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ABSTRACT

In this paper the Pell-Narayana sequence is introduced. Some properties and identities about
this sequence are represented. Also the eigenvalues and determinant of circulant matrix involving
Pell-Narayana sequence are computed.
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1 INTRODUCTION

Recently many authors have considered special number sequences like as the Narayana
sequence because it has the close relation to the Fibonacci sequence. Also this sequence has many
applications in Data coding and cryptography.

Narayana [1],[11] was an Indian mathematician who lived in the 14th century. He proposed
the following problem: A cow produces one calf every year. Beginning in its fourth year, each calf
produces one calf at the beginning of each year. How many cows are there totally after, 20?

By considering Narayana sequence according to the definition of Fibonacci’s Rabbit
problem, the Narayana[11] sequence (N,,) is defined by the recursion relation

Npy3 = Npyp + Nyforall n > 3,
With initial values Ny = 2, N; = 3, N, = 4.The first values of (N,,) are:
2,3,4,6,9,13,19, 28,41, 60, 88,129, 189,277.
Pell [9] sequence(B,) is defined by the recursive relation
P, =2P,_ 1+ P,_,,
with the initial valuesP, = 0, P; = 1. The first values of (B,) are:
0,1,2,5,12,29,70,169, 408,985, 2378, 5741.

In paper [10], the authors investigated the eigenvalues and determinant of special circulant
matrix involving (k,h)-Jacobsthal sequence and (k,h)-Jacobsthal-like sequence. In this paper firstly
the Pell-Narayana sequence is introduced. The Binet-like-formula, partial sum and generating
function related to this sequence are represented. Some identities with some examples about this
sequence are given. Finally the eigenvalues and determinant of circulant matrix involving Pell-
Narayana sequence are represented.
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For more information about Pell sequence, Pell Lucas sequence, Narayana sequence and
some generalizations of these sequences we refer to[3-6], [8-10] and [12-13].

2 PELL - NARAYANA SEQUENCE

Definition (2.1). We define the Pell-Narayana sequence(PN,.) by the recursive relation

PN, = 2PN,_; + PN,_; (2.1.1)
With the initial values PNy, = 0,PN; = 1,PN, = 1. The first values of Pell-Narayana
sequence are:
0,1,1,2,5,11,24,53,117,258,569,1255,2768,6105,13465,29698, 65501, 144967.

Remark (2.2). Pell-Narayana sequence (PN,) has characteristic equation x3 — 2x? — 1 =

0. From the Cardano’s formula for the cubic equation x3 — 2x? — 1 = 0 we can see that this
equation has one real root o and two complex roots 3, y where

a= 2(_4)3 (43)2 = 2(_4)3 (43)2 <_2) 2.205569904302
*= It \9) ") * s 9) t5s 7))~ 2 :

(f— ERORE (%4)3+(§)2> |

B =

3

a3 _43+ 43)°_2j43 _: _43+ 13 2\'~ 0.102784715 + (0.665469511);
s () *(51) - 5 |5 (5—4))“-- F(assEEEIDL,

And

/
K
(o & s o@®
z 0

«/§/3 43 N 2 (—4)3 N (43)2 143 2 <—4> <43) \
2 k 54 9 54 54 9 54 )l
~ —0.102784715 — (0.665469511)i,

Wherei = vV/—1.
Theorem (2.3).The generatmg function for the Pell- Narayana sequence (PN, is

Z PN, x—x
x 1-2x —x3
Proof. Suppose that the generatlng function for the Pell-Narayana sequence (PN,.) has the
form

glx) = z PN,x™ = PNy 4+ PN;x + PNyx* + PN3x>® + --- 4+ PN,x" + -

n=0
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Then we have
2xg(x) = 2xPNy + 2PN;x% + 2PN,x3 + 2PNyx* + -+ 2PN,x" 1 + -+ |
And
x3g(x) = PNyx3® + PN;x* + PN,x° + PN3x® + --- + PN, x"*3 + ...

