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Abstract. In this paper, we study the topology induced by a intuitionistic

generalized fuzzy metric and show some results follow directly from well–known

theorems in generalized fuzzy metric spaces.

1. Introduction

Intuitionistic fuzzy metric spaces were investigated by Park [1]. He introduced
and studied intuitionistic fuzzy metric spaces based both on the idea of intuition-
istic fuzzy sets due to Atanassov [2] and the concept of fuzzy metric spaces given
by George and Veeramani in [3]. The topology of intuitionistic fuzzy metric spaces
modified by Grigori et. al. [4] also see [5]. Sun and Yang [6] defined generalized
fuzzy metric spaces using the ideas of generalized metric spaces due to Mustafa and
Sims [7] and fuzzy sets; see [10, 11] for some applications. Recently, Mohiuddine and
Alotaibi [12] introduced and studied intuitionistic generalized fuzzy metric spaces.
In this note we prove that the topology τ(G,H) generated by an intuitionistic gener-
alized fuzzy metric space (X,G,H, ∗, �) coincides with the topology τG generated
by the generalized fuzzy metric space (X,G, ∗), and thus, the results obtained in
[12] are immediate consequences of the corresponding results for generalized fuzzy
metric spaces. Our paper is motivated from ideas in [5].

2. Preliminaries

A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-norm if it satisfies
the following conditions

(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
Two typical examples of continuous t-norm are a ∗ b = a.b and a ∗ b = min(a, b).
A binary operation � : [0, 1] × [0, 1] −→ [0, 1] is a continuous t-conorm if it

satisfies the following conditions:
(a) � is associative and commutative,
(b) � is continuous,
(c) a � 0 = a for all a ∈ [0, 1],
(d) a � b ≤ c � d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
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Two typical examples of continuous t-conorm are a � b = min(a + b, 1) and
a � b = max(a, b).

Mustafa and Sims [7] introduced and studied the concept of G-metric spaces.
Let X be a non-empty set. A function G : X × X × X −→ [0,+∞) is called a
G-metric if the following conditions are satisfied :

(i) G(x, y, z) = 0 if x = y = z(coincidence),
(ii) G(x, x, y) > 0 for all x, y ∈ X,where x 6= y,

(iii) G(x, x, z) ≤ G(x, y, z) for all x, y, z ∈ X,with z 6= y,
(iv) G(x, x, z) = G(p{x, y, z}),where p is a permutation of x, y, z(symmetry),
(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X(rectangle inequality).

A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.
Now, we give two examples of G-metrics.
Let (X, d) be a metric space. The function G1 : X3 −→ [0,+∞) defined by

G1(x, y, z) = max{d(x, y), d(y, z), d(x, z)}
for all x, y, z ∈ X is a G-metric.

Let X = R. The function G2 defined by

G2(x, y, z) =
1

3
(| x− y | + | y − z | + | x− z |)

for all x, y, z ∈ R is a G-metric.
In 2010, Sun and Yang [6] introduced the concept of generalized fuzzy metric

spaces with the help of generalized metric spaces due to Mustafa and Sims [7] and
fuzzy metric spaces due to George and Veeramani [3].

Definition 2.1. A 3-tuple (X,G, ∗) is said to be a G-fuzzy metric space (denoted
by GF-space) if X is an arbitrary nonempty set, ∗ is a continuous t-norm and G is
a fuzzy set on X3 × (0,+∞) satisfying the following conditions for each t, s > 0:

(GF-1) G(x, x, y, t) > 0 for all x, y ∈ X with x 6= y;

(GF-2) G(x, x, y, t) = G(x, y, z, t) for all x, y, z ∈ X with z 6= y;

(GF-3) G(x, y, z, t) = 1 if and only if x = y = z;

(GF-4) G(x, y, z, t) = G(p(x, y, z), t), where p is a permutation function;

(GF-5) G(x, a, a, t) ∗G(a, y, z, s) ≤ G(x, y, z, t+ s) (the triangle inequality);

(GF-6) G(x, y, z, ·) : (0,+∞) −→ (0, 1] is continuous (the function G is continu-
ous in the fourth place).

