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 ABSTRACT 

A derangement is a permutation that has no fixed points. In this paper, we study a subclass of 

derangements on 𝑛 objects with two arbitrary forbidden objects location. We determine an explicit formula 

for the number of this subclass of derangements. we will prove that the Stirling transform of these numbers 

equals the binomial transform of the Bell numbers.  
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1 INTRODUCTION 

A derangement over 𝑛 integers [𝑛] = {1,2, … , 𝑛} is defined as a permutation with no fixed points. 

The exercise of counting all derangements is a typical example of the inclusion-exclusion principle. The 

number of these permutations on 𝑆𝑛 is denoted by 𝐷(𝑛). The inclusion-exclusion principle gives  

 

 𝐷(𝑛) = 𝑛! ∑𝑛
𝑘=0

(−1)𝑘

𝑘!
. (1) 

 

 The number of derangements is given by the recurrence relation  

 

 𝐷(𝑛) = {
0 if    n = 1,
1 if    n = 2,
(𝑛 − 1)(𝐷(𝑛 − 1) + 𝐷(𝑛 − 2)) if     n ≥ 3.

 

 

To see this result and related results concerning derangement numbers, we refer the reader to [1].  

Definition 1. 1. A subclass of derangements on 𝑛 + 𝑟 objects such that none of the first 𝑟 objects return to 

the first 𝑟 objects location. Assume that Δ = {1,2, … , 𝑟} and denote 𝜋(Δ) the action of a permutation           

𝜋 ∈ 𝑆𝑛+𝑟 on the set Δ by defining 𝜋(Δ) = {𝜋(𝑥), 𝑥 ∈ Δ}. A derangement 𝜋 ∈ 𝑆𝑛+𝑟 is called a                          

Δ-derangement if 𝜋(Δ) ∩ Δ = ∅. The number of Δ-derangements on 𝑆𝑛+𝑟 is denoted by 𝐷𝑟(𝑛).   

It follows from the definition that n must be greater than or equal to r and it is equally easy to see 

that 𝐷1(𝑛) = 𝐷(𝑛 + 1), 𝐷2(2) = 4 and 𝐷2(3) = 24.   

Definition 1. 2. Let us fix 𝑟𝑖 , 𝑠𝑖 ∈ ℕ (1 ≤ 𝑖 ≤ 𝑘) with 𝑟𝑖, 𝑠𝑖 ≤ 𝑛. The permutation 𝜋 of 𝑆𝑛 that has no fixed 

points is called a 𝑘-derangement if 𝜋(𝑟𝑖) = 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑘. Let 𝐷(𝑘, 𝑛) denote the number of                         

𝑘-derangements of 𝑆𝑛.  In other words, 𝐷(𝑘, 𝑛) counts the number of derangements with 𝑘 forbidden 

positions. It follows from the definition that 𝑛 must be greater than or equal to the maximum number in 

{𝑟𝑖, 𝑠𝑖: 1 ≤ 𝑖 ≤ 𝑘}. It is easy to see that 𝐷(0, 𝑛) = 𝐷(𝑛), 𝐷(1,2) = 0, 𝐷(1,3) = 1, 𝐷(1,4) = 6, 𝐷(2,4) =

4 and 𝐷(2,5) = 24. 

                                                 
1 speaker 
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This paper is devoted to study a subclass of fixed point free permutations. We investigate the 

formula for counting the number of derangements with two arbitrary forbidden positions. We determine an 

explicit formula for the number of 𝐷(2, 𝑛). Finally, we determine Stirling transform of derangement 

numbers.  

2 PROPERTY OF 𝟐-DERANGEMENTS 

 Definitions 1.1 and 1.2 are not the same. They also have different size for each 𝑛 ≥ 4. Only at 𝑟 =

𝑘 = 2, these definitions are the same. The main result of this paper are the following theorems.   

Theorem 2. 1. For all 𝑛 ≥ 4 we have that 𝐷𝑘(𝑛) = 𝐷(𝑟, 𝑛 − 𝑟) if and only if 𝑟 = 𝑘 = 2.   

Corollary 2. 2. For all 𝑛 ≥ 4 and 𝑟 < 𝑛 − 2 we have that 𝐷𝑟(𝑛) < 𝐷(𝑟, 𝑛 − 𝑟).   

Proof. Assume that Δ = {1,2, … , 𝑟}. We take a permutation 𝜋 on n elements which the first 𝑟 objects 

to be members of Δ. If 𝜋(Δ) ∩ Δ = ∅, then 𝜋 is 𝑟-derangement and is Δ-derangement. Now suppose that 𝐵 

is an arbitrary subset of 𝐴 such that 𝜋 ∈ 𝑆𝑛+𝑟 and 𝜋(𝐵) ∩ 𝐵 = ∅. Then 𝜋 is 𝑟-derangement but is not Δ-

derangement. This complete the proof.  

 By Theorem 2.1, we obtain the following generalized recursive relation: 

Theorem 2. 3.  For all 𝑛 ≥ 4 we have that  

 𝐷(2, 𝑛) = 𝐷(1, 𝑛) − 𝐷(1, 𝑛 − 1). 

  

Proof. Assume that  

 𝒜 = {𝜋: 𝜋 ∈ 𝐷(𝑛), 𝜋(𝑟) = 𝑠}. 

It is easy to see that |𝐴| = 𝐷(1, 𝑛). Now we count the set 𝐴 in a different way for showing recursive relation. 

