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       Abstract 

       A graph G is said to be edge-distance-balanced if for any edge uv of G, the 

number of edges closer to u than to v is equal to the number of edges closer to v than 

to u. Let GP(n,k) be a generalized Petersen graph. It is proven that for any integers n ≥ 

2 , the generalized Petersen graph GP(6n + 8,3) is not edge-distance-balanced. 
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1    Introduction 

Let G be a simple undirected graph and V (G) ((E(G))) be it’s vertex (edge) 

set. 

The distance d(u,v) between vertices u and v of G is the length of a shortest 

path between u and v in G. 

 For any edge uv in E(G), let Wuv denote the set of all vertices of G closer to 

u than to v, that is 

Wuv = {x ∈ V (G) | d(u,x) < d(v,x)}. 

Similarly, let uWv be the set of all vertices of G that are at the same distance to u 

and v, that is uWv = {x ∈ V (G) | d(u,x) = d(v,x)}. 

A graph G is called distance-balanced (DB for short) if |Wuv| = |Wvu|. 

holds for any edge uv in E(G).  

Also graph G is called edge-distance-balanced [23] (EDB for short) if 

, where 

is closer to the vertex u than the vertex v}. 

Similarly, we can define . 

Also, consider the notion the distance of e to both vertices a and 

b is the same }. 

For a vertex x of a connected graph G and k ≥ 0, let Mk(x) = {e ∈ E(G) | d(x,e) = 

k}, 

 Mk[x] = {e ∈ E(G) | d(x,e) ≤ k}. 

For k = 1, we shorten these to M(x) and M[x]. Here, denoted by d(x,e) we mean 

the length of the shortest path between the vertex x and the edge e, i.e., the number of 

edges lying between the vertex x and the edge e in the shortest path. 
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 The following result gives a different view to the definition of EDB graphs for 

regular graphs and was proven in [6]. 

Corollary 1 ( [6], Corollary 2.3). Let G be a regular graph of diameter d. 

 Then G is EDB if and only if , 

holds for every edge e = ab ∈ E(G). 

The Petersen graph is an important graph in graph theory and has attracted much 

research throughout the years. Some recent research include ( [24], [25]).  

Kutnar et al. [17] studied the strongly distance-balanced property of the 

generalized petersen graphs and gave a result that:  

For any integer k ≥ 2 and n ≥ k2 + 4k + 1, the generalized Petersen graph GP(n,k) 

is not strongly distance-balanced (strongly distance-balanced graph was introduced by 

Kutnar et al. in [18]). 

 Also Yang et al. [26] proved that: For any integer k ≥ 2 and n > 6k2, the 

generalized Petersen graph GP(n,k) is not distance-balanced. 

 In this note, we prove the following theorem. 

Theorem 1. For any integer n ≥ 2 , GP(6n + 8,3) is not edge-distance-balanced. 

 

2       Main results 

         Let n ≥ 3 be a positive integer, and let k ∈ {1,...,n-1}\{n/2}. 

 The generalized Petersen graph GP(n,k) is defined to have the following vertex 

set and edge set: V(GP(n,k))= {𝑢𝑖|𝑖𝜖𝑍𝑛} ∪ {𝑣𝑖|𝑖𝜖𝑍𝑛}, 

E(GP(n,k))= {𝑢𝑖𝑢𝑖+1|𝑖𝜖𝑍𝑛} ∪ {𝑣𝑖𝑣𝑖+𝑘|𝑖𝜖𝑍𝑛} ∪ {𝑢𝑖𝑣𝑖|𝑖𝜖𝑍𝑛}. 
We call the cycle induced by the vertices {u0,u1,··· ,un−1} the outer cycle of 

GP(n,k), and the cycles induced by the vertices {v0,v1,··· ,vn−1} the inner cycles of 

GP(n,k). 

The edge uivi (0 ≤ i ≤ n − 1) is called a spoke of GP(n,k). 

 Note that GP(n,k) is cubic, and that it is bipartite precisely when n is even and k 

is odd. 

 It is easy to see that GP(n,k) ~ GP(n,n − k). 

