when n is odd, $V_2 = \{v_1, v_3, ..., v_n\}$, $V_3 = \{v_2, v_4, ..., v_{n-1}\}$. If n is even, $V_2 = \{v_1, v_3, ..., v_{n-1}\}$ and $V_3 = \{v_2, v_4, ..., v_n\}$, then each vertex of v_i $(n+1 \le i \le n+m)$ is adjacent to every vertex of color class V_2 and color class V_3 . Also each vertex of v_j $(1 \le j \le n)$ is adjacent to every vertex of color class V_1 . Therefore this is a total dominator coloring and $\chi_d^t(F_{m,n}) \le 3$. Hence $\chi_d^t(F_{m,n}) = 3$.

(iv) Let $V(H_n) = \{v_1, v_2, ..., v_{2n+1}\}$, where v_1 is the central vertex, v_i $(2 \le i \le n+1)$ be the vertices on the cycle C_n and v_j $(n+2 \le j \le 2n+1)$ be the pendant vertices on cycle C_n such that v_{n+i} is adjacent with $v_i(2 \le i \le n+1)$. It follows from Theorem V^* (i) that $\chi_d(H_n) = n+1$. Now by Theorem V^* , we have $\chi_d^t(H_n) \ge n+1$. Hence it is sufficient to show that $\chi_d^t(H_n) \le n+1$. Let $C = \{V_1, V_2, ..., V_{n+1}\}$ be the coloring of H_n in which $V_1 = \{v_1, v_{n+2}, v_{n+3} ..., v_{2n+1}\}$ and $V_i = \{v_i : 2 \le i \le n+1\}$, then v_{n+i}, v_1 are adjacent to all vertices of color class $V_i(2 \le i \le n+1)$ and $v_j(2 \le j \le n)$ is adjacent to every vertex of color class V_{n+1} . So the coloring C is χ_d^t -coloring and $\chi_d^t(H_n) \le n+1$. Therefore $\chi_d^t(H_n) = n+1$.

(v) By the definition of flower graph, Fl_n is obtained from a helm graph by joining each pendant vertex to the central vertex. We refer the labelling given in the proof (iv). By Theorem 1/4 (ii) we have $\chi_d(Fl_n) = 3$ if n is even and $\chi_d(Fl_n) = 4$ if n is odd. Now it follows from Theorem 1/1 that $\chi_d^t(Fl_n) \ge 3$ (n is even) or $\chi_d^t(Fl_n) \ge 4$ (n is odd). Now, it is sufficient to show that $\chi_d^t(Fl_n) \le 3$ or 4 (according as n is even or odd). Suppose n is even and let $C = \{V_1, V_2, V_3\}$ be the coloring of Fl_n in which $V_1 = \{v_1\}, V_2 = \{v_2, v_4, ..., v_n\} \cup \{v_{n+3}, v_{n+5}, ..., v_{2n+1}\}, V_3 = \{v_3, v_5, ..., v_{n+1}\} \cup \{v_{n+2}, v_{n+4}, ..., v_{2n}\}$. Now

if *n* is odd, let $C = \{V_1, V_2, V_3, V_4\}$ be the coloring of Fl_n in which $V_1 = \{v_1\}, V_2 = \{v_2, v_4, ..., v_{n-1}\} \cup \{v_{n+3}, v_{n+5}, ..., v_{2n}\}, V_3 = \{v_3, v_5, ..., v_n\} \cup \{v_{n+2}, v_{n+4}, ..., v_{2n+1}\}$ and $V_4 = \{v_{n+1}\}$. Then each vertex $v_i (2 \le i \le 2n+1)$ is adjacent to every vertex of color class V_1 and vertex v_1 is adjacent to all vertices of color classes V_2 and V_3 , (when *n* is even) and is adjacent to all vertices of color classes V_2, V_3 and V_4 (when *n* is odd). Therefore the coloring *C* is a χ_d^t -coloring of (Fl_n) and hence $\chi_d^t((Fl_n)) \le 3$ (when *n* is even) or $\chi_d^t((Fl_n)) \le 4$ (when *n* is odd). Thus

