
 

201 

 
The second Chebyshev wavelets method for solving the nonlinear 
fractional Volterra-Fredholm integral-differential equations with a 

weakly singular kernel 
 

Esmail Bargamadi, Leila Torkzadeh, Kazem Nouri 

 Department of Applied Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,, 
Semnan University, Semnan, Iran  

  esmailbargamadi@semnan.ac.ir; knouri@semnan.ac.ir; torkzadeh@semnan.ac.ir 

 

 ABSTRACT 

In this paper, a numerical method for solving of nonlinear fractional Volterra-Fredholm integral-

differential equations with a weakly singular kernel is proposed. This method is based on the Second 

Chebyshev wavelets defined over [0, 1] combined with its operational matrices of fractional integration. 

The second Chebyshev wavelet operational matrix of fractional integration is derived and used to transform 

the nonlinear fractional Volterra-Fredholm integral-differential equations with a weakly singular kernel to 

a system of algebraic equations. Finally, some numerical example is shown to illustrate the accuracy and 

efficiency of the approach. 
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1 INTRODUCTION 

In this paper, we solve a nonlinear fractional Volterra-Fredholm integral-differential equations with 

a weakly singular kernel in the following form:  

 𝐷𝛼𝑦1(𝑡) = 𝜆1 ∫
𝑡

0

[𝑦(𝑠)]𝑝

(𝑡−𝑠)𝛽
𝑑𝑠 + 𝜆2 ∫

1

0
𝑘1(𝑡. 𝑠)[𝑦(𝑠)]𝑞𝑑𝑠 + 𝑓1(𝑡)     𝑦(0) = 0                 (1) 

 where 𝑦(𝑡) is unknown function, functions 𝑓(𝑡) and 𝑘(𝑡, 𝑠) are known and 𝜆1,𝜆2 are real constants 

and 𝑝,𝑞 ∈ ℕ. Here 0 < 𝛼,𝛽 < 1 and 𝐷𝛼 denotes the Caputo fractional derivative [2]. 

 

2 FRACTIONAL CALCULUS 

In this section, we review a short introduction of fractional calculus which will be used in this paper 

[1].  The Riemann-Liouville fractional integral operator is given by  

 𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫

𝑡

𝑎
(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏.        𝛼 > 0. 

Where  𝛼 ∈ [𝑚 − 1.𝑚].𝑚 ∈ ℕ .  The properties of this operator are as follows:  

 𝐼𝑎
𝛼𝐼𝑎

𝛽
𝑓 = 𝐼𝑎

𝛼+𝛽
𝑓,       𝐼𝑎

𝛼𝐼𝑎
𝛽
𝑓 = 𝐼𝑎

𝛽
𝐼𝑎
𝛼𝑓,        𝐼𝑎

𝛼𝑡𝑐 =
Γ(𝑐+1)

Γ(𝑐+𝛼+1)
𝑡𝑐+𝛼. 

 The Caputo fractional derivative operator is given by  

 𝐷𝛼𝑓(𝑡) =
1

Γ(𝑛−𝛼)
∫

𝑡

𝑎

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝛼−𝑛+1 𝑑𝜏        𝛼 ∈ [𝑛 − 1.𝑛], 

where ∈ ℕ .  The properties between operator the Riemann-Liouville fractional integral operator and 

the Caputo fractional derivative is given by the following expression:  
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 𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡),        𝐼𝛼𝐷𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑𝑚−1
𝑘=0

𝑓(𝑘)(0)

𝑘!
𝑡𝑘 .                                    (2) 

3 BLOCK PULSE FUNCTION 

 In this section, we define Block pulse function and their properties.  The set of Block pulse function 

on [0,1) is defined as  

 𝑏𝑖(𝑡) = {
1            

𝑖−1

𝑚
≤ 𝑡 <

𝑖

𝑚

0             otherwise.
 

