

Proceedings of the 2nd International Conference on Combinatorics, Cryptography and

Computation (I4C2017)

560

Efficient Computation via Delayed Reorganization

Elham Mahdipour

Yazd University, PhD student in Computer Engineering

University Blvd., Safayieh, Yazd, Iran

elham.mahdipour@stu.yazd.ac.ir

Mohammad Ghasemzadeh

Yazd University, Associate Professor, Department of Computer Engineering

University Blvd., Safayieh, Yazd, Iran

m.ghasemzadeh@yazd.ac.ir

 ABSTRACT

The main mission of computer science is to invent new data structures and algorithms which can

solve some concerned problems effectively. Insertion and deletion are the operations defined almost on

every data structure. Effectiveness of these two main operations has a high impact on performance of the

data structure and its applications. In most data structures, when insertion is performed, the reorganization

of that data structure is also carried out simultaneously. In this paper, we introduce a data structure that

unlike most data structures, insertion is performed easily with the lowest cost, and instead, reorganization

is performed when a data item is being deleted. This property lets most of the operations on this data

structure could be accomplished in)1(O amortized time. This characteristic has made it to become the

most suitable data structure in solving some especially important problems like issues related to satellite

networks, leader election, routing algorithms, data segmentation and mobile networks.

KEYWORDS: Data structure, Delayed Reorganization, Amortized time, Routing Algorithms.

1 INTRODUCTION

Today, in the era of Information Technology from the executive perspective, the design and the

choice of data structures and algorithms are the most important process in software design and

applications. It is natural to explore the space of possible designs for prevalent data structures. Doing so

allows one to consider simpler alternative designs and give more intuition into whether special features of

a design are essential or unessential.

In this regard, there are many data structures, such as Queues, Linked lists, Binary trees, Red-Black

trees, AVL trees, Heaps and etc., which everyone uses for their applications. In this paper we introduce

Fibonacci heap data structure. A Fibonacci heap is a more complicated data structure than a binary heap

but may provide potential performance gains. Fibonacci heap is a deterministic data structure

implementing a priority queue with optimal amortized operation costs. Fibonacci heap is an ordered

collection of rooted trees that obey min-heap property.

561

According to the studies, research on Fibonacci heap follows one or more of the following goals.

Some researchers used Fibonacci heaps because of the speed of performance for their own work; others

offered solutions and algorithms to improve the function of Fibonacci heaps.

Therefore, in this paper, we introduce Fibonacci heap data structure and main operations it in

Section 2. We review the recent applications of this data structure in Section 3. The results of the research

are also presented in Section 4.

2 FIBONACCI HEAP

In computer science, a Fibonacci heap is a tree based data structure, which is a collections of min-

heap ordered trees. This data structure developed in 1984 by Fredman and Tarjan (Cormen et al., 2009).

Fibonacci heap has a better amortized running time than other priority queue data structures such as

binary heap and binomial heap. The operations of Fibonacci heap as follows as (Table 1) (Cormen et al.,

2009; Tiwari and Umrao, 2016):

 MAKE-HEAP, INSERT, DECREASE-KEY, UNION and MINIMUM in)1(O amortized time.

 DELETE and EXTRACT-MIN in)(log nO amortize time, where n is the size of the heap.

Table 1: Comparing the amortized time of operations in Binomial heap and Fibonacci heap

Operation
Type of Heap Tree

Binomial Heap Fibonacci Heap

MAKE-HEAP)1(O

)1(O

INSERT)(log nO

)1(O

DECREASE-KEY)(log nO

)1(O

UNION)(nO

)1(O

MINIMUM)1(O

)1(O

DELETE)(log nO

)(log nO

EXTRACT-MIN)(log nO

)(log nO

Fibonacci heap is used in priority queues; it can improve the running time important algorithms,

such as Dijkstra's algorithm for computing the single-source-shortest path, and prim algorithm for

computing minimum spanning tree.

