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 ABSTRACT 

In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as 

a generalization of the Fibonacci numbers. In this paper, we try to identify a specific type of Fibonacci 

polynomials using combinatorial methods.  
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1 INTRODUCTION 

       In mathematics, the Fibonacci numbers, denoted by Fn , form a sequence, called the Fibonacci 

sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,  

F0, = 0,  F1, = 1,  Fn  = Fn−1  +  Fn−2   for n >  1. 

The beginning of the sequence is thus 

{0,1,1,2,3,5,8,13,21,34,55,89,144, … }. 

There is a strong relation between Fibonacci numbers and golden ratio, where  

1 + √5

2
= φ ≃ 1.618 …    ,

1 − √5

2
≃ −0.618 …  

 

Johannes Kepler proved that lim
n→∞

Fn+1

Fn
= φ .  

In finance, Fibonacci retracement is a method of technical analysis for determining support and  

resistance  levels.  Fibonacci retracement are a popular technical analysis tool that help traders to identify 

future price movement.  They are named after their use of the Fibonacci sequence. Fibonacci retracement 

is based on the idea that markets will retrace a predictable portion of a move, after which they will 

continue to move in the original direction.  

https://en.wikipedia.org/wiki/Fibonacci_polynomials
https://en.wikipedia.org/wiki/Fibonacci_polynomials
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Polynomial_sequence
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Integer_sequence
https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Finance
https://en.wikipedia.org/wiki/Technical_analysis
https://en.wikipedia.org/wiki/Support_and_resistance
https://en.wikipedia.org/wiki/Support_and_resistance
https://en.wikipedia.org/wiki/Fibonacci_sequence
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According to Fibonacci, any nature-driven market, such as the financial market, is prone to make 

retracements that are either 0.618 (61.8%) or 0.382 (38.2%) of the distance a stock, currency, or index has 

moved. There are four Fibonacci tools have been able to utilize the golden ratio. They are calculated by 

locating the high and low of the market chart, then drawing five horizontal lines to indicate support and 

resistance areas. The first line is drawn at the highest point of the chart (100%), then the second to the 

fifth are drawn at 61.8%, 50%, 38.2% and 0% (lowest point on the chart) in that order. When a significant 

price movement happens, new support and resistance levels are established near these horizontal lines. 

Fibonacci polynomials  are a great important in Mathematics  large classes of polynomial can be 

defined by Fibonacci-like recurrences relation and Fibonacci relation and Fibonacci numbers. Such 

polynomials were studied in 1883 by the Belgian Mathematician Eugene Charles Catalan and German 

Mathematician E. Jacobsthal.  The polynomials 𝐹𝑛(𝑥)  studied by Catalan are defined by  

 

𝐹𝑛(𝑥) = 𝑥𝐹𝑛−1(𝑥) + 𝐹𝑛−2(𝑥),  𝐹1(𝑥) = 1, 𝐹2(𝑥) = 𝑥. 

 

The Fibonacci polynomials studied by  Jacobsthal were defined by  

𝐽𝑛(𝑥) = 𝐽𝑛−1(𝑥) + 𝑥𝐽𝑛−2(𝑥),  𝐽1(𝑥) = 1, 𝐽2(𝑥) = 1. 

We list the first members as following: 

𝐹1(𝑥) = 1                                         𝐽1(𝑥) = 1                   

𝐹2(𝑥) = 𝑥 𝐽2(𝑥) = 1                        

𝐹3(𝑥) = 𝑥2 𝐽3(𝑥) = 𝑥 + 1               

𝐹4(𝑥) = 𝑥3 + 2𝑥                 𝐽4(𝑥) = 1 + 2𝑥 

𝐹5(𝑥) = 𝑥4 + 3𝑥2 + 1       𝐽5(𝑥) = 𝑥2 + 3𝑥 + 1 

𝐹6(𝑥) =   𝑥5 +  4𝑥3 + 3𝑥 𝐽6(𝑥) = 3𝑥2 + 4𝑥2 + 1 

 

For example, recently it is proved that  

𝐽𝑛(𝑥) = (√𝑥)𝑛−1𝐹𝑛 (
1

√𝑥
) 

Combinatorial Method. In this manner, let  𝐹𝑛(𝑎, 𝑏)   be the n-th  Fibonacci polynomial defined  

by  

 

𝐹𝑛(𝑎, 𝑏) = 𝑎𝐹𝑛−1(𝑎, 𝑏) + 𝑏𝐹𝑛−2(𝑎, 𝑏),  𝐹1(𝑎, 𝑏) = 1, 𝐹0(𝑎, 𝑏) = 0. 

https://www.livescience.com/37470-fibonacci-sequence.html
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Where 𝑎, 𝑏 are indeterminate. Let  𝐿𝑛(𝑎, 𝑏) be the Lucas polynomial defined   

 

𝐿𝑛(𝑎, 𝑏) = 𝑎𝐿𝑛−1(𝑎, 𝑏) + 𝑏𝐿𝑛−2(𝑎, 𝑏),  𝐹1(𝑎, 𝑏) = a, 𝐿0(𝑎, 𝑏) = 2. 

The Fibonacci polynomial and Lucas polynomial are also given by the well-known formulas 

 

𝐹𝑛(𝑎, 𝑏) = ∑ (
𝑛 − 1 − 𝑘

𝑘
) 𝑎𝑛−1−2𝑘

[
𝑛−1

2
]

𝑘=0

𝑏𝑘 

and 

 

𝐿𝑛(𝑎, 𝑏) = ∑
𝑛

𝑛 − 𝑘
(

𝑛 − 𝑘
𝑛

) 𝑎𝑛−2𝑘

[
𝑛
2

]

𝑘=0

𝑏𝑘 

when  𝑎 = 𝑏 = 1 , 𝐹𝑛(𝑎, 𝑏) and 𝐿𝑛(𝑎, 𝑏)  reduce to  Fibonacci and Lucas sequence.  