In the following, we investigate the sets M1(u0)\M1[v0] and M1(v0)\M1[u0] of the 

graph 

GP(6n + 8,3). 

Lemma 1. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)). 

Then the following statements hold: 

(i) M1(u0)\M1[v0]  = { u1u2, u1v1, u-1u-2, u-1v-1}; 

(ii) M1(v0)\M1[u0] = { u3v3, v3v6, u-3v-3, v-3v-6}. 

Proof. By a careful inspection of the edges in the neighborhood of u0 and v0, we 

see that every edge at distance 1 from u0 belongs to { u1u2 u1v1, u-1u-2, u-1v-1, v0v3, v0v-

3}. 

It is clear that the edges v0v3,v0v−3 are in the shortest paths from u0 such that pass 

through the edge u0v0 first and therefore are not in M1(u0)\M1[v0] and so (i) holds.  

On the other hand the edges at distance 1 from v0 are in { u3v3, v3v6, u-3v-3, v-3v-6, 

u0u1, u0u−1 }. 

Notice that the edges u0u1,u0u−1 are in the shortest paths from v0 such that pass 

through the edge u0v0 first and therefore are not in M1(v0)\M1[u0].  
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This completes the proof. 

 
In the next lemma we determine the sets M2(u0)\M2[v0] and M2(v0)\M2[u0] of the 

graph 

GP(6n + 8,3). 

Lemma 2. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)). 

Then the following statements hold: 

(i) M2(u0)\M2[v0] = { v1v4, u2v2, v1v-2, v-1v-4, u-2v-2, v-1v2}; 

(ii) M2(v0)\M2[u0]  = { u6v6, v6v9, u3u4, u-6v-6, v-6v-9, u-3u-4}. 

Proof. It can be seen that every edge at distance 2 from u0 belongs to 

{ v1v4, u2v2, v1v-2, v-1v-4, u-2v-2, v-1v2,u2u3, u3v3 , u-2u-3, v3v6, u-3v-3, v-3v-6}.  

     (1) 

Two edges of them u2u3,u−2u−3 are at distance 2 from v0 and hence don’t belong 

to M2(u0)\M2[v0]. Also the edges u3v3,v3v6,u−3v−3,v−3v−6 are in the shortest paths from u0 

such that pass through the edge u0v0 first and therefore are not in M2(u0)\M2[v0] and so 

(i) holds. 

On the other hand the edges at distance 2 from v0 are in 

{ u6v6, v6v9, u3u4, u-6v-6, v-6v-9, u-3u-4, u2u3, u1u2 u1v1, u-1u-2, u-1v-1, u-2u-3 }.

     (2) 

Notice that, the edges u2u3,u−2u−3 are at distance 2 from u0 and hence don’t belong 

to M2(v0)\M2[u0].  

Also the edges u1v1,u1u2,u−1v−1,u−1u−2 are in the shortest paths from v0 such that 

pass through the edge u0v0 first and therefore are not in M2(v0)\M2[u0] and the proof is 

completed.  

In the following, we specify the sets M3(u0)\M3[v0] and M3(v0)\M3[u0] of the graph 

GP(6n + 8,3). 

Lemma 3. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)) 

Then the following statements hold: 

(i) M3(u0)\M3[v0] = { v4v7, v2v5, v-4v-7, v-2v-5}; 

(ii) M3(v0)\M3[u0] = { u9v9,v9v12, u6u7, u5u6, u4u5, u-9v-9,v-9v-12, u-6u-7, u-5u-6, u-4u-5}. 

Proof. Every edge at distance 3 from u0 belongs to 

{ v4v7, v2v5, v-4v-7, v-2v-5, u6v6, v6v9, u3u4, u-6v-6, v-6v-9, u-3u-4, u-4v-4}.                           

(3) 

Two edges of them u4v4,u−4v−4 are at distance 3 from v0 and hence don’t belong 

to M3(u0)\M3[v0]. 

 Also the edges u6v6,v6v9,u3u4,u−6v−6,v−6v−9,u−3u−4 are in the shortest paths from u0 

such that pass through the edge u0v0 first and therefore are not in M3(u0)\M3[v0] and so 

(i) holds. 