2.1 Structures of Fibonacci Heap

A Fibonacci Heap Structure is a set of a forest of trees. The structure of each node in the Fibonacci

heap such as follow where H is a Fibonacci heap and roots of the rooted trees are linked to form a doubly

linked list termed as Root list (Cormen et al., 2009):

 One pointer (x.p) to the parent key

 One pointer (x.chid) to any one of offsprings. The offsprings of x are linked together in a circular,

doubly linked list, which call the child list of x.

 y.left and y.right pointers are y’s left and right siblings, respectively, for each child y in a child list.

 x.degree point to the number of offsprings in the child list of node x.

 x.mark is a Boolean valued attribute that indicates whether node x has lost a child since the last

time x was made the child of another node.

 One pointer (H.min) to the root of the tree with a minimum key in Root list.

 One pointer (H.n) that show the number of nodes currently in H.

Using of doubly linked list in the Fibonacci heap cause to first node can remove from a circular

in)1(O time and concatenated two lists in)1(O time (Tiwari and Umrao, 2016).

562

2.2 Operations in Fibonacci Heap

Generally used of MAKE-FIB-HEAP() procedure to create an empty Fibonacci heap so-called as H.

 For insert node x into a Fibonacci heap H, used of FIB-HEAP-INSERT() procedure; assuming that

the node has been memory allocated already and that x.key has already been filled in (Cormen et al,

2009). Insert a node has three steps:

1. Initialize pointers for new node such as x.degree= 0, x.p = NIL, x.child = NIL, x. mark = FALSE.

2. Insert x into the H’s root list and update H. min if necessary.

3. Increment the nodes number in the Fibonacci heap (H.n) to return the additions of the new node.

FIB-HEAP-INSERT(H ,x)

 x.degree= 0;

 x.p = NIL;

 x.child = NIL;

 x.mark = FALSE;

 if (H.min == NIL)

 create a root list for H containing just x;

 H.min = x;

 else

 insert x into H’s root list

 if (x.key < H.min.key)

H.min= x;

 H.n = H.n + 1;

The FIBO-HEAP-MIN (H) procedure finds the minimum node of a Fibonacci heap H is given by the

pointer H.min.

FIB-HEAP-UNION() procedure concatenated the root lists of H1 and H2 and then determines the

new minimum node. This operation, called as union Fibonacci heaps H1 and H2, destroying H1 and H2

in the process. The union operation has three steps as follow:

1. Union the root lists;

2. Set up a new H.min = min {H1.min, H2.min};

3. Reset H.n = H1.n +H2.n and return H;

The process of extracting the minimum node is the most complex operation. Delayed work of

consolidating trees in the root list is finally occurring by this operation, which is divided into two steps:

1. Remove the minimum and add every child to the root list.

2. Consolidate the trees with the same degree (Cormen et al, 2009).

CONSOLIDATE(H)

 Let A[0] ..D(H.n) be a new array
 for i = 0 to D(H.n)

 A[i]=NIL;

 for each node w in the root list of H

 x =w; d = x.degree;

 while A[d]≠ NIL

 y = A[d] // another node with the same degree as x

 if (x.key > y.key) exchange x with y;

 FIB-HEAP-LINK(H, y, x);// remove y from the root list of H, make y a child of x, incrementing x.degree.

 A[d]= NIL; d = d +1;

 A[d]= x;

 H.min = NIL;

 for i = 0 to D(H.n)

 if (A[i]≠ NIL)

 if (H.min == NIL) create a root list for H containing just A[i]; H.min = A[i];

 else insert A[i] into H’s root list;

 if (A[i].key < H.min.key) H.min = A[i];

563

The FIB-HEAP-DECREASE-KEY() procedure used for the decrease key operation.

The FIB-HEAP-DELETE() procedure deletes a node from an n-node Fibonacci heap and assumes

that there is no key value of infinity currently. This procedure decreases key x to –infinity firstly, then

extract a minimum of Fibonacci heap.

