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ABSTRACT

In this paper, a numerical method for solving of nonlinear fractional Volterra-Fredholm integral-
differential equations with a weakly singular kernel is proposed. This method is based on the Second
Chebyshev wavelets defined over [0, 1] combined with its operational matrices of fractional integration.
The second Chebyshev wavelet operational matrix of fractional integration is derived and used to transform
the nonlinear fractional Volterra-Fredholm integral-differential equations with a weakly singular kernel to
a system of algebraic equations. Finally, some numerical example is shown to illustrate the accuracy and
efficiency of the approach.

KEYWORDS: fractional Volterra-Fredholm integral-differential equation, weakly singular kernel,
second Chebyshev wavelet, operational matrix.

1 INTRODUCTION

In this paper, we solve a nonlinear fractional Volterra-Fredholm integral-differential equations with
a weakly singular kernel in the following form:
t p 1
DY (0) = A Jy g s + Az fy ka (£ ()]s + i) y(0) =0 M
where y(t) is unknown function, functions f(t) and k(t, s) are known and 44, 4, are real constants
and p,q € N. Here 0 < a, 8 < 1 and D* denotes the Caputo fractional derivative [2].

2 FRACTIONAL CALCULUS

In this section, we review a short introduction of fractional calculus which will be used in this paper
[1]. The Riemann-Liouville fractional integral operator is given by
19f(t) = ﬁf; (t -0 f()dr. a>0.
Where a € [m — 1.m].m € N . The properties of this operator are as follows:
+ I'(c+1)
GIGf =10 f IEIGf = 1418, I8t = st
The Caputo fractional derivative operator is given by
D) =—— [FLPD 4 gen—1.n]
M'(n-a)’a (t-t)a—n+1 B
where € N . The properties between operator the Riemann-Liouville fractional integral operator and
the Caputo fractional derivative is given by the following expression:
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DUSF(R) = F(),  I9DF(D) = F(1) — S Lok, @

BLOCK PULSE FUNCTION
In this section, we define Block pulse function and their properties. The set of Block pulse function
n [0,1) is defined as

i-1 i
bi(t):{l o St<g
0 otherwise.

Where i = 0,1, ..., m — 1. Also, The vector Block pulse Function is obtained as follows:
Bm(t) = [bl (t); bZ (t)r ey bm(t)]T

and the important properties of the function is as follows :

i=j

bi(®) i=j L obOds = |
bi()b; () = { : Jo bl(t)b,(t)dt—{0 _

i #]j,
The Block pulse Function operational matrix of fractional integration F is obtation by:

19(Bn(8)) = F*Bnp (1),

with
[1 $1 & & o fm—l—l
[0 1 & & - &noal
pe=l_1 10 0 1 b Em-3|
me T(a+2) : N
0050 5 &

Where &, = (k + D**t — 2k**1 + (k— D)%%, k=1,2,...,m
A function f € LZ([O 1]) can be approximate in terms of BPFs as the from
f(t) ~ Li= ml(t) - FTBml(t)

Let F = (f;j) and G = (gi;) be two matrices of m x m, so F & G is defined as (F;; X Gij)mxm-
Suppose that f(t), g(t) € L,[0,1), which can be expressed as f(t) = FTB,,(t) and g(t) = GTB,(t)
respectively, then f(x), g(x) is obtained as follows:

f)g(x) = F" By (x)Bp (x)G = HBp (x)
where H = FT ® GT [2].

4  THE SECOND CHEBYSHEV WAVELETS

In this section, we use the second kind Chebyshev polynomial to construct the second kind
Chebyshev wavelet and give some properties of this wavelet. The second Chebyshev wavelets are defined

on the interval [0,1) as:

k|2 X n—1 n
Yo (D) = 22 EUm(Z t—2n+1) Fﬁt<F
0 otherwise,
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wheren = 1,2,...,251, m = 0,1, ..., M — 1, k and M are positive integers and coefficient\/% is used

for orthonormalitly. The function U,, (t) is the second Chebyshev polynomial of degree m. Note that, these
polynomials are defined on the interval [—1,1] by the recurrence
Up(t) =1 Uy (t) =2t Um+1(8) = 2tUp (t) = Up—1(0)
form = 1,2,..., M. A function f € L?([0.1]) can be approximate in terms of the SCWs as
k— _ ~
(&) = T3t THZh Cam¥Pam () = CTR(0) = f(£)

where

V() = [Y10(0), Y11(O);s ooy Y1u—1) (), W20 (E), oo, Yo m—1) (), vy Y1 (E), -, Yok-1(y-1) 1"

