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 ABSTRACT 

In this paper, we have introduced a new collocation method based on Boubaker 
polynomials for approximate solution to the two-dimensional linear Fredholm integral 

equations of the second kind. The basic integral matrix is used by collocation points to 

reduce the integral equations to some linear algebraic system. Error analysis has been 

studied, and the validity and accuracy of the presented method are demonstrated through 

illustrative examples. Using the MATLAB software, the values of the examples in the 

tables and figures are given for comparing with modification of hat functions and Taylor 

matrix methods. 
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1 INTRODUCTION 

Analytical solution of two-dimensional integral equations is usually difficult and very complex. 

Therefore, numerical methods are needed to arrive at an acceptable solution. In this paper, we present 

a terminate collocation method for numerical solution of two-dimensional linear Fredholm integral 

equations in the following form 

(1) 

u(x, y) = g(x, y) + ∫ ∫ K(x, y, t, s)u(t, s)dsdt    
d

c

b

a
,     (x, y)ϵD               

Where 𝑢(𝑥, 𝑦) is unknown function, g(x, y) and K(x, y, t, s) functions, reapectively are continuous 

and defined in the intervals D = [a, b] × [c, d] and E = D × D . The purpose of this paper is to find a 

solution for the E q . (1) according t o (2D − TBPs)m e t h o d , so that for all (x, y) in D is defined by: 

 u(x, y) = ∑ ∑ βnm
M
m=0

N
n=0 ψm

n (x, y),where  ψm
n (x, y)(m, n = 0,1, … ) are two-dimensional Boubaker 

polynomials, that are defined as follows: ψm
n (x, y) = Bn(x)Bm(y). β𝑚𝑛 is to two dimensional Boubaker 

unknowns confficients, also n and m are polynomial of degrees also N,M are positive integres    

(m ≤ M, n ≤ N) . To get the numerical solution Eq.(1), we use the following collocation points 
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{
xi = a +

b−a

N
∙ i    ;   i = 0,1, … , N

yj = c +
d−c

M
∙ j    ;    j = 0,1, … ,M

                                                       (2)    

 

 

the following successive relation holds for one-dimensional Boubaker polynomials [1]                       

 

                                               Bk(x) = x ∙ Bk−1(x) − Bk−2(x)       ,    k > 2 
 

WhereB0(x) = 1, B1(x) = x, B2(x) = x2 + 2. A sequence of these integer non-orthogonal 

polynomials made by Boubaker as [3]:                                                                                                             

 

Bn(x) = ∑ {
(n − 4k)

n − k
Cn−k

k }
ξ(n)

k=0
(−1)kxn−2k 

 

Where ξ(n) = ⌊
𝑛

2
⌋ =

2n+((−1)n−1)

4
 , and Cn−k

k  is the binomial cofficients (
n − k

n
)                                      

 

2 SOME PRELIMINARIES OF BOUBAKER  POLYNOMIALS  

 

We can convert Boubaker polynomials series into the matrix from                                                                  

 

u(x, y) = Ψ(𝑥, 𝑦) ∙ β                                                                 (3) 

 

Where Ψ , β are defined as:                                                                                                                                

 

   Ψ = [ψ0
0, … , ψM

0 , … , ψ0
N, … , ψM

N ]                                                                                                        
T β = [β00, … , β0M, … , βN0, … , βNM] 

                                                                                                                                                                   

                                                                                                                                                            we have 

Ψ(x, y) = X(x, y) ∙ ZT                                                                    (4)           

 

The row vector X is defined as :X = [1, y, … , yM, x, xy, … , xyM, … , xN, … , xNyM] 

Let N =  M; if N is even, the Z square matrix are defined as:                                                                     

 

Z =

[
 
 
 
 
 
 
 

 γ0,0                      0                               0                        0                   ⋯                     0               0   

  0                         γ1,0                            0                        0                   ⋯                     0               0    

 γ2,1                        0                           γ2,0                      0                     ⋯                     0               0     

   ⋮                             ⋮                               ⋮                         ⋮                     ⋯                     ⋮                ⋮     
  0               γ

(N−1)2,
(N−2)2

4

                    0        γ
(N−1)2,

(N−4)2

4
    

        ⋯        γ(N−1)2,0            0    

γ
N2,

N2

4

                   0                   γ
N2,

(N−2)2

4

                 0                    ⋯                      0        γN2,0
]
 
 
 
 
 
 
 

 

 

When n = m and p = q, we show the elements of the matrix Z as γn,p
m,q

= γn,p, so that 
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𝜓𝑚
𝑛 (𝑥, 𝑦) = ∑ ∑ γn,p

m,q
xn−2p ∙ ym−2q       ;     γn,p

m,q
= (−1)p+q {

(n − 4p)(m − 4q)

