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 ABSTRACT 

Here we consider the graph burning problem for some families of graphs including caterpillars and 

AT-free graphs, and we also study the asymptotic value of the burning number for the caterpillars in a 

random space. 
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1 INTRODUCTION 

Graph burning is a graph process that can be used as a model for the spread of social contagion and 

was introduced in 2014 by Anthony Bonato, Jeannette Janssen and Elham Roshanbin in [3]. Graph burning 

is defined on the node set of a simple finite graph 𝐺 that can be seen as the underlying graph of a social 

network; it in fact represents a model for the spread of any sort of influence among the members of the 

corresponding network that are now the nodes of 𝐺. Initially we assume that all nodes of 𝐺 are unburned 

(uninfluenced). We then at each discrete time step burn a node directly as a fire source and simultaneously 

the fire (influence) spread from the burning nodes of the previous stage to their unburned neighbours. Once 

a node is burned it remains burning until the end of this process that occurs when all nodes of 𝐺 are burned. 

The burning number of 𝐺 is the minimum number of steps that is needed for burning 𝐺 and is denoted by 

𝑏(𝐺).  

It is clear that, the smaller the burning number of a graph is, the faster we could spread an influence 

among the users of a network in the above interpretation. If the burning process for a graph 𝐺 ends in 𝑘 

steps by choosing the nodes 𝑥1, 𝑥2, … , 𝑥𝑘 as the fire sources respectively, then we call the sequence 

(𝑥1, 𝑥2, … , 𝑥𝑘) a burning sequence for 𝐺. For further results on the graph burning see [1, 2, 4, 9, 10]. The 

following facts about graph burning can be found in [4, 10].  

Note that the only graph with burning number one is 𝐾1. The following corollary from [4], is often 

used in the proof of the results on the burning number. 

Corollary 1.1 ([4]). If (𝑥1, 𝑥2, … , 𝑥𝑘) is a sequence of nodes in a graph 𝐺, such that 𝑁𝑘−1[𝑥1] ∪
 𝑁𝑘−2[𝑥2] ∪ … ∪ 𝑁0[𝑥𝑘]  =  𝑉(𝐺), then 𝑏(𝐺) ≤  𝑘.  

The following theorem determines the burning number of paths. 

Theorem 1.2 ([4]). For a path 𝑃𝑛 we have that 𝑏(𝑃𝑛) = ⌈√𝑛⌉. 

From the proof of Theorem 1.2 in [4], we conclude that every burning sequence of a path 𝑃 of order 

𝑛 corresponds to a partition for 𝑃 into subpaths 𝑄1, 𝑄2, . . . , 𝑄𝑘, in which the order of each 𝑄𝑖 is a number 

between one and 2𝑖 −  1, and 𝑘 = ⌈√𝑛⌉. Here in this paper, we call such a partition of 𝑃 a burning partition. 
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A subgraph 𝐻 of graph 𝐺 is called an isometric subgraph of 𝐺 if the distance between any pair of 

nodes 𝑢 and 𝑣 in 𝐻 equals the distance between 𝑢 and 𝑣 in 𝐺. For example, any subtree of a tree 𝑇 is an 

isometric subgraph of 𝑇. The following corollary is a generalization of Theorem 7 from [4] for disconnected 

graphs. 

Corollary 1.3 ([10]). If 𝐺 is a graph and 𝐻 is an isometric subforest of 𝐺, then 𝑏(𝐻) ≤ 𝑏(𝑇). 

The following lemma, provides tight bounds on the burning number of a connected graph in 

terms of its radius and diameter. 

Lemma 1.4 ([4]). For every graph 𝐺 with radius 𝑟 and diameter 𝑑,  

⌈√𝑑 + 1⌉ ≤ 𝑏(𝐺) ≤ 𝑟 + 1. 

2 BURNING NUMBER OF CATERPILLARS AND AT-FREE GRAPHS 

In this section, we show that there are only two classes of caterpillars according to their burning 

number, and that determining in which class a given caterpillar belongs to, is NP-complete. We also 

consider the burning number of AT-free graphs. Here is the statement of the Graph Burning problem as 

decision problem. 

Problem: Graph Burning  

Instance: A simple graph 𝐺 of order 𝑛 and an integer 𝑘 ≥ 2.  

Question: Is 𝑏(𝐺) ≤ 𝑘? In other words, does 𝐺 contain a burning sequence (𝑥1, 𝑥2, . . . , 𝑥𝑘)? 

In the PhD thesis [10] and the subsequent paper [2], it is proved by a creative reduction from a variant 

of the known 3-Partition problem (see [6]), called Distinct 3-Partition problem, that the Graph Burning 

problem is NP-complete even for trees of maximum degree three (In [8], it is shown that the Distinct 3-

Partition problem is indeed strongly NP-complete (see [6]); which is needed in the proof.). Here is the 

statement of this problem. 

Problem: Distinct 3-Partition  

Instance: A finite set 𝑋 = {𝑎1, 𝑎2, . . . , 𝑎3𝑛} of positive distinct integers, and a positive integer 𝐵 where 

∑ 𝑎𝑖
3𝑛
𝑖=1 =  𝑛𝐵, and 𝐵/4 < 𝑎𝑖 < 𝐵/2, for 1 ≤ 𝑖 ≤ 3𝑛.  