 

Where 𝑖 = 0,1,… ,𝑚 − 1. Also, The vector Block pulse Function is obtained as follows:  

 𝐵𝑚(𝑡) = [𝑏1(𝑡),𝑏2(𝑡),… , 𝑏𝑚(𝑡)]𝑇 
and the important properties of the function is as follows :  

 

 𝑏𝑖(𝑡)𝑏𝑗(𝑡) = {
𝑏𝑖(𝑡)    𝑖 = 𝑗
0         𝑖 ≠ 𝑗,

                        ∫  𝑏𝑖(𝑡)𝑏𝑗(𝑡)𝑑𝑡 = {
 
1

𝑚
       𝑖 = 𝑗

0          𝑖 ≠ 𝑗.
  

1

0
  

 

The Block pulse Function operational matrix of fractional integration 𝐹𝛼 is obtation by:  

 

𝐼𝛼(𝐵𝑚(𝑡)) ≈ 𝐹𝛼𝐵𝑚(𝑡), 
 

with  

 𝐹𝛼 =
1

𝑚𝛼

1

Γ(𝛼+2)

[
 
 
 
 
 
1 𝜉1 𝜉2 𝜉3 ⋯ 𝜉𝑚−1

0 1 𝜉1 𝜉2 ⋯ 𝜉𝑚−2

0 0 1 𝜉1

⋮ ⋮ ⋱ ⋱
0
0

0
0

⋯
0

0
⋯

⋯
⋱
1
0

𝜉𝑚−3

⋮
𝜉1

1 ]
 
 
 
 
 

, 

 

Where 𝜉𝑘 = (𝑘 + 1)𝛼+1 − 2𝑘𝛼+1 + (𝑘 − 1)𝛼+1, 𝑘 = 1,2, … ,𝑚. 

A function 𝑓 ∈ 𝐿2([0,1]) can be approximate in terms of BPFs as the from  

 𝑓(𝑡) ≈ ∑𝑚′
𝑖=1 𝑓𝑖𝑏𝑚′(𝑡) = 𝐹𝑇𝐵𝑚′(𝑡). 

  Let 𝐹 = (𝑓𝑖𝑗) and 𝐺 = (𝑔𝑖𝑗) be two matrices of 𝑚 × 𝑚, so 𝐹 ⊗ 𝐺 is defined as (𝐹𝑖𝑗 × 𝐺𝑖𝑗)𝑚×𝑚.   

Suppose that 𝑓(𝑡), 𝑔(𝑡) ∈ 𝐿2[0,1), which can be expressed as 𝑓(𝑡) = 𝐹𝑇𝐵𝑚(𝑡) and 𝑔(𝑡) = 𝐺𝑇𝐵𝑚(𝑡) 

respectively, then 𝑓(𝑥), 𝑔(𝑥) is obtained as follows:  

 𝑓(𝑥)𝑔(𝑥) = 𝐹𝑇𝐵𝑚(𝑥)𝐵𝑚
𝑇 (𝑥)𝐺 = 𝐻𝐵𝑚(𝑥) 

where 𝐻 = 𝐹𝑇 ⊗ 𝐺𝑇 [2].   

4 THE SECOND CHEBYSHEV WAVELETS 

 In this section, we use the second kind Chebyshev polynomial to construct the second kind 

Chebyshev wavelet and give some properties of this wavelet.  The second Chebyshev wavelets are defined 

on the interval [0,1) as:  

𝜓𝑛𝑚(𝑡) = {2
𝑘
2√

2

𝜋
𝑈𝑚(2𝑘𝑡 − 2𝑛 + 1)       

𝑛 − 1

2𝑘−1
≤ 𝑡 <

𝑛

2𝑘−1

0                                                              otherwise,
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where 𝑛 = 1,2,… , 2𝑘−1,𝑚 = 0,1, … ,𝑀 − 1, 𝑘 and 𝑀 are positive integers and coefficient √
2

𝜋
 is used 

for orthonormalitly. The function 𝑈𝑚(𝑡) is the second Chebyshev polynomial of degree 𝑚. Note that, these 

polynomials are defined on the interval [−1,1] by the recurrence  

 𝑈0(𝑡) = 1        𝑈1(𝑡) = 2𝑡        𝑈𝑚+1(𝑡) = 2𝑡𝑈𝑚(𝑡) − 𝑈𝑚−1(𝑡) 

for 𝑚 = 1,2,… ,𝑀.  A function 𝑓 ∈ 𝐿2([0.1]) can be approximate in terms of the SCWs as  