Thus we obtain

g(x) —2xg(x) — x3g(x) =(PNy + PN;x + PN,x? + PN3x3 + ---) = (2xPN, +
2PN;x? + 2PN,x3 + 2PN3x* + -+ 2PN, x"** + -+ )= (PNyx3 + PN;x* + PN,x> + PN;x® +
+ PNx™+3 + -.)

= PNy +(PN; — 2PNy)x + (PN, — 2PNy)x? + (PN5 — 2PN, — PNy)x3® + --- + (PN, —
2PN,_; — PN,_3)x™ + -

Therefore we get

g —2x—x3)=0+x+ (1 —-2)x?+0=x— x>

Z PN, XX
x T1-2x—x3"
Theorem (2.4). Letr > 0 be an integer. Then the Binet-like formula for the Pell-Narayana

sequence(PN,) is
(-1 o+ B-1) P r—-1 T
(a—p)(a~—vy) B-a)(B~-v) G-a)y-p)

Where a, B,y are the roots of the equation x3 — 2x2 — 1 = 0.

Proof. From remark (2.2) we see that the cubic equation f(x) = x3 — 2x? — 1 = 0 has three

distinct roots «, 8, y. Hence i%% are the roots h(x) = f (i) =1 — 2x — x3. In exact we have

h(x) =1-2x—x3={1—ax)(1 - px)(1 —yx).
According to the generating function of Pell-Narayana sequence we have

x — x? A B C

g(x)= —2x —x3 1—a:x+1—/3x+1—yx

iy Z(ax)r +B Z(ﬁx)r + CZ(yx)r (3.4.1)
Thus we have
() = x — x? A(l Bx)(1—yx)+B(A—ax)(1—yx)+C(1 —ax)(1 — ,[)’x)
G = o —x3 (1—ax)(1—-Bx)(1—yx)
Therefore by comparison of the left and right sides of this equality we get that
x—x2=A1-Bx)(1—yx) + B(1 —ax)(1 —yx) + C(1 — ax)(1 — Bx).
1 .
If we set x = — we find that

L dea- 80D

_ (a—1)
C(@=B)a-y)

B-1D -1
G-DE-1 " G-00-B

Consequently

PN, =

Consequently we get

Similarly we get

B =
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By (3.4.1) we obtain that
v @-Da” o (B -y,
9= ) e T LT z(y—a)(y e

Z [ (@ —1a’ B-1)B" (y—1y" ]xr

@-Ba-1 B-0B-7 G-0F-p
Consequently we obtain
T @-n . -1 . -1
= pa-n* " t-o6-n" To-ou-pn’

r

Theorem (2.5). Let r > 0 be an integer and k be an arbitrary integer. Then

2k _ 2k _ 2k
@) PN, +PN,_, = & D@ *D proic DB 41 groje | G-DG_+D -k

(a- ﬁ()(czrk y)) (ﬁ—az([;’;m) (V—a)(();;l?)) ’
_ (@=1)(a**-1 B-D(B*"-1) pr—k |, =D¥*"-1) ,_k
(0) PNyije = PNy = (a=B)(a—y) a ™+ (B-a)(B-7) p Y- F-B) '

Proof. They can be proved by direct calculations from theorem (3.4).

Corollary (2.6). From theorem (2.5) for k = 1 we have

- 2 _ 2
(a) PN‘I"+1 + PN‘I" 1= Ma + Wﬁr_l + (V 1)()/ +1) r—1

(@B)(@-7) (B=a)(B~7) -a0-F '
_ (a-1)%(a+1) B-12B+1) ,pr—1 , P-D*(+1) 1
(B) PNryy = PNy === a7 =i,y B r-oe-p 7

Lemma (2.7). Let r 2 0 be an integer. Then

1
ZPN = S 1PNeys = PNyyy = PNy + 1,

Proof. It can be proved according to the definition of Pell-Narayana sequence we now