$$\chi_{a}^{t}(Fl_{n}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}.$$

(vi) By the definition of sun flower graph, Sf_n is obtained from a flower graph by joining each pendant edge to the central vertex. Let $\{v_1, v_2, ..., v_{3n+1}\}$, where v_1 is central vertex and v_i $(2 \le i \le n+1)$ be the vertices on the cycle C_n . Also for each $(2 \le i \le n+1)$, the vertex v_{n+i} is adjacent to v_1, v_i and the pendent vertices v_i for each $(2n+2 \le i \le 3n+1)$ is adjacent to vertex v_1 . By Theorem 1/^e (iii) we have $\chi_d(Sf_n) = 3$ if n is even and $\chi_d(Sf_n) = 4$ if *n* is odd. Now it follows from Theorem 1/1 that $\chi_d^t(Sf_n) \ge 3$ (*n* is even) or $\chi_d^t(Sf_n) \ge 4$ (*n* is odd). Now, it is sufficient to show that $\chi_d^t(Sf_n) \le 3$ or 4 (according as *n*) is even or odd). Suppose *n* is even and let $C = \{V_1, V_2, V_3\}$ be the coloring of Sf_n in which $V_{1} = \{v_{1}\}, V_{2} = \{v_{2}, v_{4}, \dots, v_{n}\} \cup \{v_{n+3}, v_{n+5}, \dots, v_{2n+1}\} \cup \{v_{2n+2}, v_{2n+3}, \dots, v_{3n+1}\}, V_{3} = \{v_{3}, v_{5}, \dots, v_{n+1}\} \cup \{v_{n+2}, v_{n+4}, \dots, v_{2n}\}$. Now if n is odd, let $C = \{V_1, V_2, V_3, V_4\}$ be the coloring of Sf_n in which $V_{1} = \{v_{1}\}, V_{2} = \{v_{2}, v_{4}, \dots, v_{n-1}\} \cup \{v_{n+3}, v_{n+5}, \dots, v_{2n}\} \cup \{v_{2n+2}, v_{2n+3}, \dots, v_{3n+1}\}, V_{3} = \{v_{3}, v_{5}, \dots, v_{n}\} \cup \{v_{n+2}, v_{n+4}, \dots, v_{2n+1}\}$ and $V_4 = \{v_{n+1}\}$,then each vertex $v_i (2 \le i \le 3n+1)$ is adjacent to every vertex of color class V_1 and vertex v_1 is adjacent to all vertices of color classes V_2 and V_3 (when n is even) or is adjacent to all vertices of color classes V_2 , V_3 and V_4 (when n is odd). Therefore the coloring C is a χ_d^t -coloring of (Sf_n) and hence $\chi_d^t((Sf_n)) \le 3$ (when n is even). $\chi_d^t(Sf_n) \le 4$ (when *n* is odd). Thus

$$\chi_{d}^{t}(Sf_{n}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} . \end{cases}$$

(vii) Let B_n be the barbell graph with $V(B_n) = \{v_1, v_2, ..., v_{2n}\}$ where $\{v_1, v_2, ..., v_{2n}\}$ be the vertices in first copy of K_n and $\{v_{n+1}, v_{n+2}, ..., v_{2n}\}$ be the vertices of second copy. Let v_1v_{n+1} be the bridge of B_n . By Theorem 1/ Δ (i) we have $\chi_d(B_n) = n+1$. Now it follows from Theorem 1/ Λ that $\chi_d^t(B_n) \ge n+1$. Hence it is sufficient to show that $\chi_d^t(B_n) \le n+1$. Define a proper coloring C of B_n in which $V_1 = \{v_1\}, V_{i+1} = \{v_i, v_{n+i} : 2 \le i \le n\}$ and $V_2 = \{v_{n+1}\}$. Since $v_i(2 \le i \le n+1)$ is adjacent to all vertices of color class V_1 and $v_1, v_i(n+2 \le j \le 2n)$ are adjacent to all vertices of color class V_2 , then the coloring C is a χ_d^t -coloring of B_n and $\chi_d^t(B_n) \le n+1$. Hence $\chi_d^t(B_n) = n+1$.