 𝑓(𝑡) ≈ ∑2𝑘−1

𝑛=1 ∑𝑀−1
𝑚=0 𝑐𝑛𝑚𝜓𝑛𝑚(𝑡) = 𝐶𝑇Ψ(𝑡) = 𝑓(𝑡) 

where  

 

Ψ(𝑡) = [𝜓10(𝑡),𝜓11(𝑡),… ,𝜓1(𝑀−1)(𝑡),𝜓20(𝑡),… ,𝜓2(𝑀−1)(𝑡),… ,𝜓2𝑘−10(𝑡),… ,𝜓2𝑘−1(𝑀−1)(𝑡)]
𝑇

𝐶 = [𝑐10, 𝑐11,… , 𝑐1(𝑀−1),𝑐20, … , 𝑐2(𝑀−1),… , 𝑐2𝑘−10,… , 𝑐2𝑘−1(𝑀−1)]
𝑇 .

 

We define the SCWs matrixΦ𝑚′×𝑚′ as  

 Φ𝑚′×𝑚′ = [Ψ(
1

2𝑚′) ,Ψ(
3

2𝑚′) ,… ,Ψ(
2𝑚′−1

2𝑚′
)]. 

where 𝑚′ = 2𝑘−1𝑀. Also, there is a relation between BPFs and SCWs, namely  

 Ψ(𝑡) = Φ𝑚′×𝑚′𝐵𝑚′(𝑡).                                                                                                    (3) 

 Let  

 𝐼𝛼Ψ(𝑡) ≈ 𝑃𝛼
𝑚′×𝑚′Ψ(𝑡),        𝑃𝛼

𝑚′×𝑚′ = Φ𝐹𝛼Φ−1.                                                   (4) 

 where 𝐼𝛼 is the Riemann-Liouville fractional integral operator of order 𝛼. The matrix 𝑃𝑚′×𝑚′
𝛼  is 

called the Chebyshev wavelets operational matrix of fractional integration [1]. 

5 METHOD ANALYSIS 

 For solving this equations, first we approximate 𝐷𝛼𝑦(𝑡), 𝑓(𝑡) and 𝑘(𝑡, 𝑠) in terms of SCW as 

follows  

 𝐷𝛼𝑦(𝑡) ≃ 𝐶𝑇Ψ(𝑡) = 𝐶𝑇Φ𝐵𝑚′(𝑡),  
𝑓(𝑡) ≃ 𝐹𝑇Ψ(𝑡) = 𝐹𝑇Φ𝐵𝑚′(𝑡),                                                (5) 

𝑘(𝑡, 𝑠) ≃ Ψ𝑇(𝑡)𝐾Ψ(𝑠).                               

 From Eqs. (2), (3), (4) and (5), we obtain  

 𝑦(𝑡) = 𝐼𝛼𝐷𝛼𝑦(𝑡) ≃ 𝐶𝑇𝑃𝛼Ψ(𝑡) ,                                                                                       (6) 

 [𝑦(𝑡)]𝑝 = [𝐶𝑇𝑃𝛼Φ𝐵𝑚′(𝑡)]𝑝 = 𝐸𝑃[𝐵𝑚′(𝑡)]𝑝 = 𝐸𝑃𝐵𝑚′(𝑡).                                      (7) 

 Then there is  

 ∫
𝑡

0

[𝑦(𝑠)]𝑝

(𝑡−𝑠)𝛽
𝑑𝑠 = 𝐸𝑝 ∫

𝑡

0

𝐵𝑚′(𝑠)

(𝑡−𝑠)𝛽
𝑑𝑠 = Γ(1 − 𝛽)𝐸𝑝𝐼1−𝛽𝐵𝑚′(𝑡) = Γ(1 − 𝛽)𝐸𝑝𝐹1−𝛽𝐵𝑚′(𝑡). (8) 

 From Eq. (5) and ∫
1

0
𝐵𝑚′(𝑠)𝐵𝑚′(𝑠)