For this purpose, first assume that 𝜋(𝑠) = 𝑟. In this case, since 𝜋(𝑖) = 𝑖 for every 𝑖 ∈ [𝑛]\{𝑟} and 𝜋(𝑟) = 𝑠, 

the rest of the permutation 𝜋 is a derangement on 𝑛 − 1 elements. Hence, we can choose this 𝑛 − 1 elements 

in 𝐷(𝑛 − 1) ways. This explains 1-derangement on 𝑛 − 1 elements. Now, consider the case 𝜋(𝑠) = 𝑟. Then 

set Δ = {𝑟, 𝑠}. Since 𝜋(𝑠) = 𝑟 and 𝜋(𝑟) = 𝑠, so 𝜋(Δ) ∩ Δ = ∅. In other words 𝜋 is a Δ-derangement on 

𝑛 − 2 elements. This case is counted by 𝐷2(𝑛 − 2). By Theorem 2.1, 𝐷2(𝑛 − 2) = 𝐷(2, 𝑛) and so 

𝐷(1, 𝑛) = 𝐷(1, 𝑛 − 1) + 𝐷(2, 𝑛). This complete the proof.  

Theorem 2. 4. Suppose 𝑛 > 3 is integer. Then  

 𝐷(2, 𝑛) = 2 ∑𝑛−2
𝑖=2 (−1)𝑛−2−𝑖 (

𝑖
2

)
(𝑛−2)!

(𝑛−2−𝑖)!
. 

Let 𝐷2(𝑥) be defined as the exponential generating function of the sequence {𝐷(2, 𝑛)}𝑛≥4. In other words,  

 𝐷2(𝑥) = ∑∞
𝑛=4 𝐷(2, 𝑛)

𝑥𝑛

𝑛!
. 

Theorem 2. 5. Suppose 𝑛 is integer. Then  

 𝐷2(𝑥) =
2𝑥2

(1−𝑥)3 𝑒−𝑥. 

Bell numbers count the number of partitions of a set of 𝑛 distinguishable objects into non-empty subsets. 

The Bell numbers are denoted 𝑏𝑛, where 𝑛 is an integer. Thus 𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 5, 𝑏4 = 15 and by 

definition 𝑏0 = 1. The exponential generating function of the Bell numbers is  

 𝐵(𝑥) = ∑∞
𝑛=0 𝑏𝑛

𝑥𝑛

𝑛!
= 𝑒𝑒𝑥−1. (2) 

Stirling numbers of the second kind numbers, denoted by 𝑆(𝑛, 𝑘), count the number of partitions of a set of 

𝑛 distinguishable objects into 𝑘 non-empty subsets. In fact,  

 𝑏𝑛 = ∑𝑛
𝑘=1 𝑆(𝑛, 𝑘),    𝑛 ≥ 1. 

The Stirling transform is related to a couple of interesting series transformations. Namely, if  
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 𝑓(𝑡) = ∑∞
𝑛=0

𝑎𝑛

𝑛!
𝑡𝑛 

is an exponential generating function we have the series transformation formulas 

 

 𝑓(
𝜇

𝜆
(𝑒𝜆𝑡 − 1)) = ∑∞

𝑛=0
𝑡𝑛

𝑛!
{∑𝑛

𝑘=0 𝑆(𝑛, 𝑘)𝜆𝑛−𝑘𝜇𝑘𝑎𝑘} (3) 

 By [2], we have the following exponential version of Euler’s series transformation formula  

 𝑒𝜆𝑧 ∑∞
𝑛=0

𝑎𝑛

𝑛!
𝑧𝑛 = ∑∞

𝑛=0
𝑧𝑛

𝑛!
{∑𝑛

𝑘=0 (
𝑛
𝑘

) 𝜆𝑛−𝑘𝑎𝑘} (4) 

 where 𝜆 is a parameter.  

Theorem 2. 6. Suppose 𝑛 is an integer. Then  

 ∑𝑛
𝑘=0 𝑆(𝑛, 𝑘)(−1)𝑘𝐷(2, 𝑛) = 2 ∑𝑛

𝑘=0 (
𝑛
𝑘

) 𝑏𝑘(−1)𝑛−𝑘(1 − 2𝑛−𝑘+1 + 3𝑛−𝑘). 

  

Proof. We use property (3) with 𝜆 = 1, 𝜇 = −1, replacing 𝑥 in 𝐷2(𝑥) by 𝑒𝑡 − 1  

 𝐷2(−(𝑒𝑡 − 1)) = ∑∞
𝑛=0

𝑡𝑛

𝑛!
{∑𝑛

𝑘=0 𝑆(𝑛, 𝑘)(−1)𝑘𝐷(2, 𝑛)}. 

 By Theorem 2, property (2) and property (4) we have  

                                            𝐷2(−(𝑒𝑡 − 1)) = 2𝑒−3𝑡(𝑒𝑡 − 1)2𝑒𝑒𝑡−1. 

                                                         = 2(𝑒−𝑡 − 2𝑒−2𝑡 + 𝑒−3𝑡)𝑒𝑒𝑡−1 

                                                         = 2(𝑒−𝑡 − 2𝑒−2𝑡 + 𝑒−3𝑡) ∑∞
𝑛=0 𝑏𝑛

𝑡𝑛

𝑛!
 

                                                         = 2 ∑∞
𝑛=0

𝑡𝑛

𝑛!
{∑𝑛

𝑘=0 (
𝑛
𝑘

) 𝑏𝑘(−1)𝑛−𝑘(1 − 2𝑛−𝑘+1 + 3𝑛−𝑘)}. 

Comparing coefficients we find the equality of the theorem.  
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