(n − p)(m − q)
Cn−p

p
Cm−q

q
}     

𝜉(𝑚)

q=0

𝜉(n)

𝑝=0

 

 

[
q = 0,1,… , ⌊

𝑚

2
⌋     ;       m = 0,1, … ,M

p = 0,1,… , ⌊
𝑛

2
⌋      ;       n = 0,1, … , N

] 

So Eq.(1) can be rewritten as                                                          

(5) 

u(x, y) = g(x, y) + I(x, y)  
                                          

 

 

Where                                                                                                                                                      (6) 

I(x, y) = ∫ ∫ K(x, y, , t, s)u(t, s)dsdt
d

c

b

a

 

                              

Substituting collocation points Eq. (2) in Eq.(6), we can get                                                                   

                                     

x(xi, yj) = g(xi, yj) + I(xi, yj)      ;       i = 0,1,… , N    ,        j = 0,1,… ,M                    (7) 

  

The above systems (7), can be written as , u = G + I . Now, we want to find the matrix I. 

 

 We have  K(x, y, t, s) = ∑ ∑ hk,l(x, y)
M
l=0

N
=0 ψl

k(t, s) 

 

therefore                                                                                       

K(x, y, t, s) = H(x, y) ∙ Ψ𝑇(𝑡, 𝑠), H(x, y) = [h00(x, y), … , h0,M(x, y), … , hN,0(x, y), … , hN,M(x, y)] (8) 

 
Substituting the matrix forms of Eqs. (8), (3) in Eg. (6), the following matrix from is obtained      

          

I(x, y) = ∫ ∫ H(𝑥, 𝑦) ∙ Ψ𝑇(𝑡, 𝑠) ∙ Ψ(𝑡, 𝑠) ∙ β𝑑𝑠𝑑𝑡 = H(𝑥, 𝑦) ∙ (∫ ∫ Ψ𝑇(𝑡, 𝑠)
𝑑

𝑐

𝑏

𝑎

∙ Ψ(𝑡, 𝑠)𝑑𝑠𝑑𝑡)
𝑑

𝑐

𝑏

𝑎

∙ β 

Put                                                                                                                                                              

(9) 

Q = ∫ ∫ Ψ𝑇(𝑡, 𝑠)
𝑑

𝑐

𝑏

𝑎

∙ Ψ(𝑡, 𝑠) ∙ dsdt 

So in summary                                                                                                                                         

I(x, y) = H(x, y) ∙ Q ∙ β                                                    (10) 

 

To calculate the elements of the Q matrix, put Eg.(4) in Eg.(9),si we have                  

(11) 

Q = Z ∙ ∫ ∫ XT(t, s) ∙ X(t, s)dsdt ∙ ZT
d

c

b

a

 

According to Eq.(11), we can write 

(12) 

R = ∫ ∫ XT
d

c

(t, s). X(t, s)dsdt = [rij

b

a

] 
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Where rij =
(bi+j+1−ai+j+1)(di+j+1−ci+j+1)

(i+j+1)2
 . Also, substituting Eq.(12) in Eq.(11), we have 

(13) 

Q = Z. R. ZT 
 

    Ultimately, substituting Eq.(13) in Eq.(10), we get 

(14) 

 

I(x, y) = H(x, y). Z. R. ZT. β 
 

3 NUMERICAL IMPLEMENTATION 

 

Now, substituting Eqs.(3), (5),(11) and (14) in Eq.(6), then by puting (2), we have 

(15) 

 

{X(xi, yj). Z
T − H(xi, yj). Q}. β = g(xi, yj) 

 

Briefly, {X. ZT − H.Q}. β = G. We can written Wβ = G or [W; G] ;W = [wpq](n+1)×(m+1). 

Where, W = X. ZT − H.Q. Therefore, the approximate solution of Eq.(1) is calculated by 

 

uN,M(x, y) = X(x, y). ZT. β 

 

4  ERROR ANALYSIS 

 

We have, ∀(x, y) = (xk, yl) ∈ [0,1] × [0,1] ;  k, l = 0,1,2, … : 

 

E(xk, yl) = |u(x, y) − ∫ ∫ K(x, y, t, s)dsdt − g(x, y)
d

c

b

a

| ≅ 0 

 

Where, E(xk, yl) ≤ 10−(nk+ml)(𝑛𝑘 , 𝑚𝑙 are positive integers). If we can determine[2] 

 

{Maxk,l10−(nk+ml)} = 10−ε 

 

When M and N are large enough, the error can be estimated by the following function 

 

EN,M(x, y) = u(x, y) − ∫ ∫ K(x, y, t, s)dsdt − g(x, y)
d

c

b

a

 

 

In this case, if EN,M(x, y) → 0, then the error will decrease. 