Question: Is there any partition of 𝑋 into 𝑛 triples such that the elements in each triple add up to 𝐵? 

          A path 𝑃 in a graph 𝐺 is called a dominating path if for every node 𝑣 in 𝑉(𝐺 − 𝑃) there is a node in 

𝑃 that is adjacent to 𝑣. A caterpillar is a tree with a dominating path [5]. 

          In this section, using exactly the same idea as in the above-mentioned proof from [10], we will show 

that the Graph Burning problem is NP-complete even for caterpillars (This result has been proved 

independently and similarly in [7]). Before that, we first explore the bounds on the burning number of 

caterpillars as follows (the upper-bound can also be found in [7]). 

          Theorem 2.1. Suppose that 𝑇 is a caterpillar with a dominating path 𝑃 of order 𝑛, and let 𝑘 = ⌈√𝑛⌉ . 

Then 𝑘 ≤ 𝑏(𝑇) ≤ 𝑘 + 1. Moreover, if 𝑛 = 𝑘2 , then 𝑏(𝑇) = 𝑘 if and only if there is a burning partition for 

𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘 such that there is no node in 𝑇 − 𝑃 joined to the end points of 𝑄𝑖’s. If 𝑛 < 𝑘2, 

then 𝑏(𝑇) = 𝑘 if and only if one of the following conditions holds: 

(i) There is a burning partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘 such that there is no node in 𝑇 − 𝑃 

joined to the end points of 𝑄𝑖’s. 

(ii) There is a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−1, in which each 𝑄𝑖 is a path of order 1 ≤
𝑙𝑖 ≤ 2(𝑘 − 𝑖) + 1 and there is at most one node in 𝑇 − 𝑃 that is joined to an end point of one 

of the 𝑄𝑖’s.  

(iii) There is a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−1, in which each 𝑄𝑖 is a path of order 1 ≤
 𝑙𝑖 ≤  2(𝑘 − 𝑖) + 1, for 1 ≤ 𝑖 ≤ 𝑘 − 2, and 𝑄𝑘−1 is of order one, and there is at most one 

node in 𝑇 − 𝑃 that is joined to an end point of one of the 𝑄𝑖’s. 

(iv) There is a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−2, in which each 𝑄𝑖 is a path of order 1 ≤
𝑙𝑖 ≤ 2(𝑘 − 𝑖) + 1 and there are at most only two nodes in 𝑇 − 𝑃 that are joined to the end 

points of some of the 𝑄𝑖’s.  
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          Proof. There are two possibilities for 𝑛: either 𝑛 = 𝑘2 or 𝑛 < 𝑘2. Note that 𝑃 is an isometric subpath 

of 𝑇 and therefore by Corollary 1.2 and Corollary 1.3, 𝑏(𝑇) ≥ 𝑏(𝑃) = 𝑘. On the other hand, if (𝑥1, . . . , 𝑥𝑘) 

is a burning sequence for 𝑃, then {𝑁𝑘+1−𝑖[𝑥𝑖 ]}𝑖=1
𝑘  forms a covering for the node set of 𝑇. Thus, we conclude 

that 𝑏(𝑇) ≤ 𝑘 + 1. Also, note that if (𝑥1, . . . , 𝑥𝑘) is a burning sequence for 𝑇, then (each 𝑥𝑖 must be either 

in 𝑃 or in 𝑇 − 𝑃) clearly 𝑄𝑖 = 𝑁𝑘−𝑖[𝑥𝑖] ∩ 𝑃 is a subpath of 𝑇 of order at most 2(𝑘 − 𝑖) + 1. 

          First, assume that 𝑛 = 𝑘2 and (𝑥1, . . . , 𝑥𝑘) is an optimum burning sequence for 𝑇. Since 𝑛 = 𝑘2, we 

conclude that each 𝑄𝑖 = 𝑁𝑘−𝑖[𝑥𝑖] ∩ 𝑃 must be a path of order 2(𝑘 − 𝑖) + 1, and {𝑄𝑖}𝑖=1
𝑘  forms a partition 

for 𝑃. Moreover, 𝑥𝑖 ∈ 𝑃 for 1 ≤ 𝑖 ≤ 𝑘, and there must not be any node 𝑥 outside of 𝑃 that is joined to an 

end point of a 𝑄𝑖; otherwise, it implies that 𝑥 will not be burned by the end of the 𝑘-th step, which is a 

contradiction. 

          Conversely, suppose that there is a burning partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘 such that there is 

no node in 𝑇 − 𝑃 joined to the end points of 𝑄𝑖’s. Let 𝑥𝑖 be a central node of 𝑄𝑖, for 1 ≤ 𝑖 ≤ 𝑘. Then we 

can easily see that (𝑥1, . . . , 𝑥𝑘) is a burning sequence for 𝑇, and therefore, by the argument in the first 

paragraph of the proof, we conclude that 𝑏(𝑇)  =  𝑘. 

          Now assume that 𝑛 < 𝑘2, and (𝑥1, . . . , 𝑥𝑘) is an optimum burning sequence for 𝑇. For 1 ≤ 𝑖 ≤ 𝑘, let 

𝑄𝑖 = {𝑢 ∈ 𝑁𝑘−𝑖[𝑥𝑖] ∶  𝑖 = 𝑚𝑖𝑛{𝑗 ∶  𝑢 ∈ 𝑁𝑘−𝑗[𝑥𝑗]}}. We can easily see that 𝑄𝑖’s form a partition for 𝑃. 