We now prove part(ii).  

The edges at distance 3 from v0 are in 

{ u9v9,v9v12, u6u7, u5u6, u4u5, u-9v-9,v-9v-12, u-6u-7, u-5u-6, u-4u-5, v1v-

2,v1v4,u2v2,u4v4, v-1v2,v-1v-4, 

u-2v-2,u-4v-4}.                                                                                                                        

(4) 
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Notice that, the edges u4v4,u−4v−4 are at distance 3 from u0 and hence don’t belong 

to M3(v0)\M3[u0]. Also the edges v1v−2,v1v4,u2v2,v−1v2,v−1v−4,u−2v−2 are in the shortest 

paths from v0 such that pass through the edge u0v0 first and therefore are not in 

M3(v0)\M3[u0] and this completes the proof. 

 
Now we investigate the sets Mk(u0)\Mk[v0] and Mk(v0)\Mk[u0] of the graph GP(6n 

+ 8,3) of diameter d where 4 ≤ k ≤ d − 3. 

Lemma 4. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)). 

Then for any 

 4≤ k ≤ d − 3, the following statements hold: 

(i)      Mk(u0)\Mk[v0] = {v3k-5v3k-2,v3k-7v3k-4,v-(3k-5)v-(3k-2),v-(3k-7)v-(3k-4)} 

(ii) Mk(v0)\Mk[u0] = {v3kv3k+3,u3kv3k,u3k-3u3k-2,u3k-4u3k-3,u3k-5u3k-4, v-3kv-(3k+3), u-3kv-3k, u-(3k-

3)u-(3k-2), 

u-(3k-4)u3k-3),u-(3k-5)u-(3k-4)}. 

Where d is diameter of GP(6n + 8,3). 

Proof. There are 18 edges at distance k from u0 such that belong to 

{ v3k-5v3k-2,v3k-7v3k-4,v-(3k-5)v-(3k-2),v-(3k-7)v-(3k-4), u3k-3v3k-3, v3k-3v3k, u3k-6u3k-5, u3k-7u3k-

6, u3k-8u3k-7, 

 u3k-7v3k-7, u3k-5v3k-5, u-(3k-3)v-(3k-3), v-(3k-3)v-3k, u-(3k-6)u-(3k-5), u-(3k-7)u-(3k-6), u-(3k-8)u-(3k-

7), u-(3k-7)v-(3k-7), u-(3k-5)v-(3k-5) }.                                                                                                                     

(5) 

Four edges of them u3k-7v3k-7, u3k-5v3k-5, u-(3k-7)v-(3k-7), u-(3k-5)v-(3k-5) are at distance k 

from v0 and hence don’t belong to Mk(u0)\Mk[v0].  

Also the edges u3k-3v3k-3, v3k-3v3k, u3k-6u3k-5, u3k-7u3k-6, u3k-8u3k-7, u-(3k-3)v-(3k-3), v-(3k-

3)v-3k, 

 u-(3k-6)u-(3k-5), u-(3k-7)u-(3k-6),u-(3k-8)u-(3k-7) .                                                                                                                                 

(6)                                                                                                                                                                  

are in the shortest paths from u0 such that pass through the edge u0v0 first and 

therefore are not in Mk(u0)\Mk[v0] and so (i) holds. 

It can be easily checked that the edges at distance k from v0 are in 

v3kv3k+3,u3kv3k,u3k-3u3k-2,u3k-4u3k-3,u3k-5u3k-4, v-3kv-(3k+3), u-3kv-3k, u-(3k-3)u-(3k-2), v3k-

8v3k-5, v3k-10v3k-7 

u-(3k-4)u-(3k-3),u-(3k-5)u-(3k-4). u3k-7v3k-7, u3k-5v3k-5, v-(3k-8)v-(3k-5), v-(3k-10)v-(3k-7) u-(3k-7)v-

(3k-7), 

 u-(3k-5)v-(3k-5)                                                                                                                                                                                         (7)                                                                                                                                           

The edges u3k-7v3k-7, u3k-5v3k-5, u-(3k-7)v-(3k-7), u-(3k-5)v-(3k-5) are at distance k from u0 

and hence don’t belong to Mk(v0)\Mk[u0]. 