For example, if a ∗ b = a.b for a, b ∈ [0, 1] and

G(x, y, z, t) =
t

t+ G1(x, y, z)

for all x, y, z ∈ X and t > 0. Then G is a (standard) G-fuzzy metric and (X,G, ∗)
is a G-fuzzy metric space.

Example 2.2. Let X = R and a ∗ b = a.b for a, b ∈ [0, 1] and

M(x, y, t) =

{
x+t
y+t , if x ≤ y,
y+t
x+t , if y ≤ x,

for all x, y ∈ X and t > 0. Then M is a fuzzy metric and (X,M, ∗) is a fuzzy metric
space [8]. Now, by example 2.10 of [9]

G(x, y, z, t) = M(x, y, t) ∗M(y, z, t) ∗M(z, x, t)
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is a G-fuzzy metric which is not induced by any G-metrics.

Sun and Yang showed in [6] that every generalized fuzzy metric (G, ∗) on X
generates a first countable topology τG on X which has as a base the family of
open sets of the form {BG(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0} where BG(x, r, t) =
{y ∈ X : G(x, y, y, t) > 1− r} for all x ∈ X, r ∈ (0, 1) and t > 0.

3. intuitionistic generalized fuzzy metric space

Recently, Mohiuddine and Alotaibi [12] introduced intuitionistic generalized fuzzy
metric spaces using the concepts of continuous t-norm and t-conorm.

Definition 3.1. [12] The 5-tuple (X,G,H, ∗, �) is said to be an intuitionistic gen-
eralized fuzzy metric space (for short, IGFM-space) if X is an arbitrary nonempty
set, ∗ is a continuous t-norm, � is a continuous t-conorm, and G,H are fuzzy sets
on X3 × (0,+∞) satisfying the following conditions. For every x, y, z, a ∈ X and
s, t > 0,

(i) G(x, y, z, t) +H(x, y, z, t) ≤ 1,

(ii) G(x, x, y, t) > 0 for x 6= y,

(iii) G(x, x, y, t) = G(x, y, z, t) for y 6= z,

(iv) G(x, y, z, t) = 1 if and only if x = y = z,

(v) G(x, y, z, t) = G(p(x, y, z), t), where p is a permutation function,

(vi) G(x, a, a, t) ∗G(a, y, z, s) ≤ G(x, y, z, t+ s),

(vii) G(x, y, z, .) : (0,+∞)→ [0, 1] is continuous,

(viii) G is a non-decreasing function on R+

lim
t→+∞

G(x, y, z, t) = 1, lim
t→0

G(x, y, z, t) = 0, for allx, y, z ∈ X, t > 0,

(xi) H(x, x, y, t) < 1 for x 6= y,

(x) H(x, x, y, t) = H(x, y, z, t) for y 6= z,

(xi) H(x, y, z, t) = 0 if and only if x = y = z,

(xii) H(x, y, z, t) = H(p(x, y, z), t), where p is a permutation function,

(xiii) H(x, a, a, t) �H(a, y, z, s) ≥ H(x, y, z, t+ s),

(xiv) H(x, y, z, .) : (0,+∞)→ [0, 1] is continuous,

(xv) H is a non-increasing function on R+

lim
t→+∞

H(x, y, z, t) = 0, lim
t→0

H(x, y, z, t) = 1, for allx, y, z ∈ X, t > 0.

In this case, the pair (G,H) is called an intuitionistic generalized fuzzy metric on
X.

Note that, the conditions (i) and (ii) imply the condition (xi), therefore we can
remove it. Also the conditions (i) and part two of (viii) imply the part two of
condition (xv), therefore we can remove it too.