3 FIBONACCI HEAP APPLICATIONS

In this section we review Fibonacci heap applications in recently years.

Gueunet et al. presented a new algorithm for the fast, shared memory multi-core computation of

augmented merge trees on triangulations (Gueunet et al., 2017). In contrast to most subsisting parallel

algorithms, their technique computes augmented trees. This augmentation is required to enable the full

extent of merge tree based applications, including data segmentation. Their approach completely revisits

the traditional, sequential merge tree algorithm to re-formulate the computation as a set of independent

local tasks based on Fibonacci heaps. This results in superior time performance in practice, in sequential

as well as in parallel thanks to the OpenMP task runtime. In the context of augmented contour tree

computation, they show that a direct usage of their merge tree procedure also results in superior time

performance overall, both in sequential and parallel. They reported performance numbers that compare

their approach to reference sequential and multi-threaded implementations for the computations of

augmented merge and contour trees. These experiments demonstrated the runtime efficiency of their

approach as well as its scalability on common workstations. They demonstrated the efficiency of their

approach in data segmentation applications. They also provided a lightweight VTK-based C++

implementation of them approach for reproduction purposes.

The Hollow Heap data structure proposed with the same amortized efficiency as the Fibonacci heap

(Hansen et al., 2017). All heap operations except delete and delete-min take O(1) time, worst case as well

as amortized; delete and delete-min take O(log n) amortized time on a heap of n items. Hollow heaps are

the simplest structure to achieve these limits. Hollow heaps combine two novel ideas: the use of lazy

deletion and re-insertion to do decrease-key operations and the use of a dag (directed acyclic graph)

instead of a tree or set of trees to represent a heap.

Tiwari and Umrao used on a Fibonacci heap structure to find the leader in lesser amount of time

and messages (Tiwari and Umrao, 2016). Their main challenge is to find the new leader in lesser time

with a minimum number of message communications in Mobile Ad hoc network. Mobile Ad hoc network

is a self-configured network of devices connected using a wireless medium. Ad hoc network is a

temporary network connection created for a specific purpose. MANET can be seen as a distributed

computing environment, where Leader Election mechanism is used, for the purpose of synchronization.

Election algorithms are used to find the leader for Distributed System. The better time complexity of

operations using Fibonacci heap structure makes it suitable for the leader election in Mobile Ad Hoc

Network, as compared to other tree structures. Fibonacci heap results good by their advanced time

complexities. The design of Fibonacci heap suits on wireless networks, and especially on Mobile Ad Hoc

Networks. Where network changes dynamically, and Fibonacci heap give the efficient way to change the

structure in amortized time.

The problem of Fibonacci heaps is that they must maintain a “mark bit” unfortunately, that serves

only to make sure efficiency of heap operations incorrectly. Karger conjectured that this data structure has

expected amortized cost O(log s) for delete-min, where s is the number of heap operations. Li et al. give a

tight analysis of Karger’s randomized Fibonacci heaps, resolving Karger’s conjecture (Li and Peebles,

2015). Specifically, they obtain matching upper and lower bounds of)loglog/(log 2 ssO for the runtime

of delete-min. They also prove a tight lower bound of)(n on delete-min in terms of the number of heap

elements n. The request sequence used to prove this bound also solves an open problem of Fredman on

whether cascading cuts are necessary. Finally, they give a simple additional modification to these heaps

which yields a tight runtime)loglog/(log 2 nnO for delete-min.

564

Qu et al. proposed a fast Isomap algorithm based on Fibonacci heap (Qu et al., 2015). For the slow

operational speed problem of Isomap algorithm in which the Floyd-Warshall algorithm is applied to

finding shortest paths, an improved Isomap algorithm is proposed based on the sparseness of the

adjacency graph. In the improved algorithm, the runtime for shortest paths is reduced by using Dijkstra’s

algorithm based on Fibonacci heap, and thus the Isomap operation is speeded up. The experimental

results on several data sets show that the improved version of Isomap is faster than the original one.