𝑇𝑑𝑠 =
1

𝑚′
, we have 

 

 ∫
1

0
𝑘(𝑡, 𝑠)[𝑦(𝑠)]𝑞𝑑𝑠 = ∫

1

0
Ψ𝑇(𝑡)𝐾Ψ(𝑠)𝐵𝑚(𝑠)𝑇𝐸𝑞𝑇𝑑𝑠 

  = Ψ𝑇(𝑡)𝐾Φ∫
1

0

𝐵𝑚′(𝑠)𝐵𝑚′(𝑠)
𝑇𝑑𝑠𝐸𝑞𝑇

 

                                    =
1

𝑚′ Ψ
𝑇(𝑡)𝐾Φ𝐸𝑞𝑇 =

1

𝑚′ 𝐸
𝑞Φ𝑇𝐾𝑇Φ𝐵𝑚′(𝑡).                            (9) 

 By substituting the Eqs. (5), (6), (8) and (9) into (1), we get  

 𝐶𝑇Φ𝐵𝑚′(𝑡) = 𝜆1Γ(1 − 𝛽)𝐸𝑝𝐹1−𝛽𝐵𝑚′(𝑡) + 𝜆2
1

𝑚′ 𝐸
𝑞Φ𝑇𝐾𝑇Φ𝐵𝑚′(𝑡) + 𝐹𝑇Φ𝐵𝑚′(𝑡).  (10) 

 Dispersing Eq. (28), we obtain  

 𝐶𝑇Φ = 𝜆1Γ(1 − 𝛽)𝐸𝑝𝐹1−𝛽 + 𝜆2
1

𝑚′ 𝐸
𝑞Φ𝑇𝐾𝑇Φ + 𝐹𝑇Φ.                                                (11) 

 By solving system (11), we can get 𝐶1. Then substituting them into (6), the unknown solutions can 

be obtained.  
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6 NUMERICAL EXAMPLE 

 To demonstrate the efficiency of this method, we consider the following a numerical example.  

Consider the fractional Volterra-Fredholm integral-differential equations with a weakly singular kernel  

𝐷
1
2𝑦(𝑡) = ∫

𝑡

0

[𝑦(𝑠)]2

(𝑡 − 𝑠)
1
2

𝑑𝑠 + ∫
1

0

𝑡𝑠[𝑦(𝑡)]2𝑑𝑠 + 𝑓(𝑡)     𝑦(0) = 0, 

 where 𝑓(𝑡) = −
8

3Γ(7)
𝑡1.5 − 0.812698𝑡4.5 −

𝑡

6
. The exact solutions of the problem are 𝑦(𝑡) = 𝑡2. 

The absolute errors for 𝑦(𝑡) is listed Table 1 shows the absolute errors for different values of t.    

 

                         Table  1: Absolute error for 𝑀 = 2 and 𝑘 = 4,5 of 𝑦(𝑡)  

  

  SCW LW  

t  𝑀 = 2.𝑘 = 4   𝑀 = 2.𝑘 = 5   𝑀 = 2. 𝑘 = 4   𝑀 = 2.𝑘 = 5 

0  0 0 0 0 

0.125  9.5523𝑒 − 04 7.1123𝑒 − 04 1.5523𝑒 − 03 1.1482𝑒 − 03 

0.250  3.6903𝑒 − 03 2.2886𝑒 − 03 5.5745𝑒 − 03 3.6323𝑒 − 03 

0.375  7.4084𝑒 − 03 4.4354𝑒 − 03 1.1688𝑒 − 02 7.3545𝑒 − 03 

0.500  1.2315𝑒 − 02 7.2896𝑒 − 03 2.1126𝑒 − 02 1.3004𝑒 − 02 

0.625  1.9073𝑒 − 02 1.1266𝑒 − 02 3.6277𝑒 − 02 2.1999𝑒 − 02 

0.750  2.9004𝑒 − 02 1.7142𝑒 − 02 6.1322𝑒 − 02 3.6856𝑒 − 02 

0.875  4.4889𝑒 − 02 2.6584𝑒 − 02 1.0381𝑒 − 01 6.2416𝑒 − 02 
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