(viii) For n=2 we have two copies of K_2 and for each copy of K_2 require two different colors. Then $\chi_d^t(S_n^0) = 4$ for n = 2. Now for $n \ge 3$, let $V(S_n^0) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_n\}$. By Theorem 1/ Δ (ii) we have $\chi_d(S_n^0) = 4$. Now it follows from Theorem 1/1 that $\chi_d^t(S_n^0) \ge 4$. Hence it is sufficient to show that $\chi_d^t(S_n^0) \le 4$. Let S_n^0 $C = \{V_1, V_2, V_3, V_4\}$ be the coloring of in which $V_1 = \{v_1, v_2, \dots, v_{n-1}\}, V_2 = \{v_n\}, V_3 = \{u_1, u_2, \dots, u_{n-1}\}$ and $V_4 = \{u_n\}$. Then the vertex $v_i (1 \le i \le n-1)$ is adjacent to every vertex of a color class V_4 , the vertex v_n is adjacent to every vertex of a color class V_3 , each vertex in the set $\{u_1, u_2, ..., u_{n-1}\}$ is adjacent to every vertex of a color class V_2 and the vertex u_n is adjacent to every vertex of a color class V_1 . So the coloring $C \text{ is a } \chi_d^t \text{ -coloring of } S_n^0 \text{ and } \chi_d^t(S_n^0) \leq 4 \text{ . Hence } \chi_d^t(S_n^0) = 4 \text{ .}$

(ix) Consider the windmill graph $G = W_n^{(m)}$ formed by m-copies of the complete graph K_n with $V(W_n^{(m)}) = \bigcup_{i=1}^m \{v_1^i, v_2^i, ..., v_n^i\}$ where for each $i \in \{1, 2, ..., n\}$, $\{v_1^i, v_2^i, ..., v_n^i\}$ be the vertices in i-th copy of K_n and $v_1^1 = v_1^2 = ... = v_1^m$ is a common vertex. By Theorem 1/8, we have $\chi_d(W_n^{(m)}) = n$. Now it follows from Theorem 1/1 that $\chi_d^t(W_n^{(m)}) \ge n$. Hence it is sufficient to show that $\chi_d^t(W_n^{(m)}) \le n$. Let $C = \{V_1, V_2, ..., V_n\}$ be the coloring of $W_n^{(m)}$ in which $V_1 = \{v_1^i\}(1 \le i \le m)$ and for each $2 \le i \le n$, $V_i = \bigcup_{j=1}^m \{v_j^i\}$. Since each vertex in the set $\bigcup_{i=1}^m \{v_2^i, ..., v_n^i\}$ is adjacent to all vertices of a color class V_1 and a common vertex $\{v_1^i\}$ for $1 \le i \le m$, is adjacent to every vertex of a color class V_j , $2 \le j \le n$, then the coloring C is a χ_d^t -coloring of $W_n^{(m)}$ and $\chi_d^t(W_n^{(m)}) \le n$. Hence $\chi_d^t(W_n^{(m)}) = n$.

(x) Let $V(\overline{K_2(a_1, a_2)}) = \{v_i : 1 \le i \le a_1 + a_2 + 2\}$ where $\{v_1, v_2\}$ be the vertices of $\overline{K_2}$ and $\{v_3, v_4, \dots, v_{2+a_1}\}$ are adjacent to the vertex v_2 and $\{v_{a_1+3}, v_{a_1+4}, \dots, v_{a_1+a_2+2}\}$ are adjacent to the vertex v_1 .

Let $E(\overline{K_2(a_1, a_2)}) = \{v_1v_i : a_1 + 3 \le i \le a_1 + a_2 + 2\} \cup \{v_2v_j : 3 \le j \le a_1 + 2\} \cup \{v_iv_j : 3 \le i, j \le a_1 + a_2 + 2, i \ne j\}$

If $a_1 = a_2 = 1$, then $\overline{K_2(1,1)}$ is a path of order 4 and theorem 2.1(iii)implies $\chi_d^t(\overline{K_2(1,1)}) = 3$.

If $a_1 = 2$ and $a_2 = 1$, consider the coloring C of $\overline{K_2(2,1)}$ in which $V_1 = \{v_1, v_3\}, V_2 = \{v_4\}, V_3 = \{v_2\}$ and $V_4 = \{v_5\}$. Then this coloring is a is a χ_d^t - coloring of $\overline{K_2(2,1)}$ and hence $\chi_d^t(\overline{K_2(2,1)}) = 4$.