There are two possibilities for 𝑥𝑘: either 𝑥𝑘 ∈ 𝑉(𝑃) or 𝑥𝑘 ∉ 𝑉(𝑃). Similarly, there are two possibilities for 

𝑥𝑘−1: either 𝑥𝑘−1 ∈ 𝑃 or not. Hence, we have to consider four different cases as follows: 

          (i) If 𝑥𝑘−1, 𝑥𝑘 ∈ 𝑃, then let 𝑄𝑖 = 𝑁𝑘−𝑖 [𝑥𝑖] ∩ 𝑃, for 1 ≤ 𝑖 ≤ 𝑘. We can easily see that {𝑄𝑖}𝑖=1
𝑘  forms 

a burning partition for 𝑃 into subpaths such that there is no node 𝑥 in 𝑇 − 𝑃 that is joined to the end points 

of 𝑄𝑖’s. Otherwise, 𝑥 cannot be burned by the end of the 𝑘-th step. Conversely, in such a case, assume that 

there is a burning partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘 such that there is no node in 𝑇 − 𝑃 joined to the 

end points of 𝑄𝑖’s. For each 1 ≤ 𝑖 ≤ 𝑘, let 𝑥𝑖 be a central node in 𝑄𝑖. Then {𝑁𝑘−𝑖[𝑥𝑖 ]}𝑖=1
𝑘  forms a covering 

for 𝑉(𝑇). Hence, by Corollary 1.1, we conclude that 𝑏(𝑇) ≤ 𝑘. 

          (ii) If 𝑥𝑘−1 ∈ 𝑃 and 𝑥𝑘 ∉ 𝑃, then let 𝑄𝑖 = 𝑁𝑘−𝑖[𝑥𝑖] ∩ 𝑃, for 1 ≤ 𝑖 ≤ 𝑘 − 1. We can easily see that 

{𝑄𝑖}𝑖=1
𝑘−1 forms a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−1, in which each 𝑄𝑖 is a path of order 1 ≤ 𝑙𝑖 ≤

2(𝑘 − 𝑖) − 1 and there is at most one node in 𝑇 − 𝑃, that can be only 𝑥𝑘, that is joined to an end point of 

one of the 𝑄𝑖’s (otherwise, there must be some node that cannot be burned by the end of the 𝑘-th step, which 

is a contradiction). Conversely, in such a case, assume that there is a partition for 𝑃 into subpaths 

𝑄1, . . . , 𝑄𝑘−1 in which each 𝑄𝑖 is of order 1 ≤ 𝑙𝑖 ≤ 2(𝑘 − 𝑖) − 1, and there is at most one node in 𝑇 − 𝑃 

joined to an end point of one of the 𝑄𝑖’s. Let 𝑥𝑖 be a central node in 𝑄𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 1. If there is no 

node in 𝑇 − 𝑃 that is adjacent to an end point of one of the 𝑄𝑖’s then we take 𝑥𝑘 to be an arbitrary node in 

𝑇 − ∪𝑖=1
𝑘−1 𝑁𝑘−𝑖−1[𝑥𝑖] (We know that such a node does exist since 𝑏(𝑇) ≥ 𝑘); otherwise, let 𝑥𝑘 to be the 

node that is adjacent to one of the end points of the 𝑄𝑖’s (as by assumption there can be at most one node 

like that). Then {𝑁𝑘−𝑖[𝑥𝑖 ]}𝑖=1
𝑘  forms a covering for 𝑉(𝑇). Hence, by Corollary 1.1, we conclude that 

𝑏(𝑇) ≤ 𝑘. 

          (iii) If 𝑥𝑘−1 ∉ 𝑃 and 𝑥𝑘 ∈ 𝑃, then let 𝑄𝑖 =  𝑁𝑘−𝑖[𝑥𝑖 ] ∩ 𝑃, for 1 ≤ 𝑖 ≤ 𝑘 − 2, and 𝑄𝑘−1 = 𝑥𝑘. We 

can easily see that {𝑄𝑖}𝑖=1
𝑘−1 forms a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−1, in which each 𝑄𝑖 is a path of 

order 1 ≤ 𝑙𝑖 ≤ 2(𝑘 − 𝑖) − 1, for 1 ≤ i ≤ k − 2. Moreover, the path 𝑄𝑘−1 is of order one, and there is at most 

one node in 𝑇 − 𝑃, that can be only 𝑥𝑘−1, that is joined to an end point of one of the 𝑄𝑖’s. Conversely, in 

such a case, assume that there is a desired partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−1. Let 𝑥𝑖 be a central 

node in 𝑄𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 2. Now, if there is no node in 𝑇 − 𝑃 that is adjacent to an end point of a 𝑄𝑖, 

then take 𝑥𝑘−1 to be an arbitrary node in 𝑇 − ∪𝑖=1
𝑘−2  𝑁𝑘−2−𝑖 [𝑥𝑖] (We know that such a node does exist since 

𝑏(𝑇) ≥ 𝑘); otherwise, let 𝑥𝑘−1 to be the node that is adjacent to one of the end points of the 𝑄𝑖’s (as by 

assumption there can be at most one node like that). Moreover, let 𝑥𝑘 be the only node in 𝑄𝑘−1. Then 

{𝑁𝑘−𝑖[𝑥𝑖  ]}𝑖=1
𝑘  forms a covering for 𝑉(𝑇). Hence, by Corollary 1.1, we conclude that 𝑏(𝑇) ≤ 𝑘. 