Kaplan et al. explore the design space of the Fibonacci heap data structure and proposed a version

with the following improvements over the original (Kaplan et al., 2014): (i) Each heap is represented by a

single heap-ordered tree, instead of a set of trees. (ii) Each decrease-key operation does only one cut and a

cascade of rank changes, instead of doing a cascade of cuts. (iii) The outcomes of all comparisons done

by the algorithm are explicitly represented in the data structure, so none are wasted. They also give an

example to show that without cascading cuts or rank changes, both the original data structure and the new

version fail to have the desired efficiency, solving an open problem of Fredman. Finally, they illustrated

the richness of the design space by proposing several alternative ways to do cascading rank changes,

including a randomized strategy related to one way proposed by Karger. They leave the analysis of these

alternatives as intriguing open problems.

Mozes et al. combined two techniques for efficiently computing shortest paths in directed planar

graphs (Mozes et al., 2014). The first is the linear-time shortest-path algorithm and the second is

Dijkstra’s algorithm on the dense distance graph (DDG). They modified Fakcharoenphol and Rao’s FR-

Dijkstra algorithm and the Monge heap data structure. They used Fibonacci heap in implementations and

decrease all costs of modifying FR-Dijkstra to)1(O . They developed new techniques that would lead to

faster, possibly linear-time, algorithms for problems such as minimum-cut, maximum-flow, and shortest

paths with negative arc lengths. As immediate applications, they show how to compute maximum flow in

directed weighted planar graphs in)log(pnO time, where p is the minimum number of edges on any path

from the source to the sink. They also show how to compute any part of the DDG that corresponds to a

region with r vertices and k boundary vertices in)log(krO time, which is faster than has been previously

known for small values of k.

Wang et al. proposed a novel routing algorithm design of time evolving graph based on pairing

heap for MEO satellite network (Wang et al., 2014). As a tradeoff of GEO and LEO, MEO satellite

system has more acceptable service performance and it is more appropriate to provide global mobile

communications. A MEO satellite system model communicating according to time slots is constructed in

the paper. Moreover, in order to improve comprehensive performance of the network, a novel routing

algorithm applying Time evolving graph based on pairing heap is proposed. The time evolving graph is

employed to analysis the dynamic topology of the network and the pairing heap is applied in the Dijkstra

algorithm to reduce the time complexity. By contrast, Fibonacci heap is also used to optimize Dijkstra

algorithm. Finally simulation results show that routing algorithm applying time evolving graph based on

pairing heap can perform better and reduce the time complexity obviously, and at the same time, pairing

heap works better than Fibonacci heap when the number of nodes grows bigger.

Chan proposed Quake Heaps that are a data structure as theoretical performance as Fibonacci heaps

(Chan, 2013). Quake Heaps supported decrease-key operations in)1(O amortized time and delete-min

operations in O(log n) amortized time. The data structure is simple to explain and analyze, and may be of

pedagogical value.

Jain and Sharma presented a novel approach towards leader election using Fibonacci heap by

electing minimum node as leader (Jain and Sharma, 2012). Fibonacci heaps offer a good example of data

structure designed with amortized analysis in mind. However the resulting structure is a little

complicated, but it can be made useful in practical cases of leader election algorithms. The design is

suitable in wireless networks in spite of the fact that they are unstable and prone to faults. They concluded

that higher the system is immune to the faults, the better our design works. The lesser complexity in

message passing exhibited by this method had been justified through obtained simulation results.

565

Jekovec et al. give a brief overview of 4 comparison-based priority queues published before 1993:

the original binary heap, Binomial heap, Fibonacci heap and the Weak-Heap (Jekovec et al., 2012). The

review focuses on the theoretical worst-case, average-case and amortized time complexity of element

comparisons and justifies it by providing necessary implementation details. Their review results show that

the Fibonacci heap with its lazy melding and cascading cut is the best general-purpose comparison-based

heap. It achieves the best amortized performance in comparison to the binary heap or the binomial heap.

