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 ABSTRACT 

A k-hypergraph with vertex set V and edge set E is called t-regular if every t-element subset of 

V lies in the same number of elements of E. In this note, we prove the existence of a new family of 3-

regular self-complementary k-hypergraphs for k=6. 
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1 INTRODUCTION 

 

Definition  1.1.  A k-uniform hypergraph of order v is an ordered pair H = (V, E), where V 

= V (H) is a v-set (called vertex set) and E = E(H) is a subset of     (called edge set). We 

call a k-uniform hypergraph simply a k-hypergraph [8].  

A k-hypergraph H of order v is t-subset-regular (for short t-regular) if there exists a 

positive integer (called the t-valence of H), such that each element of ) is a subset of exactly 

λ elements of E(H). Henceforth, we denote such a structure by RHG(t, k, v). So RHG(t, k, v) is a 

t-(v,k, λ) design. Two k-hypergraphs  and   are isomorphic, if there is a bijection θ : V ( ) 

→ V ( ), such that θ induces a bijection from E( ) into E( ).A k-hypergraph H is called self-

complementary if H is isomorphic to  = (V,  \ E(H)). An antimorphism of self-

complementary hypergraph H, is an isomorphism between H and . If H is a self-

complementary RHG(t, k, v), then H and form a large sets of t-designs LS[2](t, k, v) with an 

additional property that these two designs are isomorphic. Henceforth, we denote this structure 

by SRHG(t, k, v). An easy counting argument shows that an SRHG(t, k, v) is also an SRHG(i, k, 
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v) for 0 ≤ i ≤ t. Hence a set of necessary conditions for the existence of an SRHG(t, k, v) is that 

 is an even integer for all i = 0, 1, ..., t. 

Much of the research to date into t-regular self-complementary k-hypergraphs has been 

focused on determining necessary and sufficient conditions on the order of these structures. The 

following theorem gives the necessary conditions in terms of some congruence relations. Let p 

be a prime number and r and m be positive integers. Then by we denote the remainder of 

division r by m and by we denote the largest integer i such that divides r.  

Theorem 1.2. [6] If there exists an SRHG(t, k, v), then there exists an integer q, where 

< q ≤ min{i :  > k} such that 

{t, t + 1,…, k[2q]-1}. 

It should be noted that in [6] the above theorem is stated for large sets of t-designs. The 

necessary conditions of above theorem have been shown to be sufficient in the special cases. The 

case t =1 and k =2 was handled constructively by Rao[10], but there is also a proof due to 

Wilson [11]. Potočnik and Šajna handled the case where k =3 and t =1 [9], and Konr and 

Potočnik handled the case where k =3 and t =2 [8]. The next great achievement was obtained by 

Gosselin who showed that the necessary conditions of Theorem 1.2 are sufficient for all k, in the 

case where t=1 [4]. Recently, it was proved for t =2 and k =4, 5 [3]. In Section 3, we show that 

the necessary conditions are sufficient for t =3 and k = 4, 5.  

Remark 1.3. Let H be an SRHG(t, k, v), θ be an antimorphism of H and x  V be a fixed 

point of e. Now consider  

H
d 
= {B −{x}| B  H, x  B  H}, 

H
r 
= {B|x  B  H}, 

H
c 
= {V − B|B  H}. 

Then one can easily see that H
d 

and H
r 
are SRHG(t − 1,k − 1,v − 1) and SRHG(t − 1,k,v − 1), 

respectively and in turn are called the derived and the residual hypergraphs of H with respect to 

x. Clearly H
c 

is also an SRHG(t, v − k, v) with e as an antimorphism, that is called the 

complement hypergraph of H [5].  

We may obtain more hypergraphs from a given hypergraph as the following theorem 

suggests (see[7]). The proof is clear by successive applying of the above remark.  

Theorem 1.4. If there exists an SRHG(t, k, v) with an antimorphism having at least t fixed 

points, then there exists SRHG(t − i, k − j, v − l) for all 0 ≤ j ≤ l ≤ i ≤ t. 