          (iv) If 𝑥𝑘−1 ∉ 𝑃 and 𝑥𝑘 ∉ 𝑃, then let 𝑄𝑖 =  𝑁𝑘−𝑖[𝑥𝑖 ] ∩  𝑃, for 1 ≤ 𝑖 ≤ 𝑘 − 2. We can easily see that 

{𝑄𝑖}𝑖=1
𝑘−2 forms a partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−2, in which each 𝑄𝑖 is a path of order 1 ≤ 𝑙𝑖 ≤
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2(𝑘 − 𝑖) − 1, for 1 ≤ 𝑖 ≤ 𝑘 − 2. Moreover, there are at most two nodes in 𝑇 − 𝑃, that can be only 𝑥𝑘−1 

and 𝑥𝑘, that are adjacent to the end points of one of the 𝑄𝑖’s. Conversely, in such a case, assume that there 

is a desired partition for 𝑃 into subpaths 𝑄1, . . . , 𝑄𝑘−2. Let 𝑥𝑖 be a central node in 𝑄𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 2. 

Now, if there is no node in 𝑇 − 𝑃 that is adjacent to an end point of a 𝑄𝑖, then take 𝑥𝑘−1 to be an arbitrary 

node in 𝑇 − ∪𝑖=1
𝑘−2  𝑁𝑘−2−𝑖 [𝑥𝑖] (We know that such a node does exist since 𝑏(𝑇) ≥ 𝑘); otherwise, let 𝑥𝑘−1 

to be a node that is adjacent to one of the end points of the 𝑄𝑖’s. Similarly, if there is no node 𝑥 ≠ 𝑥𝑘−1 in 

𝑇 − 𝑃 that is adjacent to an end point of a 𝑄𝑖, then take 𝑥𝑘 to be an arbitrary node in 𝑇 − ∪𝑖=1
𝑘−1  𝑁𝑘−1−𝑖 [𝑥𝑖] 

(We know that such a node does exist since 𝑏(𝑇) ≥ 𝑘); otherwise, let 𝑥𝑘 to be a node 𝑥 ≠ 𝑥𝑘−1 that is 

adjacent to one of the end points of the 𝑄𝑖’s (as by assumption there can be at most one node like that). 

Then {𝑁𝑘−𝑖[𝑥𝑖 ]}𝑖=1
𝑘  forms a covering for 𝑉(𝑇). Hence, by Corollary 1.1, we conclude that 𝑏(𝑇) ≤ 𝑘. 

 

A set of three disjoint nodes 𝑢1, 𝑢2, and 𝑢3 in a graph 𝐺 is called an asteroidal triple or AT of 𝐺 if 

for every pair of 𝑢𝑖’s, there is a path connecting these two nodes that does not intersect with the 

neighbourhood of the third node. A graph G is AT-free if it contains no asteroidal triple of nodes. A pair of 

nodes 𝑢 and 𝑣 in a graph 𝐺 is called a dominating pair of 𝐺 if every path in 𝐺 that connects 𝑢 and 𝑣 is a 

dominating path for 𝐺. The following theorem is known about the AT-free graphs.  

Theorem 2.2 ( [5], Theorem 7.2.8). Every connected AT-free graph has a dominating pair.  

We also know the following fact about the interval graphs.  

Theorem 2.3 ( [5], Theorem 7.2.6). A graph 𝐺 is an interval graph if and only if it is chordal and 

AT-free.  

We can conclude the following result from the last three theorems and Lemma 1.4.  

Corollary 2.4. If 𝐺 is a connected AT-free graph or a connected interval graph of diameter 𝑑, then  

⌈√𝑑 + 1⌉ ≤ 𝑏(𝐺) ≤ ⌈√𝑑 + 1⌉ + 1 

 

          Let 𝑃𝑛 be the dominating path in a caterpillar 𝑇 such that 𝑇 − 𝑃𝑛 consists of 𝑡 pendant nodes or legs. 

By Theorem 2.1, we already know that ⌈√𝑛⌉ ≤ 𝑏(𝑇) ≤ ⌈√𝑛⌉ + 1. We can easily see that 𝑏(𝑇) = ⌈√𝑛⌉ if 

and only if there is a partition of 𝑃𝑛 into subpaths of orders 1, 3, . . . , 2𝑘 − 1, such that there is no leg attached 

to the end points of any of these subpaths. Using this observation, in Theorem 2.5, we show that it is hard 

to determine the exact class of 𝑇 according to its burning number (This result also has been proved in [7]). 

          Theorem 2.5. The Graph Burning problem is NP-complete even for caterpillars. 