 Also the edges v3k-8v3k-5, v3k-10v3k-7 ,v-(3k-8)v-(3k-5), v-(3k-10)v-(3k-7) 

are in the shortest paths from v0 such that pass through the edge u0v0 first and 

therefore are not in Mk(v0)\Mk[u0] and the proof is completed. 

 
In the next lemma we investigate the sets Md−2(u0)\Md−2[v0] and Md−2(v0)\Md−2[u0] 

of the graph GP(6n + 8,3) of diameter d. 

Lemma 5. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)). 

Then the following statements hold: 
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(i) Md−2(u0)\Md−2[v0] = { v3d-11v3d-8, v-(3d-11)v-(3d-8) }; 

(ii) Md−2(v0)\Md−2[u0]={u3d-11u3d-10,u3d-10u3d-9,u3d-9u3d-8u3d-10v3d-10, u-(3d-11)u-(3d-10),u-(3d-10)u-(3d-

9),u-(3d-9)u-(3d-8)u-(3d-10)v-(3d-10) }. 

Where d is diameter of GP(6n + 8,3). 

Proof. Every edge at distance d − 2 from u0 belongs to v3d-11v3d-8, v-(3d-11)v-(3d-8), 
u3d-9v3d-9 , 

 v3d-9v3d-6  , u3d-14u3d-13 , u3d-13u3d-12, u3d-12u3d-11 ,  u3d-11v3d-11 ,  u3d-13v3d-13 , v3d-13v3d-10, 

u-(3d-9)v-(3d-9) , 

 v-(3d-9)v-(3d-6 ), u-(3d-14)u-3(d-13) , u-(3d-13)u-(3d-12), u-(3d-12)u-(3d-11) ,  u-(3d-11)v-(3d-11) ,  u-(3d-

13)v-(3d-13) ,  

v-(3d-13)v-(3d-10).                                                                                                                   (8) 

Six edges of them                                                                                                      

u3d-11v3d-11, u3d-13v3d-13, v3d-13v3d-10, u-(3d-11)v-(3d-11), u-(3d-13)v-(3d-13), v-(3d-13)v-(3d- 10) .

       (9) 

are at distance d−2 from v0 and therefore don’t belong to Md−2(u0)\Md−2[v0].  

The remaining edges except two edges v3d-11v3d-8, v-(3d-11)v-(3d-8), are in the shortest 

paths from u0 such that pass through the edge u0v0 first and therefore are not in 

Md−2(u0)\Md−2[v0] and so (i) holds. 

u3d-11u3d-10,u3d-10u3d-9,u3d-9u3d-8,u3d-10v3d-10,u-(3d-11)u-(3d-10),u-(3d-10)u-(3d-9),u-(3d-9)u-(3d-

8), 

u-(3d-10)v-(3d-10),v3d-14v3d-11, v3d-16v3d-13, u3d-13v3d-13 ,u3d-11v3d-11 , v3d-13v3d-10 , v-(3d-14)v-

(3d-11),  

v-(3d-16)v-(3d-13), u-(3d-13)v-(3d-13) ,u-(3d-11)v-(3d-11) , v-(3d-13)v-(3d-10).                                          

(10)                                                                                                                                        

Six edges of them 

u3d-13v3d-13, u3d-11v3d-11, v3d-13v3d-10 , u-(3d-13)v-(3d-13), u-(3d-11)v-(3d-11), v-(3d-13)v-(3d-10)

      (11) 

are at distance d − 2 from u0 and hence don’t belong to Md−2(v0)\Md−2[u0].  

Also the edges v3d-14v3d-11 , v3d-16v3d-13 , v-(3d-14)v-(3d-11) , v-(3d-160v-(3d-13) , 

are in the shortest paths from v0 such that pass through the edge u0v0 first and 

therefore are not in Md−2(v0)\Md−2[u0] and the proof is completed. 

 
In the following we determine the sets Md−1(u0)\Md−1[v0] and Md−1(v0)\Md−1[u0] 

of the graph 

GP(6n + 8,3) of diameter d. 