MOR IDENTITIES ABOUT PELL NARAYANA SEQUENCE

01 0
Theorem (3.1). Let n > 0 be an integer and ¢ = 0 1f.Then
1 0 2
PNy, 0 1 0]*[0 0
PNn+1=[0 0 1 [1 =<p”1.
PN, 1 0 21 11 1

Proof. We prove this theorem by mathematical induction on n.
For n = 1we have
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01 0 PN,
00 1 = | PN, |,
1 0 2 PN,

Thus the result is true for n = 1. Now suppose that the result is true for n = k. Hence we

1

%

have
PNy 0 1 070 0
PNk+1:[001] 1| = ¢*|1].
PNy, 1 0 21 L1} 1
Then we have
0 0] PN, 0 1 01[ PN PNyyq
(Pk+11=‘P‘Pk1=<PPNk+1=[O 0 1||PNg+1|=|PNis2|.
1 1 PNp2 1 0 21LPNgy, PNj43

Therefore the result is true forn = k. Consequently by induction the result is true for
every n. This proves the theorem.

Remark (3.2). As we know the characteristic polynomial of the recursive relation PN, =
2PN,_; + PN,_5 is p(x) = x3 — 2x? — 1 = 0. This polynomial can be written as

1 0 O 0 1 0
p(x) = det(xI —¢@) =0,whereI =|0 1 Oflande=|0 0 1]|.
0 0 1 1 0 2

From the well-known Cayley Hamilton theorem in matrix algebra we have p(¢) = 0. Thus

we have
@3 =20 —-1=0. (3.2.1)
01 0
Theorem (3.3). Let = [O 0 1] , then
1 0 2
I =@3—2¢%=¢3—2¢°+ 4¢*,
And
(pn — (pn+3 _ 2(pn+5 + 4<pn+4.
Proof. According to the remark (3.2) we have
I=¢%=20"=¢*(¢p—2D) = 0*(p - 2(¢* = 2¢0%)) = ¢*(¢ — 2¢° + 49?)
= @3 —2¢° + 4¢*.
Thus
I =¢3—2¢°+ 4¢*.
This proves the first equality. Multiplying both sides of the above equality by ¢™, we obtain
(pn — (pn+3 _ 2<pn+5 + 4_<pn+4. (3.3.1)
Thus the proof is completed.

Corollary (3.4). Let r > 0 be an integer. Then
1
(pn+5 — E[4_('On+4 + (pn+3 _ (pn]. (3.4.1)

According to this corollary we have the following interesting example and Theorem about
the Pell-Narayana sequence(PN,.).

Example (3.5). From the first values of Pell-Narayana sequence (PN,.) we have
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N =

24==[4x11+5-1].
In exact we have
PNiys = 5 [4PNs + PN, — PN;] = = [4PNy,, + PNy3 — PN, ).
Therefore by induction we have the following identity about the Pell-Narayana
sequence(PN,).

Theorem (3.6). Let r > 0 be an integer. Then
PNyys =5 [4PNyys + PNrsg = PN, ]
Proof. We prove this theorem by mathematical induction on n. According to the last example
we see that PN, 5 = %[ALPN1+4 + PN, .3 — PN,]. Then if we assume that PN, s = %[ALPNt+4 +
PN,,; — PN, ] for all t < n. Then we have
PNpys = 2PNpys + PNpyo

1 1
=2 X 5 [4PNys3 + PNyyz = PNo_y] + 5 [4PNpyy + PNy = PNy_g]

1 1
= 4PNyy3 + PNyyy = PNy_y + 2PNpyy + 5 PNy — > PNy s

1 1 1
= 5(4[2PNn+3 + PNpa]) + E(szn+2 + PNy) — E(ZPNn—1 + PNp_3)

1
= 2 [4PNyi4 + PNpy3 — PNy
Thus the result is true for all n.