 

          Proof. Clearly, the Graph Burning problem is in NP. Suppose that we have an instance of the Distinct 

3-Partition problem; that is, we are given a non-empty finite set 𝑋 = {𝑎1, 𝑎2, … , 𝑎3𝑛} of distinct positive 

integers, and a positive integer 𝐵 such that ∑ 𝑎𝑖
3𝑛
𝑖=1 = 𝑛𝐵, and 𝐵/4 < 𝑎𝑖 < 𝐵/2, for 1 ≤ 𝑖 ≤ 3𝑛. Since the 

Distinct 3-Partition problem is NP-complete in the strong sense, without loss of generality we can assume 

that 𝐵 is bounded above by a polynomial in the length of the input.  

          Assume that the maximum of the set 𝑋 is 𝑚 which is by assumption bounded above by 𝐵/2. Let 𝑌 =

{2𝑎𝑖 − 1 ∶  𝑎𝑖 ∈ 𝑋}. Hence, 𝑌 ⊆ 𝑂𝑚, and 2𝑛𝐵 − 3𝑛 = ∑ (2𝑎𝑖 − 1)
3𝑛

𝑖=1
 is the sum of the numbers in 𝑌. Let 

𝑍 = 𝑂𝑚\𝑌. Note that 1 ≤ |𝑌| ≤ 𝑚, and consequently, |𝑍| ≤ 𝑚 −  1. Let |𝑍| = 𝑘, for some 𝑘 ≤  𝑚 −  1. 

For 1 ≤ 𝑖 ≤ 𝑘, let 𝑄𝑖
′ be a path of order 𝑙𝑖, where 𝑙𝑖 is the 𝑖-th largest number in 𝑍. For 1 ≤ 𝑖 ≤ 𝑚 + 1, we 

define 𝑄𝑖
′′ to be a path of order 2(2𝑚 + 1 − 𝑖) + 1. We also take 𝑄𝑖 to be a path of order 2𝐵 − 3, for 1 ≤

𝑖 ≤ 𝑛. We construct a path 𝑃 of order ∑ (2𝑖 − 1)
2𝑚+1

𝑖=1
= (2𝑚 + 1)2, that is obtained by adding an edge 

between the end points of two successive paths in the following order: 

𝑄1, 𝑄1
′′, 𝑄2, 𝑄2

′′, … , 𝑄𝑛, 𝑄𝑛
′′, 𝑄1

′ , 𝑄𝑛+1
′′ , 𝑄2

′ , 𝑄𝑛+1
′′ , … , 𝑄𝑘

′ , 𝑄𝑛+1
′′ , 𝑄𝑛+𝑘+1

′′ , … , 𝑄𝑚+1
′′ . 

          Assume that {𝑥1, … , 𝑥𝑠} is the set of end points of the paths 𝑄𝑖
′'s and 𝑄𝑗

′′ 's. Let 𝐺(𝑃) be the graph 

that is obtained by joining every node 𝑢 ∈ 𝑉(𝑃) \ ( (∪𝑖=1
𝑛  𝑉(𝑄𝑖)) ∪ {𝑥1, … , 𝑥𝑙}) to a new node. Clearly, 

𝐺(𝑃) is a caterpillar graph. We can easily see that there is a partition of 𝑋 into triples such that the elements 
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in each triple add up to 𝐵 if and only if we can decompose the paths 𝑄1, 𝑄2, … , 𝑄𝑛 into subpaths of orders 

2𝑎𝑖 − 1 ∈ 𝑌.  

          Now, assume that there is a partition of 𝑋 into triples such that the elements in each triple add up to 

𝐵. Equivalently, we have a partition for the paths 𝑄1, 𝑄2, … , 𝑄𝑛 in terms of subpaths {𝑃𝑙 ∶  𝑙 ∈ 𝑌}. Since 

𝑂𝑚 = 𝑌 ∪ 𝑍, we conclude that there is a partition for the subgraph (⋃ 𝑄𝑖
𝑛
𝑖=1 ) ⋃(⋃ 𝑄𝑖

′𝑘
𝑖=1 )⋃ (⋃ 𝑄𝑖

′′𝑚+1
𝑖=1 ) in 

terms of the subpaths {𝑃𝑙 ∶  𝑙 ∈ 𝑂𝑚}. Now, for 𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, let 𝑥𝑖 be the centre of a path 𝑃𝑙 in 

such a partition, where 𝑙 = 2(2𝑚 + 2 − 𝑖) − 1 ∈ 𝑂𝑚 (=  𝑌 ∪ 𝑍). For 1 ≤ 𝑖 ≤ 𝑚 + 1, let 𝑥𝑖 be the centre 

of 𝑄𝑖
′′. Thus, we have that  

𝑉(𝐺(𝑃))  = ⋃ 𝑁2𝑚+1−𝑖[𝑥𝑖]

2𝑚+1

𝑖=1

 . 

Consequently, by Corollary 1.1, we conclude that (𝑥1, … , 𝑥2𝑚+1) forms a burning sequence of length 

2𝑚 + 1 for 𝐺(𝑃). Therefore, 𝑏(𝐺(𝑃)) ≤ 2𝑚 + 1. 

          Conversely, suppose that 𝑏(𝐺(𝑃)) ≤ 2𝑚 + 1. Note that the path 𝑃 of order (2𝑚 + 1)2 is a subtree 

of 𝐺(𝑃). Therefore, by Theorem 1.2 and Corollary 1.3, we have that  

𝑏(𝐺(𝑃)) ≥ 𝑏(𝑃) = 2𝑚 + 1. 