 

2 PARTITIONABLE SETS 

A powerful method in constructing large sets is obtained from the notion of partitionable sets [1]. In what 

follows we generalize this method to construct hypergraphs with different parameters.  

Let ,   (V ). We say that  and  are t-equivalent if every t-subset of V appears in the 

same number of members of  and . If there exists a partition of H   (V ) into N mutually t-

equivalent subsets, then H is called an (N, t)-partitionable set. If H = { , } is a Let  and  be two 

disjoint sets and   
 
( ) for i =1, 2. In what follows we need the following definition:  
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   = {  |   ,   }.  

In following the Lemma, we give a recursive method to construct SRHG(t, k, v).  

 
Lemma 2.1. [3] Let a be a permutation on V . If there exist an SRHG(t, k, v) and an SRHG(t, k + 1,v) and 

a be their common antimorphism, then there exists an SRHG(t, k +1,v + 1).  

Theorem 2.2. [3] Assume that there exist SRHG(t, i, v1) for all t +1 ≤ i ≤ k with  as an antimorphism 

such that each hypergraph of SRHG(t − 1, t,  − 1) is (2, )-partitionable set and also suppose there 

exists SRHG(t, k, ) such that  be an antimorphism, then an SRHG(t, k, 1 +  − t) exists.  

Let θ be a permutation on a v-set with at least t  fixed points.  

 

Corollary 2.3. [3] If there exist an SRHG(t, i, v) for t +1 ≤ i ≤ k with e as an antimorphism such that 

each hypergraph of SRHG(t−1, t, v−1) is (2,t)-partitionable set and also there exist SRHG(t, k, u) with an 

antimorphism having at least t fixed points, then there exist SRHG(t, k, u + l(v − t)) for all l ≥ 1.  

Let θ be a permutation on (v + k)-set with at least (k − 1) fixed points.  

 
Corollary 2.4. [3] If there exist SRHG(t, i, v + i) for t +1 ≤ i ≤ k with e as an antimorphism such that each 

hypergraph of SRHG(t − 1, t, v + k − 1) is (2,t)-partitionable set and also if there exist SRHG(t, k, u) with 

an antimorphism having at least k −1 fixed points, then there exist SRHG(t, k, u+ l(v + 1)) for all l ≥ 1.  

 

3 MAIN RESULTS  

 
Alltop[2] has proved a theorem on extending t-designs. We prove a similar result for t-regular self-

complementary k-hypergraphs. 

  

Theorem 3.1. If there exists an SRHG(t, k, 2k + 1), then there exists an SRHG(t +1,k +1, 2k + 2). 

 

Proof. Let X be a (2k+1)-set and x  X. Suppose that {H1, H2} is an SRHG(t; k; 2k + 1). For i = 1; 

2, define 

 = {h ∪{x}| h  }, 

= {X \ h| h   }. 

 Clearly, i and  partition  (X ∪{x}). We show that These sets are t-equivalent. Let x be a fixed 

point for antimorphism. 

  

Example 3.2. SRHG(2, 5, 11) there exists[3]. Thus by Theorem 3.1, SRHG(3, 6, 12) there exists.  

We use Corollary 2.3 to give some existence results on SRHG(3, k, v). At first step note to the 

following corollary of Theorem 1.2. This corollary presents a necessary condition to the existence of 

SRHG(3, k, v). 

  

Corollary 3.3. Suppose that there exists an SRHG(3, k, v). Then  

(i) If k = 4, then v  3 (mod 8);  

(ii) If k =5, then v 3, 4 (mod 8). 

  

Now we show that the necessary conditions for the existence of SRHG(3, k, v) for k = 4, 5 are 

sufficient.  

 
Theorem 3.4. There exist an SRHG(3, 6,v) if and only if v 3, 4, 5 (mod 8).  
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Proof. We have to establish the existence of SRHG(3,6,11), SRHG(3,6,12), SRHG(3,6,13), each 

with an antimorphisms having at least 3 fixed points (note Corollary 2.3). For these hypergraphs, 

the first one exists by Remark 1.3 and the second one by Example3.2 exist. The last one exists by 

Lemma 2.1. 
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