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 ABSTRACT 

The main mission of computer science is to invent new data structures and algorithms which can 

solve some concerned problems effectively. Insertion and deletion are the operations defined almost on 

every data structure. Effectiveness of these two main operations has a high impact on performance of the 

data structure and its applications. In most data structures, when insertion is performed, the reorganization 

of that data structure is also carried out simultaneously. In this paper, we introduce a data structure that 

unlike most data structures, insertion is performed easily with the lowest cost, and instead, reorganization 

is performed when a data item is being deleted. This property lets most of the operations on this data 

structure could be accomplished in )1(O amortized time. This characteristic has made it to become the 

most suitable data structure in solving some especially important problems like issues related to satellite 

networks, leader election, routing algorithms, data segmentation and mobile networks. 
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1 INTRODUCTION 

Today, in the era of Information Technology from the executive perspective, the design and the 

choice of data structures and algorithms are the most important process in software design and 

applications. It is natural to explore the space of possible designs for prevalent data structures. Doing so 

allows one to consider simpler alternative designs and give more intuition into whether special features of 

a design are essential or unessential. 

In this regard, there are many data structures, such as Queues, Linked lists, Binary trees, Red-Black 

trees, AVL trees, Heaps and etc., which everyone uses for their applications. In this paper we introduce 

Fibonacci heap data structure. A Fibonacci heap is a more complicated data structure than a binary heap 

but may provide potential performance gains. Fibonacci heap is a deterministic data structure 

implementing a priority queue with optimal amortized operation costs. Fibonacci heap is an ordered 

collection of rooted trees that obey min-heap property. 
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According to the studies, research on Fibonacci heap follows one or more of the following goals. 

Some researchers used Fibonacci heaps because of the speed of performance for their own work; others 

offered solutions and algorithms to improve the function of Fibonacci heaps.  

Therefore, in this paper, we introduce Fibonacci heap data structure and main operations it in 

Section 2. We review the recent applications of this data structure in Section 3. The results of the research 

are also presented in Section 4.  

2 FIBONACCI HEAP 

In computer science, a Fibonacci heap is a tree based data structure, which is a collections of min-

heap ordered trees. This data structure developed in 1984 by Fredman and Tarjan (Cormen et al., 2009). 

Fibonacci heap has a better amortized running time than other priority queue data structures such as 

binary heap and binomial heap. The operations of Fibonacci heap as follows as (Table 1) (Cormen et al., 

2009; Tiwari and Umrao, 2016):   

 MAKE-HEAP, INSERT, DECREASE-KEY, UNION and MINIMUM in )1(O amortized time. 

 DELETE and EXTRACT-MIN in )(log nO amortize time, where n is the size of the heap. 

Table 1: Comparing the amortized time of operations in Binomial heap and Fibonacci heap 

Operation 
Type of Heap Tree 

Binomial Heap Fibonacci Heap 

MAKE-HEAP )1(O
 

)1(O
 

INSERT )(log nO
 

)1(O
 

DECREASE-KEY )(log nO
 

)1(O
 

UNION )(nO
 

)1(O
 

MINIMUM )1(O
 

)1(O
 

DELETE )(log nO
 

)(log nO
 

EXTRACT-MIN )(log nO
 

)(log nO
 

Fibonacci heap is used in priority queues; it can improve the running time important algorithms, 

such as Dijkstra's algorithm for computing the single-source-shortest path, and prim algorithm for 

computing minimum spanning tree. 

 

2.1 Structures of Fibonacci Heap 

A Fibonacci Heap Structure is a set of a forest of trees. The structure of each node in the Fibonacci 

heap such as follow where H is a Fibonacci heap and roots of the rooted trees are linked to form a doubly 

linked list termed as Root list (Cormen et al., 2009): 

 One pointer (x.p) to the parent key  

 One pointer (x.chid) to any one of offsprings. The offsprings of x are linked together in a circular, 

doubly linked list, which call the child list of x. 

 y.left and y.right  pointers are y’s left and right siblings, respectively, for each child y in a child list. 

 x.degree point to the number of offsprings in the child list of node x. 

 x.mark is a Boolean valued attribute that indicates whether node x has lost a child since the last 

time x was made the child of another node. 