Thus, we conclude that 𝑏(𝐺(𝑃)) = 2𝑚 + 1.  

          Assume that (𝑥1, … , 𝑥2𝑚+1) is an optimum burning sequence for 𝐺(𝑃). We first claim that each 𝑥𝑖 

must be in 𝑃. Note that every 𝑥𝑖 is either in 𝑃, or joined to a node 𝑢 ∈ 𝑉(𝑃). On the other hand, every node 

in 𝑃 must receive the fire from one of the 𝑥𝑖 's. Hence, for 1 ≤ 𝑖 ≤ 2𝑚 + 1, 𝑁2𝑚+1−𝑖[𝑥𝑖] ∩ 𝑃 must be a 

path of order at most 2(2𝑚 + 1 − 𝑖) + 1. If for some 1 ≤ 𝑖 ≤ 2𝑚 + 1, the node 𝑥𝑖 is not in 𝑃, then 

𝑁2𝑚+1−𝑖[𝑥𝑖] ∩ 𝑃 is a path of order less than 2(2𝑚 + 1 − 𝑖) + 1. Therefore, the total sum of the orders of 

the subpaths {𝑁2𝑚+1−𝑖[𝑥𝑖] ∩ 𝑃}𝑖=1
2𝑚+1 will be less than (2𝑚 + 1)2 =  |𝑉(𝑃)|, which is a contradiction. 

Thus, every 𝑥𝑖 must be selected from 𝑃. 

          Now, we claim that for 1 ≤ 𝑖 ≤ 𝑚 + 1, the fire source 𝑥𝑖 must be the middle node of 𝑄𝑖
′′. We prove 

this by strong induction on 𝑖. Note that 𝑄1
′′ is the largest path in constructing 𝐺(𝑃) in which there is a node 

attached to all of its non-end point nodes. Hence, we can easily see that if we chose 𝑥1 to be any node in 𝑃 

rather than the centre of 𝑄1
′′, then there will be a node joined to at least one of the end points of 

𝑁2𝑚+1−1[𝑥1] ∩ 𝑃, which leads to a contradiction. Thus, 𝑥1 must be the centre of 𝑄1
′′. Suppose that for 1 ≤

𝑖 ≤ 𝑚 and for every 1 ≤  𝑗 ≤ 𝑖, 𝑥𝑗 is the centre of 𝑄𝑗
′′. Since 𝑄𝑖+1

′′  is the (𝑖 + 1)-th largest path in 

constructing 𝐺(𝑃) such that all of its non-end point nodes are adjacent to a node in 𝐺(𝑃) − 𝑃, and by 

induction hypothesis, we conclude that 𝑥𝑖+1 must be the centre of 𝑄𝑖+1
′′ . Therefore, the claim is proved by 

induction. 

          The above argument implies that the nodes in 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′)𝑚+1

𝑖=1  must be burned by receiving the 

fire started at 𝑥𝑚+2, 𝑥𝑚+3, … , 𝑥2𝑚+1 (the last 𝑚 sources of fire). Since 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) is a disjoint 

union of paths, then we derive that for 𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, 𝑁2𝑚+1−𝑖[𝑥𝑖] ∩ (𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 )) is a path 

of order at most 2(2𝑚 + 1 − 𝑖) + 1 (≤ 2𝑚 − 1). On the other hand, the path-forest 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′)𝑚+1

𝑖=1  is 

of order ∑ (2𝑖 − 1)𝑚
𝑖=1  =  𝑚2. Thus, we conclude that for 𝑚 + 2 ≤ 𝑖 ≤ 2𝑚 + 1, 𝑁2𝑚+1−𝑖[𝑥𝑖] ∩ (𝐺(𝑃) ∖

(⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 )) is a path of order 2(2𝑚 + 1 − 𝑖) + 1; since otherwise, we cannot burn all the nodes in 𝐺(𝑃) ∖

(⋃ 𝑄𝑖
′′)𝑚+1

𝑖=1  in 𝑚 steps, which is a contradiction. Therefore, there must be a partition of 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) 

(induced by the burning sequence (𝑥𝑚+2, 𝑥𝑚+3, … , 𝑥2𝑚+1)) for 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 )) into subpaths {𝑃𝑙: 𝑙 ∈
𝑂𝑚}. 

          Now, considering the partition described in the previous paragraph, we claim that there is a partition 

of 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) into subpaths of orders in 𝑂𝑚 in which the paths 𝑄1, 𝑄2, … , 𝑄𝑛 are decomposed into 

paths of orders in 𝑌, and each path 𝑄𝑖
′ is covered by itself. Note that by definition, for 1 ≤ 𝑖 ≤ 𝑘, each path 