Example 3.2. [12] Let (X,G) be a G-metric space. For all x, y, z ∈ X and every
t > 0, consider G and H, to be fuzzy sets on X3 × (0,+∞) defined by

G(x, y, z, t) =
t

t+ G(x, y, z)
,

H(x, y, z, t) =
G(x, y, z)

t+ G(x, y, z)
,
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and denote a ∗ b = ab and a � b = min{a+ b, 1} for a, b ∈ [0, 1]. Then (X,G,H, ∗, �)
is a IGFM-space. Notice that the above example holds even with the t-norm a∗b =
min(a, b) and the t-conorm a� b = max(a, b). This kind of intuitionistic generalized
fuzzy metric is said to be, the standard intuitionistic generalized fuzzy metric.

Mohiuddine and Alotaibi proved in [12] that every intuitionistic generalized fuzzy
metric (G,H) on X generates a first countable topology τ(G,H) on X which has as a
base the family of open sets of the form {B(G,H)(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}
where B(G,H)(x, r, t) = {y ∈ X : G(x, y, y, t) > 1 − r, H(x, y, y, t) < r} for all
x ∈ X, r ∈ (0, 1) and t > 0.

Lemma 3.3. Let (X,G,H, ∗, �) be an IGFM-space. Then, for each x ∈ X, r ∈
(0, 1) and t > 0 we have B(G,H)(x, r, t) = BG(x, r, t).

Proof. It is clear that B(G,H)(x, r, t) ⊆ BG(x, r, t).
Now, suppose that y ∈ BG(x, r, t). Then G(x, y, y, t) > 1 − r, so, by condition

(i) of Definition 3.1, we have

1 ≥ G(x, y, y, t) +H(x, y, y, t) > 1− r +H(x, y, y, t).

Hence H(x, y, y, t) < r, and consequently y ∈ B(G,H)(x, r, t). The proof is finished.
�

From Lemma 3.3, we deduce the following.

Theorem 3.4. Let (X,G,H, ∗, �) be an IGFM-space. Then the topologies τ(G,H)

and τG coincide on X.

4. Coupled coincidence point theorems for contractions in
generalized fuzzy metric spaces and in intuitionistic generalized

fuzzy metric spaces

In Section 3 we showed that the topology induced by the generalized fuzzy met-
ric G and the intuitionistic generalized fuzzy metric (G,H) coincide on X. Now,
we show that, the results obtained in [12] are immediate consequences of the cor-
responding results for generalized fuzzy metric spaces due to Hu and Luo [11]. For
deep study and more results we refer to [13]–[35]

Remark 4.1. Example 2.3 in [12] is the same as Example 2.1 of [11].

Proof. Since in [12, Example 2.3], the authors supposed

H(x, y, z, t) = 1−G(x, y, z, t),

for every x, y, z ∈ X and t > 0. Then, we have

H(x, y, z, t) =
|x− y|+ |y − z|+ |z − x|

t+ |x− y|+ |y − z|+ |z − x|
.

By [11, Example 2.1] we have G(F (x, y), F (x, y), F (u, v), φ(t)) = 1 which implies
that H(F (x, y), F (x, y), F (u, v), φ(t)) = 0 and vice versa. Thus, it is verified that
the functions F , g, φ satisfy all the conditions of [11, Theorem 3.1]. Here (0, 0) is
the coupled coincidence point of F and g in X, which is also their common coupled
fixed point which imply that the same result for [12, Example 2.3]. �

Remark 4.2. Definition 2.5, Remark 2.6, Definition 2.7 and Theorem 2.10 from
[12] are the same as Remark 2.3 and Definition 2.7 of [11].
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Proof. By the same method used in Remark 4.1 the proof is straightforward. Note
that, in Theorem 2.8 of [12] if G(xj , xj , x, t) tends to 1 then by Definition 3.1 (i),
H(xj , xj , x, t) tends to 0. �

Remark 4.3. Definition 2.9 of [12] is the same as Definition 2.7 (2) of [11].

Proof. Let {xn} be a Cauchy sequence at (X,G, ∗). Then by Definition 2.7 (2) of
[11] we have, for any ε > 0 and for each t > 0, there exists n0 ∈ N such that

G(xn, xn, xm, t) > 1− ε, (4.1)

for m,n ≥ n0. Now, by Definition 3.1 (i) and (4.1) we have

H(xn, xn, xm, t) < ε. (4.2)

Then, {xn} is a Cauchy sequence at (X,G,H, ∗,♦). The converse is easy. �

Remark 4.4. Definition 3.1 of [12] has additional conditions.