Theorem (3.7). Let r,n = 0 be integer. Then

(pn+r — (pn+r+6 + 8(pn+r+7 + 12<pn+r+8 _ 16(pn+r+9 + 4(pn+r+10_
Proof. By theorem (3.4) we have
(pn — (pn+3 _ 2<pn+5 + 4(pn+4.
Hence
(pn+r — (pn(pr — ((pn+3 — 2g0n+5 + 4¢n+4)(¢r+3 — 2(pr+5 + 4(pr+4)
— (pn+r+6 _ 2(pn+r+8 + 4_(pn+r+7 _ 2(pn+r+8 + 4(pn+r+10 _ 8(pn+r+9

+ 4¢n+r+7 _ 8¢n+r+9 + 16¢n+r+8
— ¢n+r+6 + 8¢n+r+7 + 12¢n+r+8 _ 16g0n+r+9 + 4§0n+r+10_
Thus the proof is completed.

Corollary (3.8). Let n > 0 be an integer. Then

(a) g02n — qDZn+6 + 8§02n+7 + 12q)2n+8 _ 16q)2n+9 + 4¢2n+10
(b) 2"+ = 11_6((p2n+6 + B2NtT 4 12¢2n+8 4 44p2n+10 _ h2m)
Proof. They can be derived by taking r = n from theorem (3.7).
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4 CIRCULANT MATRIX INVOLVING PELL-NARAYANA SEQUENCE
Definition (4.1). A matrix C = [c; ;] € My, Iis called a Circulant matrix if it is of the form

Cob €1 Cp '+ Cp-2 Cn—1'|

Ch—1 Co C1 " Cp—3 Cp—2
c=\ : : Pooee : :
C» C3 Cq - Co C1

l 1 C C3z - Ch—1 Cp J

A circulant matrix C = [c; ;] can be written by C = Circ(co, ¢1, -+, Cn1).

Lemma (4.2). [6] Let C = Circ(cy, ¢y, **, cn—1) be an X n circulant matrix. Then we have
n-1

’©)= Y conr,

k=0 ,
2mi

Where p; for j = 0,1,2,---,n — 11is the eigenvalue of the circulant matrix C andw = e’ n

,i=v—1.

Remark (4.3). Since a, B,y are the roots of the cubic equation x3 — 2x2 — 1 = 0. By direct
calculation we can prove that
(@ a+B+y=2
(b) apy =1,
(©)aB +ay + By =0.
Lemma (4.4). Suppose that «, 8,y are the roots of the equation x3 — 2x2 — 1 = 0 and
a—1 p—-1 y—1

e A T e R R K
Then we have

(a) k1+k2 +k3 :O,
= —1_]/ = —1_3 =
(b) ko +hee = = Ssmy o Mt s = gy 0 K T
(c) (’fﬁ +kk3)[i + (ky +k3)a+ (ki + ky)y = —1,
ko ko ks
(d) —+ ; + » 1. | | | o
Proof. They can be proved directly by some computations according to the definition of

kq, k4, ks and properties of a, 3, y.

1-a

B-a)y-a)’

Theorem (4.5). Let C = Cir(PN,y, PNy, -+, PN,_;) be a n xn circulant matrix whose
entries are the Pell-Narayana sequence(PN,,). Then the eigenvalues of C are
(PN,_; + Dw™% + (PN,_, — )w™/ + PN,
p;(C) =

w3+ w2 -1
2mi
wherei =+v—1,andw =en .
Proof. By lemma (4.2) for the eigenvalues of circulant matrix € =
Cir(PNy, PNy, -+, PN,,_;) we have

,(forj=0,12,---,n—1)
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n-—1

p](C) - Z PNkW i

(a—1) x B-1 K -1 k|..,—jk
Z[ax ha-n" Te-0G-n’ to-oa-pn’ 1"
n-1 n—1
— ((Z—l) k., —jk (ﬁ_l) k., —jk
@ Pank”" +(B—a)(ﬁ—y)k2=oﬁ v