 One pointer (H.min) to the root of the tree with a minimum key in Root list.  

 One pointer (H.n) that show the number of nodes currently in H. 

Using of doubly linked list in the Fibonacci heap cause to first node can remove from a circular 

in )1(O time and concatenated two lists in )1(O time (Tiwari and Umrao, 2016). 
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2.2 Operations in Fibonacci Heap 

Generally used of MAKE-FIB-HEAP() procedure to create an empty Fibonacci heap so-called as H.  

 For insert node x into a Fibonacci heap H, used of FIB-HEAP-INSERT() procedure; assuming that 

the node has been memory allocated already and that x.key has already been filled in (Cormen et al, 

2009). Insert a node has three steps: 

1. Initialize pointers for new node such as x.degree= 0, x.p = NIL, x.child = NIL, x. mark = FALSE. 

2. Insert x into the H’s root list and update H. min if necessary. 

3. Increment the nodes number in the Fibonacci heap (H.n) to return the additions of the new node. 

FIB-HEAP-INSERT(H ,x) 

       x.degree= 0; 

       x.p = NIL; 

       x.child = NIL; 

       x.mark = FALSE; 

                  if (H.min == NIL) 

            create a root list for H containing just x; 

        H.min = x; 

       else         

                 insert x into H’s root list 

                     if (x.key < H.min.key) 

H.min= x; 

        H.n = H.n + 1; 

The FIBO-HEAP-MIN (H) procedure finds the minimum node of a Fibonacci heap H is given by the 

pointer H.min. 

FIB-HEAP-UNION() procedure concatenated the root lists of H1 and H2 and then determines the 

new minimum node. This operation, called as union Fibonacci heaps H1 and H2, destroying H1 and H2 

in the process. The union operation has three steps as follow: 

1.  Union the root lists; 

2.  Set up a new H.min = min {H1.min, H2.min}; 

3.  Reset H.n = H1.n +H2.n and return H; 

The process of extracting the minimum node is the most complex operation. Delayed work of 

consolidating trees in the root list is finally occurring by this operation, which is divided into two steps: 

1. Remove the minimum and add every child to the root list. 

2. Consolidate the trees with the same degree (Cormen et al, 2009).  

CONSOLIDATE(H) 

      Let A[0] ..D(H.n) be a new array 
     for i = 0 to D(H.n) 

         A[i]=NIL; 

     for each node w in the root list of H 

       x =w;   d = x.degree; 

              while A[d]≠ NIL 

                  y = A[d]  // another node with the same degree as x 

                  if (x.key > y.key)  exchange x with y; 

                  FIB-HEAP-LINK(H, y, x);// remove y from the root list of H, make y a child of x, incrementing x.degree. 

                          A[d]= NIL;   d = d +1; 

               A[d]= x; 

      H.min = NIL; 

      for i = 0 to D(H.n) 

    if (A[i]≠ NIL) 

                if (H.min == NIL)  create a root list for H containing just A[i]; H.min = A[i]; 

               else insert A[i] into H’s root list;  

                        if (A[i].key < H.min.key)   H.min = A[i];                
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The FIB-HEAP-DECREASE-KEY() procedure used for the decrease key operation.  

The FIB-HEAP-DELETE() procedure deletes a node from an n-node Fibonacci heap and assumes 

that there is no key value of infinity currently. This procedure decreases key x to –infinity firstly, then 

extract a minimum of Fibonacci heap.  

3 FIBONACCI HEAP APPLICATIONS  

In this section we review Fibonacci heap applications in recently years.    