C = [CIO’ C11) ey Cl(M—l),CZO, ey CZ(M—I)I ey Czk—lo, ey Czk—l(M_l)]T.
We define the SCWs matrix®,,,, s as

B = (¥ (57), ¥ () s o P o],

2m’ 2ms

where m’ = 2X¥=1M. Also, there is a relation between BPFs and SCWs, namely

W (t) = Ppyyserns B (B). (3)
Let

[P9(t) = PY ' P (1), P i = OFeP1, (@)

where 1% is the Riemann-Liouville fractional integral operator of order . The matrix B%, s, IS
called the Chebyshev wavelets operational matrix of fractional integration [1].

5 METHOD ANALYSIS

For solving this equations, first we approximate D%y(t), f(t) and k(t,s) in terms of SCW as
follows
D%*y(t) =~ CTY(t) = CT®B,,(¢),
f@&) = FTW(t) = FT OB, (1), (5)
k(t,s) = YT (t)KWP(s).
From Egs. (2), (3), (4) and (5), we obtain
y(t) =19D*y(¢) = CTP*¥(t), (6)
[y(®)]P = [CTPE®B(D)]P = EP[Bpy ()]P = EP By (0). ()
Then there is

t P t By _ _
fo YW s = gP [y 22O ds = 11 = BYEPI BB,y (1) = T(L = HEPFI B, (6). (8)

From Eqg. (5) and fol B (8)By(s)Tds = % we have

fy k(t, )y()]9ds = [ WT(OKP(5)By(s)TE ds
1
= 9T (KD f By (8) By (s)TdsET"
0

= %‘PT(t)KCDEqT = %Eq(DTKTCDer(t). 9)
By substituting the Egs. (5), (6), (8) and (9) into (1), we get
CT®B,,(t) = 1,T(1 — B)EPF*=BB,1(t) + A, %E‘ZCDTKTCDBmI (t) + FT®B,,(t). (10)
Dispersing Eq. (28), we obtain
CT® = L,T(1 - PYEPFF + A — E1OTKT® + FT, (11)
By solving system (11), we can get C,. Then substituting them into (6), the unknown solutions can
be obtained.
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6 NUMERICAL EXAMPLE

To demonstrate the efficiency of this method, we consider the following a numerical example.
Consider the fractional Volterra-Fredholm integral-differential equations with a weakly singular kernel

ds + fol ts[y(t))?ds + f(t) y(0) =0,

f Iy

pry = [ 22

where f(t) = g

0 (t—s5)2

t1° —0.812698t*> — % The exact solutions of the problem are y(t) = t2.

The absolute errors for y(t) is listed Table 1 shows the absolute errors for different values of t.

Table 1: Absolute error for M = 2 and k = 4,5 of y(t)

SCW LW
t M=2k=4 M=2k=5 M=2k=4 ([M=2k=5

0 0 0 0 0

0.125 9.5523e — 04 | 7.1123e — 04 | 1.5523e — 03 | 1.1482e¢ — 03
0.250 3.6903e — 03 | 2.2886e — 03 | 5.5745e — 03 | 3.6323e — 03
0.375 7.4084e — 03 | 4.4354e — 03 | 1.1688e — 02 | 7.3545e — 03
0.500 1.2315e — 02 | 7.2896e — 03 | 2.1126e — 02 | 1.3004e — 02
0.625 1.9073e — 02 | 1.1266e — 02 | 3.6277e — 02 | 2.1999e — 02
0.750 2.9004e — 02 | 1.7142e — 02 | 6.1322e — 02 | 3.6856¢e — 02
0.875 4.4889e — 02 | 2.6584e — 02 | 1.0381e — 01 | 6.2416e — 02
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