𝑄𝑖
′ is a component of 𝐺(𝑃) ∖ (⋃ 𝑄𝑖

′′𝑚+1
𝑖=1 ). Hence, it suffices to prove that there is a partition of 𝐺(𝑃) ∖

(⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) into subpaths of orders in 𝑂𝑚 such that each 𝑄𝑖
′ is covered by itself. Assume that in a partition 

of 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) into subpaths of orders in 𝑂𝑚, there is a path 𝑄𝑖
′ of order 𝑙 ∈ 𝑂𝑚\ 𝑌(= 𝑍) that is 
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partitioned by a union of paths of orders in 𝑂𝑚 rather than by 𝑃𝑙 itself. We know that 𝑃𝑙 must have covered 

some part of a path 𝑄𝑗
′ , where 𝑗 ≠ 𝑖, or must be used in partitioning 𝑄1, 𝑄2, … , 𝑄𝑛. Hence, we can easily 

modify the partition by switching the place of 𝑃𝑙 and those paths that have covered 𝑄𝑖
′ (as they have equal 

lengths). Therefore, we have decreased the number of such displaced paths in our partition for 𝐺(𝑃) ∖
(⋃ 𝑄𝑖

′′)𝑚+1
𝑖=1 . Since the number of 𝑄𝑖

′'s, where 1 ≤ 𝑖 ≤ 𝑘, is finite, we will end up after finite number of 

switching in a partition for 𝐺(𝑃) ∖ (⋃ 𝑄𝑖
′′𝑚+1

𝑖=1 ) in which every 𝑄𝑖
′, 1 ≤ 𝑖 ≤ 𝑘, is covered by itself. 

          Finally, since each 𝑄𝑖 is of order 2𝐵 − 3, there must be a partition of 𝑌 into triples such that the 

elements in each triple add up to 2𝐵 − 3. Equivalently, there must be a partition of 𝑋 into triples such that 

the elements in each triple add up to 𝐵. Since 𝐺(𝑃) is a caterpillar, we have a polynomial time reduction 

from the Distinct 3-Partition problem to the Graph Burning problem for caterpillars. 

          Since every caterpillar is an interval graph and also it is an AT-free graph, we have the following 

immediate corollary. 

Corollary 2.6. The Graph Burning problem is NP-complete even for interval graphs and for AT-free 

graphs. 

 

3 BURNING NUMBER OF CATERPILLARS IN A RANDOM SPACE 

In this section, we obtain some results on the asymptotic value of the burning number of the caterpillars in 

a random space that we define as follows. 

          We can look at the set of all caterpillars with dominating path 𝑃𝑛 and 𝑡 legs as a random space, 

denoted by ℛ, that its elements are generated in the following way: In a random experiment, we choose 𝑡 

nodes in 𝑃𝑛 uniformly at random (the nodes can be the same; in other words, we choose them with 

replacement), and we attach to each node a leg. We consider the asymptotic value of the burning number 

of a graph in ℛ and we prove the following theorem. 

          Theorem 2.6. Let 𝑇 be a caterpillar in ℛ with dominating path 𝑃𝑛 and 𝑡 legs. Then a.a.s., 

𝑏(𝑇) = {
𝑏(𝑃𝑛), 𝑖𝑓 𝑡 = o(𝑛)

𝑏(𝑃𝑛) + 1, 𝑖𝑓 𝑡 = Ω(𝑛)
 

 

          Proof. Remember that 𝑏(𝑇) = ⌈√𝑛⌉ if and only if there is a partition of 𝑃𝑛 into subpaths of orders 

1, 3, . . . , 2𝑘 − 1, such that there is no leg attached to the end points of any of these subpaths. We call such 

a partition, a good partition. Let 𝑌𝑖 be the indicator random variable for the event 𝐴𝑖  that is defined as 

follows: 𝐴𝑖 occurs if none of the end points of the subpaths in a partition Π𝑖 (one of the many possible 

partitions) are chosen in a random experiment that creates a member of ℛ. We may think of this experiment 

as playing darts. We have this path 𝑃𝑛 as the dart board, and the partition segments are like the rings on the 

board. Now imagine we aim to hit the end points of the segments. When we throw enough number of darts, 

at least some of them should hit the end points of the segments. 

          We can easily see that  

ℙ(𝑌𝑖 = 1) =  (1 −  
(2𝑘 − 1)

𝑛
)

𝑡

∼  𝑒
−

2𝑡

  √𝑛 . 

As an immediate observation, note that if 𝑡 << √𝑛 , then ℙ(𝑌𝑖 = 1) goes to 1 as 𝑛 goes to infinity. Thus, 

in this case, a.a.s., none of the end points of the segments in the partition Π𝑖 of 𝑃𝑛 will have an attached leg. 

Hence, the burning number of a caterpillar 𝑇 ∈ ℛ with 𝑡 legs, where 𝑡 << √𝑛, a.a.s., equals the burning 

number of 𝑃𝑛, i.e., ⌈√𝑛⌉. 

          First suppose that 𝑡 is at least linear; that is, 𝑡 ≥ 𝑐𝑛 for some constant 𝑐. Let 𝑣1, … , 𝑣𝑛 be the nodes 

of the path 𝑃𝑛 according to the order of their appearance. Note that 𝑣1 and 𝑣𝑛 appear as end points in all of 

the possible partitions. Hence, to avoid hitting end points in any partition of 𝑃𝑛 in the mentioned experiment, 

we always have to avoid hitting 𝑣1 and 𝑣𝑛. Let 𝐴 be the event where we avoid hitting 𝑣1 and 𝑣𝑛; and let 𝐵 
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be the event where we avoid hitting any of the end points in any of the partitions. We can easily see that 

𝐵 ⊆ 𝐴. Thus, we have that  

ℙ(𝑌𝑖 ≥ 1) = ℙ(𝐵) ≤ ℙ(𝐴) = (1 −  
2

𝑛
)

𝑡

≤  𝑒−
2𝑡
𝑛 ≤ 𝑒−

2𝑐
𝑛 . 