Gueunet et al. presented a new algorithm for the fast, shared memory multi-core computation of 

augmented merge trees on triangulations (Gueunet et al., 2017). In contrast to most subsisting parallel 

algorithms, their technique computes augmented trees. This augmentation is required to enable the full 

extent of merge tree based applications, including data segmentation. Their approach completely revisits 

the traditional, sequential merge tree algorithm to re-formulate the computation as a set of independent 

local tasks based on Fibonacci heaps. This results in superior time performance in practice, in sequential 

as well as in parallel thanks to the OpenMP task runtime. In the context of augmented contour tree 

computation, they show that a direct usage of their merge tree procedure also results in superior time 

performance overall, both in sequential and parallel. They reported performance numbers that compare 

their approach to reference sequential and multi-threaded implementations for the computations of 

augmented merge and contour trees. These experiments demonstrated the runtime efficiency of their 

approach as well as its scalability on common workstations. They demonstrated the efficiency of their 

approach in data segmentation applications. They also provided a lightweight VTK-based C++ 

implementation of them approach for reproduction purposes. 

The Hollow Heap data structure proposed with the same amortized efficiency as the Fibonacci heap 

(Hansen et al., 2017). All heap operations except delete and delete-min take O(1) time, worst case as well 

as amortized; delete and delete-min take O(log n) amortized time on a heap of n items. Hollow heaps are 

the simplest structure to achieve these limits. Hollow heaps combine two novel ideas: the use of lazy 

deletion and re-insertion to do decrease-key operations and the use of a dag (directed acyclic graph) 

instead of a tree or set of trees to represent a heap. 

Tiwari and Umrao used on a Fibonacci heap structure to find the leader in lesser amount of time 

and messages (Tiwari and Umrao, 2016). Their main challenge is to find the new leader in lesser time 

with a minimum number of message communications in Mobile Ad hoc network. Mobile Ad hoc network 

is a self-configured network of devices connected using a wireless medium. Ad hoc network is a 

temporary network connection created for a specific purpose. MANET can be seen as a distributed 

computing environment, where Leader Election mechanism is used, for the purpose of synchronization. 

Election algorithms are used to find the leader for Distributed System. The better time complexity of 

operations using Fibonacci heap structure makes it suitable for the leader election in Mobile Ad Hoc 

Network, as compared to other tree structures. Fibonacci heap results good by their advanced time 

complexities. The design of Fibonacci heap suits on wireless networks, and especially on Mobile Ad Hoc 

Networks. Where network changes dynamically, and Fibonacci heap give the efficient way to change the 

structure in amortized time. 

The problem of Fibonacci heaps is that they must maintain a “mark bit” unfortunately, that serves 

only to make sure efficiency of heap operations incorrectly. Karger conjectured that this data structure has 

expected amortized cost O(log s) for delete-min, where s is the number of heap operations. Li et al. give a 

tight analysis of Karger’s randomized Fibonacci heaps, resolving Karger’s conjecture (Li and Peebles, 

2015). Specifically, they obtain matching upper and lower bounds of )loglog/(log 2 ssO for the runtime 

of delete-min. They also prove a tight lower bound of )( n on delete-min in terms of the number of heap 

elements n. The request sequence used to prove this bound also solves an open problem of Fredman on 

whether cascading cuts are necessary. Finally, they give a simple additional modification to these heaps 

which yields a tight runtime )loglog/(log 2 nnO for delete-min. 
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Qu et al. proposed a fast Isomap algorithm based on Fibonacci heap (Qu et al., 2015). For the slow 

operational speed problem of Isomap algorithm in which the Floyd-Warshall algorithm is applied to 

finding shortest paths, an improved Isomap algorithm is proposed based on the sparseness of the 

adjacency graph. In the improved algorithm, the runtime for shortest paths is reduced by using Dijkstra’s 

algorithm based on Fibonacci heap, and thus the Isomap operation is speeded up. The experimental 

results on several data sets show that the improved version of Isomap is faster than the original one. 