Proof. If
lim

n→+∞
G(gF (xn, yn), gF (xn, yn), F (g(xn), g(yn)), t) = 1

then by Definition 3.1 (i) we have

lim
n→+∞

H(gF (xn, yn), gF (xn, yn), F (g(xn), g(yn)), t) = 0. (4.3)

Also, if

lim
n→+∞

G(gF (yn, xn), gF (yn, xyn), F (g(yn), g(xn)), t) = 1

then by Definition 3.1 (i) we have

lim
n→+∞

H(gF (yn, xn), gF (yn, xn), F (g(yn), g(xn)), t) = 0. (4.4)

Thus conditions (4.3) and (4.4) are additional and if we remove them we get the
original Definition 3.5 of [11]. �

Remark 4.5. From Remark 4.3 and Theorem 3.4, Lemma 3.3 of [12] is the same
as Lemma 2.5 of [11].

Proof. By the same method used in Remark 4.1 the proof is straightforward. �

Now we state the main theorem of [12].

Theorem 4.6. Let (X,≥) be a partially ordered set and (X,G,H, ∗,♦) be a com-
plete IGFM-space. Suppose that F : X × X → X and g : X → X are mappings
such that F has the mixed g–monotone property, and also assume that there exists
φ ∈ Φ such that

G(F (x, y), F (x, y), F (u, v), φ(t)) (4.5)

≥ G(gx, gx, gu, t) ∗G(gx, gx, F (x, y), t) ∗G(gu, gu, F (u, v), t)

and

H(F (x, y), F (x, y), F (u, v), φ(t)) (4.6)

≤ H(gx, gx, gu, t)♦H(gx, gx, F (x, y), t)♦H(gu, gu, F (u, v), t)

for all x, y, u, v ∈ X and t > 0 with g(x) ≤ g(u) and g(y) ≥ g(v), or g(x) ≥ g(u)
and g(y) ≤ g(v). Suppose that F (X×X) ⊂ g(X), g is continuous and F and g are
compatible with respect to (G,H), and also suppose that either
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(a) F is continuous, or

(b) X has the following property:

(i): if a non-decreasing sequence xn → x with respect to (G,H) then xn ≤ x
for all n,

(ii): if a non-decreasing sequence yn → x with respect to (G,H) then yn ≥ y
for all n.

If there exists x0, y0 ∈ X such that g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0), then
there exists x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x); that is, F and g
have a coupled coincidence point.

Proof. Let x0, y0 ∈ X such that g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0). Then by
Theorem 3.1 of [11] there are sequences {g(xn)} and {g(yn)} which are Cauchy with
respect to the topology induced by G, so from Remark 4.3 and Theorem 3.4 they
are Cauchy with respect to the topology induced by (G,H). Since X is complete
then there exists x, y ∈ X such that

lim
n→+∞

F (xn, yn) = lim
n→∞

g(xn) = x,

lim
n→+∞

F (yn, xn) = lim
n→∞

g(yn) = y,

and g(x) = F (x, y) and g(x) = F (x, y). Hence F and g have a coupled coincidence
point in X. �

Remark 4.7. Example 3.6 of [12] is the same as Example 3.2 of [11], since

H(x, y, z, t) = 1−G(x, y, z, t).

Proof. By the same method used in Remark 4.1 the proof is straightforward. �

5. Conclusion

In this paper, we showed although the topology induced by fuzzy G-metrics is
different of topology induced by G-metrics, but the topology induced by a intuition-
istic generalized fuzzy metric which is different by topology induced by G-metric
and showed some results followed directly from well–known theorems in generalized
fuzzy metric spaces. There are some new problems which are very interesting to
prove in fuzzy G-metric spaces, therefore we recommend them which ones can be
find in [36, 37, 38, 39, 40, 41, 42].
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