Lemma 6. Let n ≥ 2 be an integer and let u0v0 be a spoke in E(GP(6n + 8,3)). 

Then the following statements hold: 

(i) Md−1(u0)\Md−1[v0]  = φ; 

(ii) Md−1(v0)\Md−1[u0]= φ. 

Where d is diameter of GP(6n + 8,3). 

Proof. Every edge at distance d − 1 from u0 belongs to 

u3d-11u3d-10,u3d-10u3d-9,u3d-9u3d-8,u3d-10v3d-10 ,u-(3d-11)u-(3d-10),u-(3d-10)u-(3d-9),u-(3d-9)u-(3d-

8),u-(3d-10)v-(3d-10 ), 

u3d-8v3d-8 .                                                                                                                                                                                                   (12)                                                                                                                                          
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The edge u3d−8v3d−8 is at distance d−1 from v0 and therefore is not in 

Md−1(u0)\Md−1[v0].  

Also by Lemma 5 part (ii), the remaining edges are at distance d − 2 from v0 and 

so (i) holds. 

Every edge at distance d − 1 from v0 belongs to{ u3d-8v3d-8, v3d-11v3d-8, v-(3d-11)v-(3d-

8) }. 

As above mentioned the edge u3d−8v3d−8 are at distance d − 1 from u0 and therefore 

doesn’t belong to Md−1(v0)\Md−1[u0]. 

 On the other hand, by Lemma 5 part (i), the remaining two edges are at distance 

d − 2 from u0 and don’t belong to Md−1(v0)\Md−1[u0]. This completes the proof . 

 
 

We have the following immediate corollary from Lemmas 1, 2, 3, 4, 5 and 6. 

 

Corollary 2. Let n ≥ 2 be an integer and let (u0,v0) be a spoke in E(GP(6n+8,3)). 

Then the following statements hold: 

(i) |M1(u0)\M1[v0]| = |M1(v0)\M1[u0]| = 4 ; 

(ii) |M2(u0)\M2[v0]| = |M2(v0)\M2[u0]| = 6 ; 

(iii) |M3(u0)\M3[v0]| = 4,|M3(v0)\M3[u0]| = 10 ; 

(iv) |Mk(u0)\Mk[v0]| = 4,|Mk(v0)\Mk[u0]| = 10 , for k ∈ {4,··· ,d − 3}; 

(v) | Md−2(u0)\Md−2[v0]| = 2,| Md−2(v0)\Md−2 [u0]| = 8 ; 

(vi) | Md−1(u0)\Md−1[v0]| = | Md−1(v0)\Md−1[u0]| = 0 . 

Where d is diameter of GP(6n + 8,3).  

We are now ready to prove our main result. 

Proof of Theorem 1. Let n ≥ 2 be an integer and let (𝑎, 𝑏) be a spoke in 

(GP(6n+8,3)).  

 Then we now show that GP(6n+8,3) of diameter d is not EDB. 

 Since GP(6n + 8,3) is cubic, by Corollary 1, evidently it is enough to prove that 

∑ |𝑀𝑖(𝑎)\𝑀𝑖[𝑏]| =
𝑑−1

𝑖=1
∑ |𝑀𝑖(𝑏)\𝑀𝑖[𝑎]|,

𝑑−1

𝑖=1
 

Holds for every edge 𝑒 = 𝑎𝑏 𝜖 𝐸(𝐺).By Corollary 2, the left hand side of 

equation (13) is equal to 4d−8 and the right hand side of that is equal to 10d − 32 and 

since d ≥ 6, the proof is now completed. 

 

3  Conclusions 

The Petersen graph is an important graph in graph theory and has attracted much 

research throughout the years.  

Some recent researchers studied the strongly distancebalanced property of the 

generalized petersen graphs GP(n,k).  

In this paper, we determined the edge-distance-balanced property of generalized 

Peterson graphs for some n, k.  

It is proven that for any integers  n ≥ 2, the Generalized Petersen graph GP(6n+8 

, 3) is not edge-distance-balanced. 
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