Kaplan et al. explore the design space of the Fibonacci heap data structure and proposed a version 

with the following improvements over the original (Kaplan et al., 2014): (i) Each heap is represented by a 

single heap-ordered tree, instead of a set of trees. (ii) Each decrease-key operation does only one cut and a 

cascade of rank changes, instead of doing a cascade of cuts. (iii) The outcomes of all comparisons done 

by the algorithm are explicitly represented in the data structure, so none are wasted. They also give an 

example to show that without cascading cuts or rank changes, both the original data structure and the new 

version fail to have the desired efficiency, solving an open problem of Fredman. Finally, they illustrated 

the richness of the design space by proposing several alternative ways to do cascading rank changes, 

including a randomized strategy related to one way proposed by Karger. They leave the analysis of these 

alternatives as intriguing open problems. 

Mozes et al. combined two techniques for efficiently computing shortest paths in directed planar 

graphs (Mozes et al., 2014). The first is the linear-time shortest-path algorithm and the second is 

Dijkstra’s algorithm on the dense distance graph (DDG). They modified Fakcharoenphol and Rao’s FR-

Dijkstra algorithm and the Monge heap data structure. They used Fibonacci heap in implementations and 

decrease all costs of modifying FR-Dijkstra to )1(O . They developed new techniques that would lead to 

faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest 

paths with negative arc lengths. As immediate applications, they show how to compute maximum flow in 

directed weighted planar graphs in )log( pnO time, where p is the minimum number of edges on any path 

from the source to the sink. They also show how to compute any part of the DDG that corresponds to a 

region with r vertices and k boundary vertices in )log( krO time, which is faster than has been previously 

known for small values of k. 

Wang et al. proposed a novel routing algorithm design of time evolving graph based on pairing 

heap for MEO satellite network (Wang et al., 2014). As a tradeoff of GEO and LEO, MEO satellite 

system has more acceptable service performance and it is more appropriate to provide global mobile 

communications. A MEO satellite system model communicating according to time slots is constructed in 

the paper. Moreover, in order to improve comprehensive performance of the network, a novel routing 

algorithm applying Time evolving graph based on pairing heap is proposed. The time evolving graph is 

employed to analysis the dynamic topology of the network and the pairing heap is applied in the Dijkstra 

algorithm to reduce the time complexity. By contrast, Fibonacci heap is also used to optimize Dijkstra 

algorithm. Finally simulation results show that routing algorithm applying time evolving graph based on 

pairing heap can perform better and reduce the time complexity obviously, and at the same time, pairing 

heap works better than Fibonacci heap when the number of nodes grows bigger. 

Chan proposed Quake Heaps that are a data structure as theoretical performance as Fibonacci heaps 

(Chan, 2013). Quake Heaps supported decrease-key operations in )1(O amortized time and delete-min 

operations in O(log n) amortized time. The data structure is simple to explain and analyze, and may be of 

pedagogical value. 

Jain and Sharma presented a novel approach towards leader election using Fibonacci heap by 

electing minimum node as leader (Jain and Sharma, 2012). Fibonacci heaps offer a good example of data 

structure designed with amortized analysis in mind. However the resulting structure is a little 

complicated, but it can be made useful in practical cases of leader election algorithms. The design is 

suitable in wireless networks in spite of the fact that they are unstable and prone to faults. They concluded 

that higher the system is immune to the faults, the better our design works. The lesser complexity in 

message passing exhibited by this method had been justified through obtained simulation results. 
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Jekovec et al. give a brief overview of 4 comparison-based priority queues published before 1993: 

the original binary heap, Binomial heap, Fibonacci heap and the Weak-Heap (Jekovec et al., 2012). The 

review focuses on the theoretical worst-case, average-case and amortized time complexity of element 

comparisons and justifies it by providing necessary implementation details. Their review results show that 

the Fibonacci heap with its lazy melding and cascading cut is the best general-purpose comparison-based 

heap. It achieves the best amortized performance in comparison to the binary heap or the binomial heap. 