Therefore,  

ℙ(𝑌𝑖 = 0) ≥ 1 − 𝑒−
2𝑐
𝑛 > 0. 

It implies that if 𝑡 = Ω(𝑛), then there is a partition where we avoid hitting any of the end points. 

          Now let 𝑡 be sublinear; that is, 𝑡 = 𝑜(𝑛). Let assume that we have thrown 𝑡 darts randomly, and then 

starting from 𝑣1, we try to construct a good partition for 𝑃𝑛 and calculate the chance of having such a 

partition as follows at the same time. Note that the orders of the paths in the partition are coming from the 

set 𝑂𝑘 = {1, 3, . . . , 2𝑘 − 1}. Moreover, note that the end points of the segments of a partition come in pairs 

(except the last end point). We call such a pair a boundary point. It is easy to see that in any partition of 𝑃𝑛 

into paths of orders {1, 3, . . . , 2𝑘 − 1}, the distance between every two successive boundary points is at least 

two. Thus, boundary points are disjoint (two successive endpoints that form a boundary point, are disjoint 

from those that form another boundary point). 

          Note that 𝑣1 appears as the subpath of order 1 in a good partition in this random experiment, only if 

𝑣2 is the end point of another segment; i.e., the pair (𝑣1, 𝑣2) forms a boundary point for such a partition. 

We can easily see that, the pair (𝑣1, 𝑣2) appears in a good partition with probability 

(1 −  
2

𝑛
)

𝑡
≥ 1 −  

2𝑡

𝑛
. 

Therefore, the probability that the pair (𝑣1, 𝑣2) does not appear in a good partition is at most 
2𝑡

𝑛
. 

         Now for 𝑖 = 2, we consider the possibility of choosing a pair of nodes in 𝑃𝑛 after 𝑣2, that can be taken 

as the 𝑖-th boundary point in a good partition. For 𝑖 = 2, we have to see if we can find a couple of successive 

nodes in 𝑃𝑛 after 𝑣2 such that none of them are hit by any dart. For this purpose, we have to check all of the 

possible nodes 𝑣2+2𝑖, for 1 ≤ 𝑖 ≤ 𝑘 − 1 (the distance between 𝑣2 and 𝑣2𝑖+2 is an even number) to see if 

𝑣2+2𝑖 appears in a boundary point or not, and if it is hit by a dart or not. Since the boundary points are 

disjoint, all of these events are independent. Therefore, the probability that we cannot find such a desired 

boundary point as explained is at most (
2𝑡

𝑛
)

𝑘−1
. 

          For 2 ≤ 𝑖 ≤ 𝑘, with a similar discussion, we can see that the probability of not being able to choose 

a pair of successive nodes that form the 𝑖-th boundary point in a good partition of 𝑃𝑛 is at most 

(
2𝑡

𝑛
)

𝑘−𝑖+1
. Thus, the probability of not being able to construct a good partition starting from 𝑣1 as described 

above is at most 

2𝑡

𝑛
+ ∑ (

2𝑡

𝑛
)

𝑖
𝑘−1

𝑖=1

= O(
2𝑡

𝑛
), 

which goes to zero as 𝑛 goes to infinity (since by assumption 𝑡 = 𝑜(𝑛)). Therefore, for 𝑡 = 𝑜(𝑛), a.a.s., 

there is a good partition and the proof follows. 

 

REFERENCES 

[1] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, E. Roshanbin, ‟Bounds on the Burning Numberˮ, 
Discrete Applied Mathematics 235 (2018) 16-22. 

[2] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, E. Roshanbin, ‟Burning a Graph Is Hardˮ, Discrete 
Applied Mathematics 232 (2017) 73-87. 

[3] A. Bonato, J. Janssen, E. Roshanbin, ‟Burning a Graph as a Model of Social Contagionˮ, Lecture Notes 
in Computer Science 8882, (2014), 13-22. 

[4] A. Bonato, J. Janssen, E. Roshanbin, ‟How to burn a graphˮ, Internet Mathematics 1-2 (2016) 85-100. 
[5] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, SIAM, 1999. 



 

 

8 

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 
W.H. Freeman, 1979. 

[7] M. Hiller, E. Triesch, A. M.C.A. Koster, ‟On the Burning Number of 𝑝-Caterpillarsˮ, 2019, arXiv: 
1912.10897. 

[8] H. Hulett, T.G. Will, G.J. Woeginger, ‟Multigraph realizations of degree sequences: Maximization is 
easy, minimization is hardˮ, Operations Research Letters 36 (2008) 594-596. 

[9] D. Mitsche, P. Pralat, E. Roshanbin, ‟Burning graphs-a probabilistic perspectiveˮ, Graphs and 
Combinatorics 33(2) (2017), 449-471. 

[10] E. Roshanbin, Burning a graph as a model of social contagion, PhD Thesis, Dalhousie University, 2016. 
 