n-1
(]/—1) k.. —ik
+(y_a)(y_/;)kz=0V v

Therefore by taking k; = p1 vl

whan = Taown = vroop
aw= )" =1 pw=i)" =1 yw ) =1
piC) =l (( aw‘f)— 1 ) ke (( ,BW—J')— 1 ) s <( yw—f)— 1 >
o fat—1 g —1 yr—1
=k (aw‘f - 1) Tk ([)’W‘f - 1) ks (yw‘f - 1)
ki@ = D(Bw T 1) (yw = 1) + k(B = D(aw T - 1)(yw - 1)
- (aw™ = D)(Bw~ = Dyw~ — 1)

ks(y™ — D(aw™ = 1)(Bw™ = 1)
(aw=l = D(BwT - Dyw~7 —1)

we have

Thus we get

—(ky + kg + k3) + (kya™ + k™ + ksy™) + (kia™By + kyfay + ksy™apIw ™2

(aBy)w=3 — (ap +ay + BY)w= + (a+ B +y)w™/ -1
—(kia"B + kxfa + ksy"a)w™ — (kya™y + kY + ksy"B)w !

(apy)w=3I —(af +ay + py)w > + (a+f +y)w™/ -1 .
— (k1 By + kyay + ksaB)w™ + (kB + kya + ksa + kiy + kyy + ksf)w™/

(apy)w=3 —(af +ay + By)w= 2 + (a+ B +y)w™ -1

p;(C) =

According to the remark (4.3) and lemma (4.4), after some computations we get

(PNn‘l + 1)W_2j + (PNn+1 — 2PN, — 1)W_j + PN,

w3 4+ w2 -1
(PNn 1+ 1)w‘21 + (PN,_, — Dw™ + PN

w3 +w H —1

p;j(C) =

Thus the proof is completed.

Example (4.6).The following table represents the eigenvalues ofC =
Cir(PN,, PNy, -+, PN,,_,) for some values of n.

110



Eigenvalues of C =
Cir(PNo, PNl,"',PNn—l)

0.572949 — 4.39201i
0.572949 + 4.39201:
—3.92705 + 1.40008i
—3.92705 — 1.40008i

20
1+ 12.1244i
1—-12.1244i
—7 + 5.19615i
—7 —5.19615i
-8

44
6.61021 + 29.0331i
6.61021 — 29.0331i
—12.0102 + 15.739i
—12.0102 — 15.739i
16.6 + 5.08579i
16.6 — 5.08579i

97
23.9914 + 66.1335i
23.9914 — 66.1335i
—20 +43i
—20—43i
—33.9914 + 20.1335i
—33.9914 — 20.1335:
—37

Lemma (4.7). Let x,y, z be real numbers and n > 0 be an integer. Then

(y — 2 - 4xz>n (y +y2 - 4-xz>n o
2x

n—-1

k=0

n(x —ywk + zw k) = x (1 —

2x

=x"+zn—[<y_

2mi

Wherew = en .

2
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y? — 4xz>n N <y +./y? - 4xz>n]
2 )

Z

X
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Proof. See [2].

Lemma (4.8). Let n > 0 be an integer. Then
n—1
[ [or2 4w = 1) = cr -0 - 0.
j=0
Where (Q,,) is the Perrin sequence that is defined by the recursive relation Q,;3 = Q41 +
Q,, with initial values Q, = 3,Q, = 0, Q, = 2 and sequence (Q_,,) is defined by recursive relation
Q-n = Q-mn-1) + O-n-3)-
Proof. See [2].

Theorem (4.9). Let C = Cir(PN,, PNy, +--,PN,_;) be a n xn circulant matrix whose
entries are the Pell-Narayana sequence(PN,,). Then determinant of C is

det(C) = <PNnr + (PN,_; + 1"

2
N <(P1vn_z ~1) + {(PN,_, — 1)? — 4PN, (PN,_; + 1))1)

((Plvn_z — 1) = /(PN,_, — 1)2 — 4PN, (PN, + 1))r

2

1
x (= )
(=D™(Q-n — Qn)
Proof. Let py, p1,**, pr—1 are the eigenvalues of circulant matrix C. From a basic theorem
in matrix algebra about the determinant of a matrix we have

n-1
det(C) = npj
j=0

Therefore by theorem (4.5) we get

n-—1
det(C) = l_lpj
j=0

- ﬁ (PN,_, + w2} + (PN,_, — )w™/ + PN,
j=0
n-—1

w3+ w2 -1

= 1_[[(13Nn_1 + Dw % + (PN,_, — Dw ™/ + PN, |

Jj=0

1
8 <H§;3(w-3f W - 1)>'