The Hessenberg matrix is defined as following  

 

𝐴𝑛 = [

2   1
1 2

 ⋯ 0
0

⋮ ⋱ ⋮
1 1 ⋯ 2

] 

It is proved that |𝐴𝑛| = 𝐹𝑛+2. For more details please see [1], [2], [3],  [4], [5], [6]. 

In this article, we define a special type of Fibonacci polynomials as following: 

 
𝐹𝑛+2(𝑥) = 𝐹𝑛+1(𝑥)(2 − 4𝑥) − 𝐹𝑛(𝑥),  𝐹0(𝑥) = 1, 𝐹1(𝑥) = 3 − 4𝑥. 

and we prove  

 

 

 

Main Theorem. With previous notation, we have : 

 

 

𝐹𝑛(𝑥) = ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 
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2 MAIN RESULT 

According to the introduction mentioned so far, we define a special type of Fibonacci 

polynomials as following: 

 
𝐹𝑛+2(𝑥) = 𝐹𝑛+1(𝑥)(2 − 4𝑥) − 𝐹𝑛(𝑥),  𝐹0(𝑥) = 1, 𝐹1(𝑥) = 3 − 4𝑥. 

 

 

 

Main Theorem. With previous notation, we have : 

 

 

𝐹𝑛(𝑥) = ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 

 

Proof.  Notice that 

 

(
2𝑛 + 3
2𝑘 + 1

) = (
2𝑛 + 1
2𝑘 + 1

) + 2 (
2𝑛 + 1

2𝑘
) + (

2𝑛 + 1
2𝑘 − 1

) 

 

So,  

 

∑(−1)𝑘 (
2𝑛 + 3
2𝑘 + 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘

= ∑ (−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛+1−𝑘

  
 𝑛 +1

𝑘=0

𝑥𝑘 + ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 − 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘

+ 2 ∑(−1)𝑘 (
2𝑛 + 1

2𝑘
) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘

= (1 − 2𝑥) ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 +      

2(1 − 𝑥) ∑(−1)𝑘 (
2𝑛 + 1

2𝑘
) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 

 

On the other hand,  

 

(
2𝑛 + 1

2𝑘
) = (

2𝑛 − 1
2𝑘

) + 2 (
2𝑛 − 1
2𝑘 − 1

) + (
2𝑛 − 1
2𝑘 − 2

) 

 

Thus, we conclude that  
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∑(−1)𝑘 (
2𝑛 + 1

2𝑘
) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘

= ∑(−1)𝑘 (
2𝑛 − 1

2𝑘
) (1 − 𝑥)𝑛+1−𝑘

  
 𝑛 

𝑘=0

𝑥𝑘 + ∑(−1)𝑘 (
2𝑛 − 1
2𝑘 − 2

) (1 − 𝑥)𝑛+1−𝑘

𝑛

𝑘=0

𝑥𝑘

+ 2 ∑(−1)𝑘 (
2𝑛 − 1
2𝑘 − 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛

𝑘=0

𝑥𝑘

= (1 − 2𝑥) ∑(−1)𝑘 (
2𝑛 − 1

2𝑘
) (1 − 𝑥)𝑛−1−𝑘

𝑛−1

𝑘=0

𝑥𝑘

− 2𝑥 ∑(−1)𝑘 (
2𝑛 − 1
2𝑘 + 1

) (1 − 𝑥)𝑛−1−𝑘

𝑛−1

𝑘=0

𝑥𝑘 

 

By some calculation as above, we have 

 

 

2 ∑(−1)𝑘 (
2𝑛 + 3
2𝑘 + 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘

= ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 + ∑(−1)𝑘 (
2𝑛 + 5
2𝑘 + 1

) (1 − 𝑥)𝑛+2−𝑘

𝑛+2

𝑘=0

𝑥𝑘

+ ∑(−1)𝑘 (
2𝑛 + 1

2𝑘
) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 − ∑(−1)𝑘 (
2𝑛 + 5

2𝑘
) (1 − 𝑥)𝑛+2−𝑘

𝑛+2

𝑘=0

𝑥𝑘 

 

 

We can obtain that  

 

 

∑(−1)𝑘 (
2𝑛 + 1

2𝑘
) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 − ∑(−1)𝑘 (
2𝑛 + 5

2𝑘
) (1 − 𝑥)𝑛+2−𝑘

𝑛+2

𝑘=0

𝑥𝑘

= 4𝑥 ∑(−1)𝑘 (
2𝑛 + 3
2𝑘 + 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘 

 

And thus we have    

 

(2 − 4𝑥) ∑(−1)𝑘 (
2𝑛 + 3
2𝑘 + 1

) (1 − 𝑥)𝑛+1−𝑘

𝑛+1

𝑘=0

𝑥𝑘 + ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘

= ∑(−1)𝑘 (
2𝑛 + 5
2𝑘 + 1

) (1 − 𝑥)𝑛+2−𝑘

𝑛+2

𝑘=0

𝑥𝑘 
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Now, let  

 

𝐹𝑛(𝑥) = ∑(−1)𝑘 (
2𝑛 + 1
2𝑘 + 1

) (1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑥𝑘 

 

We have  

 
𝐹𝑛+2(𝑥) = 𝐹𝑛+1(𝑥)(2 − 4𝑥) − 𝐹𝑛(𝑥),  𝐹0(𝑥) = 1, 𝐹1(𝑥) = 3 − 4𝑥. 

 

As desired. 

 

□ 
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