Weak heap on the other hand is specialized on fast inline sorting and is the fastest comparison-based heap

sort to date.

Brodal et al. presented the first pointer-based heap implementation with time bounds matching

those of Fibonacci heaps in the worst case (Brodal et al., 2012). They support make-heap, insert, find-

min, meld and decrease-key in worst-case)1(O time, and delete and delete-min in worst-case O(log n)

time, where n is the size of the heap. The data structure uses linear space. A previous, very complicated,

solution achieving the same time bounds in the RAM model made essential used of arrays and extensive

used of redundant counter schemes to maintain balance. Their solution used neither. Their key

simplification is to discard the structure of the smaller heap when doing a meld. They used the pigeonhole

principle in place of the redundant counter mechanism. All these variations can be combined, each

solution implying different bounds on the maximum degrees, constants in the time bounds, and

complexity in the reduction transformations. In the presented solution they aimed at reducing the

complexity in the description, whereas the constants in the solution were of secondary interest.

Liu et al. introduced the dijkstra algorithm based on the Fibonacci heap (Liu et al., 2011).

Compared to traditional dijkstra algorithm, the main advantage of this algorithm is that it has a good time

bound that can efficiently work out the shortest path between two points. Under the circumstance that

algorithm efficiency has been guarantee, the satellites and connections are turned into a directorial graph

as the input of the algorithm in the Walk constellation topology program. In such case, a static routing

program with smaller communication overhead and processing power to work out the optimal path is

obtained, which adapts to the rapid dynamic changes of the satellite topology network. This routing

program has been simulated and it turns out that the performance fully meets the design requirements. But

the program also has many deficiencies, such as it requires a considerable amount of system overhead.

The application of the data structure in the external memory algorithms is studied for the need of

using external memory algorithms in the computer programming (Li et al., 2011).According to the

Fibonacci heaps’ characteristics in internal memory, a new data structure for external memory algorithm

is proposed. Then, the time complexity of its operations is analyzed. It is proved that the operations can

be finished with unit number of page transfers except for the operations of delete-min and decrease-key.

Finally, the feasibility and availability of the data structure is illustrated by the application of Fibonacci

heap in the Dijkstra algorithm.

Elmasry proposed a priority queue that achieves the same amortized bounds as Fibonacci heaps

(Elmasry, 2010). They claim that resolved this issue by introducing a priority queue that called as

violation heap. The Violation heaps had the same amortized bounds as Fibonacci heaps, and expected to

perform in practice in a more efficient manner than other Fibonacci-like heaps and compete with pairing

heaps. Namely, find-min requires)1(O worst-case time, insert, merge and decrease-key

require)1(O amortized time, and delete-min requires)(log nO amortized time. The main idea behind their

construction is to propagate rank updates instead of performing cascaded cuts following a decrease-key

operation, allowing for a relaxed structure.

4 CONCLUSION

In computer science, the designing and selecting of data structures and algorithms is the most

important process in software design and applications from an operational point of view. In this paper, we

introduced an efficient data structure called as the Fibonacci heap. The Fibonacci heap data structure

developed in 1984 by Fredman and Tarjan. The Fibonacci heap data structure that unlike most data

structures, insertion is performed easily with the lowest cost, and instead, reorganization is performed

566

when a data item is being deleted. It is a type of heap that supports union, insert, decrease-key and find

the minimum in)1(O amortized time, also extract-min and delete in)(log nO amortized time. In general, we

can use the Fibonacci heap to improve the speed of the algorithm, because the delayed reorganization

characteristic transforms it into the most appropriate data structure to solve some of the most important

problems. According to this study, some researchers used of Fibonacci heap for satellite networks, leader

election, routing algorithms, data segmentation, mobile networks, and so on. Also other researches

improve the Fibonacci heap structure and increase the speed of the algorithm, or defined a new data

structure same as Fibonacci heap.