Weak heap on the other hand is specialized on fast inline sorting and is the fastest comparison-based heap 

sort to date. 

Brodal et al. presented the first pointer-based heap implementation with time bounds matching 

those of Fibonacci heaps in the worst case (Brodal et al., 2012). They support make-heap, insert, find-

min, meld and decrease-key in worst-case )1(O time, and delete and delete-min in worst-case O(log n) 

time, where n is the size of the heap. The data structure uses linear space. A previous, very complicated, 

solution achieving the same time bounds in the RAM model made essential used of arrays and extensive 

used of redundant counter schemes to maintain balance. Their solution used neither. Their key 

simplification is to discard the structure of the smaller heap when doing a meld. They used the pigeonhole 

principle in place of the redundant counter mechanism. All these variations can be combined, each 

solution implying different bounds on the maximum degrees, constants in the time bounds, and 

complexity in the reduction transformations. In the presented solution they aimed at reducing the 

complexity in the description, whereas the constants in the solution were of secondary interest. 

Liu et al. introduced the dijkstra algorithm based on the Fibonacci heap (Liu et al., 2011). 

Compared to traditional dijkstra algorithm, the main advantage of this algorithm is that it has a good time 

bound that can efficiently work out the shortest path between two points. Under the circumstance that 

algorithm efficiency has been guarantee, the satellites and connections are turned into a directorial graph 

as the input of the algorithm in the Walk constellation topology program. In such case, a static routing 

program with smaller communication overhead and processing power to work out the optimal path is 

obtained, which adapts to the rapid dynamic changes of the satellite topology network. This routing 

program has been simulated and it turns out that the performance fully meets the design requirements. But 

the program also has many deficiencies, such as it requires a considerable amount of system overhead.  

The application of the data structure in the external memory algorithms is studied for the need of 

using external memory algorithms in the computer programming (Li et al., 2011).According to the 

Fibonacci heaps’ characteristics in internal memory, a new data structure for external memory algorithm 

is proposed. Then, the time complexity of its operations is analyzed. It is proved that the operations can 

be finished with unit number of page transfers except for the operations of delete-min and decrease-key. 

Finally, the feasibility and availability of the data structure is illustrated by the application of Fibonacci 

heap in the Dijkstra algorithm. 

Elmasry proposed a priority queue that achieves the same amortized bounds as Fibonacci heaps 

(Elmasry, 2010). They claim that resolved this issue by introducing a priority queue that called as 

violation heap. The Violation heaps had the same amortized bounds as Fibonacci heaps, and expected to 

perform in practice in a more efficient manner than other Fibonacci-like heaps and compete with pairing 

heaps. Namely, find-min requires )1(O worst-case time, insert, merge and decrease-key 

require )1(O amortized time, and delete-min requires )(log nO amortized time. The main idea behind their 

construction is to propagate rank updates instead of performing cascaded cuts following a decrease-key 

operation, allowing for a relaxed structure. 

4 CONCLUSION 

In computer science, the designing and selecting of data structures and algorithms is the most 

important process in software design and applications from an operational point of view. In this paper, we 

introduced an efficient data structure called as the Fibonacci heap. The Fibonacci heap data structure 

developed in 1984 by Fredman and Tarjan. The Fibonacci heap data structure that unlike most data 

structures, insertion is performed easily with the lowest cost, and instead, reorganization is performed 
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when a data item is being deleted. It is a type of heap that supports union, insert, decrease-key and find 

the minimum in )1(O amortized time, also extract-min and delete in )(log nO amortized time. In general, we 

can use the Fibonacci heap to improve the speed of the algorithm, because the delayed reorganization 

characteristic transforms it into the most appropriate data structure to solve some of the most important 

problems. According to this study, some researchers used of Fibonacci heap for satellite networks, leader 

election, routing algorithms, data segmentation, mobile networks, and so on. Also other researches 

improve the Fibonacci heap structure and increase the speed of the algorithm, or defined a new data 

structure same as Fibonacci heap. 
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