 

5   ILLUSTRATIVE EXAMPLES 

 

In this section, We examine two examples for N,M =  4, 8, 16 with error values, exact solution, 
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and two-dimensional modication of hat functions [3] and Taylor matrix [4]methods in tables. 

Estimation of absolute errors in tables is the values of EN,M(x, y) = |u(x, y) − uN,M(x, y)| in the 

selected points. 

 

 

 

  

Consider two-dimensional linear Fredholm integral equation below EXAMPLE 5.1. 

(16) 

u(x, y) = x cos(y) −
1

6
si n(1) (3 + sin(1)) + ∫ (sin

1

0

(t)s + 1)u(t, s)dsdt  ;   0 ≤ (x, y) ≤ 1 

 
The exact solution is 𝑥𝑐𝑜𝑠(𝑦). 

 

 

 

 

 

 

 

Table 1 Compare the values of exact and approximate solutions Eq.(16) 

 

(x,y) N=4 Error4,4 Error4,4[1] N=8 Error8,8 Error8,8[1] Exact 

(0.500,0.500) 0.453981 1.5e-02 0.6575e-03 0.451992 1.3e-02 0.1603e-06 0.438791 

(0.250,0.250) 0.257418 1.5e-02 0.6467e-03 0.255429 1.3e-02 0.1602e-06 0.242228 

(0.125,0.125) 0.139216 1.5e-02 0.6467e-03 0.137225 1.3e-02 0.1602e-06 0.124025 

(0.063,0.063) 0.077568 1.5e-02 0.6467e-03 0.075579 1.3e-02 0.1602e-06 0.062378 

(0.031,0.031) 0.046425 1.5e-02 0.6467e-03 0.044435 1.3e-02 0.1602e-06 0.031235 

(0.016,0.016) 0.030813 1.5e-02 0.6467e-03 0.028824 1.3e-02 0.1602e-06 0.015623 
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Figure 1: Exact and approximate solutions Eq.(16) for N=8 

 

 

 

 

 

 

 

Example 5.2. Consider the following two-dimensional linear Fredholm integral equation 

 

(17) 

u(x, y) = g(x, y) + ∫ ∫ (x2 + y + s2 + t)u(t, s)dsdt
1

0

1

0

 

 

Where g(x, y) =
x2

3
+ y2 −

2

3
y −

131

180
, and exact solution is u(x, y) = x2 + y2. 
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Table 2 Compare the values of exact and approximate solutions Eq.(17) 

 

 

 

 

 

 

 

 

 

 

(x,y) N=8 Error8,8 Error8,8[2] N=16 Error16,16 Error16,16[2] Exact 

(0.500,0.500) 0.500000 1.2e-15 1.8e-14 0.500000 1.6e-07 1.8e-07 0.500000 

(0.250,0.250) 0.125000 4.2e-16 6.3e-15 0.125000 7.0e-08 8.2e-08 0.125000 

(0.125,0.125) 0.31250 2.1e-16 2.4e-15 0.31250 3.4-e08 4.0e-08 0.31250 

(0.063,0.063) 0.007813 1.4e-16 2.1e-15 0.007813 1.5e-08 2.1e-08 0.007813 

(0.031,0.031) 0.001953 1.2e-16 1.8e-14 0.001953 6.3e-09 7.4e-09 0.001953 

(0.016,0.016) 0.000488 1.1e-16 1.7e-15 0.000488 1.7e-09 1.9e-09 0.000488 
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Figure 2: Exact and approximate solutions Eq.(17) for N=16 

 

 

6 CONCLUSION 

. 

          In this paper, Boubaker collocation methods were used to the numerical approach of the two- 

dimensional linear integral equations of the second kind. The method has the best advantage, when 

the known functions in the equation can be extended to the terminate Boubaker series. Another notable 

advantage of the method is that the solution of the Boubaker polynomial cofficients is calculated very 

easy with using the computer programs. To get the solution of the best approximationin the equation , 

more sentences need to be used to expand thr Boubaker functions. That's means,the N terminate bound 

must be choosen large enough. In addition, an intersting feature of this method is nding analytical 

solutions. If the equation is a polynomial function, then it will have an exact solution. The results of the 

tables and _gures obtained from MATLAB software show the accuracy and efficiency of the method. We 

anticipate that the Boubaker collocation method would be promising for a detailed study of analytical 

solution for two-dimensional linear Fredholm integral equations. 
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