REFERENCES

Brodal, Gerth Stølting, George Lagogiannis, and Robert E. Tarjan. (2012). "Strict fibonacci heaps". In

Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 1177-1184.

ACM.

Cormen Thomas H., Leiserson Charles E., Rivest Ronald L. and Stein Clifford. "Introduction To

Algorithms", Third edition, The MIT Press Cambridge, Massachusetts. ISBN 978-0-262-03384-8, pp:

505-530. (2009).

Chan, Timothy M. "Quake heaps: a simple alternative to Fibonacci heaps." In Space-Efficient Data

Structures, Streams, and Algorithms, pp. 27-32. Springer Berlin Heidelberg, (2013).

Elmasry, Amr. (2010). "The violation heap: A relaxed Fibonacci-like heap." Discrete Mathematics,

Algorithms and Applications 2, no. 04 (2010): 493-503.

Gueunet, Charles, Pierre Fortin, Julien Jomier, and Julien Tierny. (2017). "Task-based augmented merge

trees with Fibonacci heaps." In IEEE Symposium on Large Data Analysis and Visualization 2017.

Hansen, Thomas Dueholm, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. "Hollow heaps." ACM

Transactions on Algorithms (TALG) 13, no. 3 (2017): 42.

Jain, Arihant Kumar, and Sharma Ramashankar. (2012). "Leader Election Algorithm in Wireless

Environments Using Fibonacci Heap Structure." International Journal of Computer Technology and

Applications 3, no. 3.

Jekovec, Matevz, and Andrej Brodnik. (2012). "Review of 4 comparison-based priority queues: Binary,

Binomial, Fibonacci and Weak heap: Technical report LUSY-2012/01."

Kaplan, Haim, Robert E. Tarjan, and Uri Zwick. (2014). "Fibonacci heaps revisited." arXiv preprint

arXiv:1407.5750.

Li, Jerry, and Peebles John. "Replacing mark bits with randomness in Fibonacci heaps." In International

Colloquium on Automata, Languages, and Programming, pp. 886-897. Springer, Berlin, Heidelberg,

(2015).

Liu, Yanyun, Wenquan Feng, Hua Sun, Jia Yin, and Zhiyuan Zheng.(2011). "An algorithm design of

inter-satellite routing based on Fibonacci Heap." In Computational Intelligence and Design (ISCID),

2011 Fourth International Symposium on, vol. 2, pp. 51-54. IEEE.

Li Peng, Zhang Yuan-ping, Li Li. (2011). "Fibonacci heap and its application in external memory

algorithms", Computer Engineering and Design.

Mozes, Shay, Yahav Nussbaum, and Oren Weimann. (2014). "Faster shortest paths in dense distance

graphs, with applications." arXiv preprint arXiv:1404.0977.

Qu, Taiguo, and Zixing Cai. (2015). "A Fast Isomap Algorithm Based on Fibonacci Heap." In

International Conference in Swarm Intelligence, pp. 225-231. Springer, Cham.

Tiwari Kshama and Umrao Brajesh Kumar. (2016). "Leader Election Algorithm using Fibonacci Heap

Structure in Mobile Ad hoc Network." IJCA Proceedings on Technical Symposium on Emerging

Technologies in Computer Science, TSETCS 2016(2):5-8.

Wang, Yupeng, Gong Zhang, Zhuqing Jiang, Chengkai Huang, Xueyang Wang, Aidong Men, Bo Yang,

and Kaifeng Qi. (2014). "A novel routing algorithm design of time evolving graph based on pairing

heap for MEO satellite network." In Vehicular Technology Conference (VTC Fall), 2014 IEEE 80th,

pp. 1-5. IEEE.