Therefore by lemma (4.7) and lemma (4.8) we have
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det(C) = (PNnT + (PN,,_; + 17

(@M%f—D—JGWWQ—DZ—MWAMWA+1jr
2

N ((PNn_Z —1) + /(PN,_, — 1)? — 4PN, (PNp_; + 1))1)
2

XQ—D%;m—Qa)

Example (4.10). The following table shows the determinant of
C = Cir(PN,y, PNy, -+, PN,_,) for some values of n.

n Determinant of C =
Cir(PNg, PNy, *+-,PN,_;)
-2
2
-16
3069
-1799680
4609034012
-62350489778837

(N0 R~WIN

) CONCLUSION

In this paper we introduced the Pell-Narayana sequence. We obtained Binet-like formula of
this sequence. We studied the generating function and partial sum of this sequence. We
investigated some interesting identities and examples about this sequence. Also eigenvalues and
determinant of circulant matrix involving this sequence are represented.

6 ACKNOWLEDGEMENTS

The authors thank the referees for their important points to improvement of this paper.

113



REFERENCES

J.-P. ~ Allouche and T. Johnson, Narayana's cows and . delayed morphisms.
http://kalvos.org/johness1.html; N.J.A. Sloane, The on-line encyclopedia of integer'sequences. (2008).

21 A. Coskun, N. Taskara, On the some properties of circulant matrix with third order linear recurrent
sequence, (2014), 1-9.

3] A. Faisant. On The Padovan Sequences, (2019), hal-02131654.

41 A.D. Godase, M. B. Dhakne, On the groperties of k-Fibonacci and k-Lucas numbers, Int. J. Adv. Appl.
Math. AndMech. 2(1)(2014), 100-106.

51 T. He, J. H. Liao, P. J. Shiue, Matrix Representation of Recursive Sequences of Order 3and Its
,26\££I|catlons, Journal of Mathematical Research with Applications ,May, (2018), Vol. 38, No. 3, 221

(1]

6] A. S, Liana, I. Wloch, Jacobsthal and Jacobsthal Lucas Hybrid numbers, Annales Mathematiccae
Silesianae, , 33 (2019), 276-283.

[7] g C. Morales, New identities for Padovan sequences, http://orcid.org/0000-0003-3164-4434,2019, 1-

8] M. Ozdemir, Introduction to hybrid numbers, Ady. Appl. Clifford Algebra. 28 (2018), no. 1, Art. 11,
32 pp., https://doi.org/10.1007/500006-018-0833-3.

o1 S.H.J. Petroudi, B. Pirouz, On some rogerties of (k,hz—PeII sequence and (k,h)-Pell-Lucass sequence,
Int. J.Adv. Appl. Math. And Mech. 3&)( 015), 98-101.

(101 S.H.J. Petroudi, M. Pirouz, On I\s*aecial circulant matrices with (k; h)-Jacobsthal sequence and (k; t%)
Jacobsthal-like sequence, Int. J.Mathematics and scientific computation, Vol. 6, No. 1, (2016), 44-47.

1] S.H.J. Petroudi, M. Pirouz, A. Ozkoc, On Some Properties of Particular Tetranacci sequence, J. Int.
Math. Virtual Inst., VVol. 10(2)(2020), 361-376.

121 J. L. Ramirez, V. F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et
Informaticae, 45 (2015), 91-105.

131 N. Yilmaz and N. Taskara, Matrix Sequences in terms of Padovan and Perrin Numbers, Journal of
Applied Mathematics, (2013), 1-7.

114


http://orcid.org/0000-0003-3164-4434
https://doi.org/10.1007/s00006-018-0833-3