Now for $a_1, a_2 \ge 2$, let $C = \{V_1, V_2, ..., V_{a_1+a_2}\}$ be the class colorings of $\overline{K_2(a_1, a_2)}$ in

which $V_1 = \{v_1, v_3\}, V_i = \{v_{i+2}\}(2 \le i \le a_1 + a_2 - 1)$ and $V_{a_1 + a_2} = \{v_2, v_{a_1 + a_2 + 2}\}$. Since v_i $(2 \le i \le a_1 + a_2 + 2, i \ne 4)$ is adjacent to all vertices of color class V_2 and the vertices v_1, v_4 are adjacent to every vertex of color class $V_i(a_1 + 1 \le i \le a_1 + a_2 - 1)$, then $\chi_d^t(\overline{K_2(a_1, a_2)})$ is a total dominator coloring and hence $\chi_d^t(\overline{K_2(a_1, a_2)}) \le a_1 + a_2$. Also since $\{v_3, v_4, \dots, v_{a_1 + a_2 + 2}\}$ is the complete graph of order $a_1 + a_2$, it follows that at least $a_1 + a_2$ different colors are needed to color this vertices. Thus $\chi_d^t(\overline{K_2(a_1, a_2)}) \ge a_1 + a_2$. Therefore $\chi_d^t(\overline{K_2(a_1, a_2)}) = a_1 + a_2$ for $a_1, a_2 \ge 2$.

(xi) Let $V(R_2) = \bigcup_{i=1}^2 \{u_1^i, u_2^i, ..., u_m^i, v_1^i, v_2^i, ..., v_n^i\}$, where $\{u_1^i, u_2^i, ..., u_m^i\}$ be the one partite set in the i-th copy and $\{v_1^i, v_2^i, ..., v_n^i\}$ be the other partite set in the i-th copy. Let $u_m^1 v_1^2$ be the bridge of R_2 . Let $S = \{u_m^1, v_n^1, u_1^2, v_1^2\}$. Since each vertex in $V(R_2)$ is adjacent to at least one vertex in S, the set S is a total dominating set. Also the set S is a γ_i -set, since at least one vertex of each partite set is needed for any total dominating set. Hence $\gamma_i(R_2) = 4$ and it follows from Theorem 1.1, $\chi_d^i(R_2) \ge 4$. Consider a proper coloring C of R_2 in which $V_1 = \{u_1^1, u_2^1, ..., u_m^1\}, V_2 = \{v_1^1, v_2^1, ..., v_n^1\}, V_3 = \{u_1^2, u_2^2, ..., u_m^2\}$ and $V_4 = \{v_1^2, v_2^2, ..., v_n^2\}$. Then the vertices $\{u_1^i, u_2^i, ..., u_m^i\}$ is adjacent to every vertex of a color class V_{2i} and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_2^2, ..., v_n^2\}$ is adjacent to every vertex of a color class V_1 and the set $\{v_1^2, v_1$

3 Further research

To finish our discussion we state some open problems for further research..

Probleme 1. Characterize graphs G for which $\chi_d^t(G) = \chi_d(G)$ or $\chi_d^t(G) = \gamma_t(G)$.

Probleme Y. Characterize graphs G for which $\chi_d^t(G) = \chi_d(G) = \gamma_t(G)$.

References

[1] M. Chellali and F. Maffray, *Dominator Colorings in Some Classes of Graphs*, Graphs Combin. 28 (2012) 97-107.

[2] M.A.Henning , *Recent results on total domination in graphs: a survey* , Discrete Math. 309 (2009) 32–63.

[3] M.A.Henning and A.Yeo, *Total domination in graphs (Springer Monographs in Mathematics)*, JSBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)).(2013).

[4] R. Gera, On Dominator Colorings in Graphs, Theory Notes of New York LIT, (2007)25-30.

[5] R. Gera, *On the dominator colorings in bipartite graphs*, Inform. Technol. NewGen., ITNG07 (2007) 947-952.

[6] R. Gera, S. Horton and C. Rasmussen, *Dominator colorings and safe clique partitions, Proceedings of the Thirty- Seventh Southeastern International Conference on Combinatorics*, Graph Theory and Computing, Congr. Numer., 181 (2006) 19-32.

[7] L.Jethruth Emelda Mary and P. Ananthi, *Dominator coloring of some special graphs*, International Journal of Innovative Research in Technology, Science, Engineering (IJIRTSE), (2015) 95-100.

[8] K. Kavitha and N. G. David, *Dominator Coloring of Some Classes of Graphs, Chennai*, Int. J. Math. Arc ,(2012) 3954-3957.

[9] T.Ramachandran, D.Udayakumar and A.Naser Ahmed , *Dominator Coloring Number of Some Graphs*, International Journal of Scientific and Research Publications, Volum 5, (2015).

[10] D.B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall, Upper Saddle River, NJ, (2001).