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Abstract

Topological indices are real numbers related to graphs, They have many applications as
tools for modeling chemical and other properties of molecules. In this paper, we study new
graphs called Spider’s web graph. Wiener index, Hyper-Wiener index, Wiener polarity and
the Schultz indices of Spider’s web graph have been computed. Furthermore, we found
the correlation between these topological indices of Spider’s web graph by some statistical
parameters.

Keywords: Spider’s Web Graph, Wiener index, Wiener dimension, Hyper-Wiener index,
Wiener polarity, Schultz index.

1. Introduction

Chemical graph theory which is a fascinating branch of graph theory has many appli-
cations related to chemistry. A topological index which is a numerical quantity derived
from the chemical graph of a molecule is used to modelling chemical and physical proper-
ties of molecules in quantitative Structure-Property-Relationships (QSPR) and quantitative5

structure-activity relationships (QSAR) researches [1, 2, 7]. Throughout this paper, we con-
sider simple connected graphs (without loops and multiple edges). The vertex and the edge
sets of a graph G are denoted by V (G) and E(G), respectively. The degree of a vertex a
of G is denoted by δ(a). The distance between any two vertices a and b of G is denoted by
dG(a, b), and it is defined as the number of edges in a shortest path connecting the vertices10

a and b. The greatest distance between any two vertices of G is called diameter of G and
denoted d(G). Chemical graphs are models of molecules in which atoms are represented by
vertices and chemical bonds by edges of a graph. The basic idea of chemical graph theory
is that physicochemical properties of molecules can be studied using the information. In
the contemporary mathematico-chemical literature, there are exist several dozens of ver-15

tex degree-based molecular structure descriptors. Zagreb coindices are a generalization of
classical Zagreb indices of chemical graph theory.

A topological index is a real number related to a graph that must be a structural invari-
ant. Several topological indices have been defined and many of them have found applications
as means to model chemical, pharmaceutical and other properties of molecules [3, 4, 6]. The20

usage of topological indices in chemistry began in 1947 when a chemist Harold Wiener de-
veloped the Wiener index and used it to determine physical properties of types of alkane
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known as paraffin [10]. In a graph theoretical language, the Wiener index W (G) of a graph
G is equal to the count of all shortest distances in a graph; that is

W (G) =
∑

a,b∈V (G)

d(a, b)25

The Wiener polynomial is defined as follows [13, 15]:

W (G;x) =
∑

a,b∈V (G)

xd(a,b)

It is well known that, the first derivative of the Wiener polynomial evaluated at x = 1
equals the Wiener index. Subsequently, other topological indices were introduced for a
graph G. The Wiener polarity index is defined as [12]: Wp(G) = d(G, 3); that is the30

number of unordered pairs of vertices {a, b} of G such that dG(a, b) = 3. The Hyper-Wiener
index [14, 16] of acyclic graphs was introduced by Milan Randic in 1993. Then Klein et al,
generalized Randic’s definition for all connected graphs, as a generalization of the Wiener
index.

It is defined as follows:

WW (G) =
1

2

∑
a,b∈V (G)

d2(a, b) + d(a, b)

The First and Second Hyper-Zagreb indices are defined respectively as [8]:

M1(G) =
∑

ab∈E(G)

(δG(a) + δG(b)), M2(G) =
∑

ab∈E(G)

δG(a) δG(b)

The Schultz and modified Schultz indices and their polynomials [2] are defined respectively
as [8]:

W+(G) =
∑

a,b∈V (G)

(δG(a) + δG(b))d(a, b), W∗(G) =
∑

a,b∈V (G)

δG(a) δG(b) d(a, b)

W+(G;x) =
∑

a,b∈V (G)

(δG(a) + δG(b))x
d(a,b), W∗(G;x) =

∑
a,b∈V (G)

δG(a) δG(b)x
d(a,b)

Its clear that
W

′

+(G; 0) = M1(G), W
′

∗(G; 0) = M2(G),

W
′

+(G; 1) = W+(G), W
′

∗(G; 1) = W∗(G).

In 2012, Essalih, El-Marraki and Al-hagri [11] obtained the Wiener index of Spider’s35

web graph but this paper, introduced several topological indices of Spider’s web graph, such
as: Wiener index, Hyper-Wiener index, Wiener polarity and Schultz indices by introducing
a useful polynomials. Moreover, a strong correlations between these topological indices of
Spider’s web graph have been Appeared.

Define a Spider’s web graph Sn(m)−graph S = Sn(m), (n ≥ 3,m ≥ 2) as the union of m40

cycles together with n paths where;

C1
n = {u1

1, u
1
2, ..., u

1
n}, C2

n = {u2
1, u

2
2, ..., u

2
n}, ..., Cm

n = {um
1 , um

2 , ..., um
n },

Pm
1 = {u1

1, u
2
1, ..., u

m
1 }, Pm

2 = {u1
2, u

2
2, ..., u

m
2 }, ..., Pm

n = {u1
n, u

2
n, ..., u

m
n }.

For instance a Spider’s web graph are illustrated below in Figures 1,2.



3

Figure 1: Spider’s web

Figure 2: S24(9)

It is simple matter to verify that |V (S)| = mn and |E(S)| = n(2m− 1). Note that the case45

n = 2 is omitted because S2(m) has parallel edges, whereas the case m = 1 is trivial since
Sn(1) = Cn.

This paper is devoted to the computation of the preceding topological indices concerning
the Sn(m)−graph. After evaluating the diameter and the Wiener dimension S = Sn(m) in
the second paragraph, we begin our second paragraph by introducing a useful polynomial

F (x) =
∑

{u,v}⊆V (Sn(m))

F (u) ∗ F (v)xdS(u,v).
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By considering different definitions of the star operation ∗, the polynomial F (x) enables us
to derive simultaneously all the previous topological indices for the graph Sn(m). Finally,
an example of application is exhibited to illustrate our study. Any unexplained50

terminology is standard, typically as in [5, 9].

2. Diameter and Wiener Dimension of Spider’s web graph

We start by some preliminary statements concerning two arbitrary vertices uh
i and uk

j of
S = Sn(m). For i, j ∈ {1, 2, ..., n} and h, k ∈ {1, 2, ...,m} :

(i) dS(u
h
i , u

k
i ) = |h− k|.55

(ii) dS(u
h
i , u

h
j ) =

 |i− j| , if |i− j| ≤ d(Cn)

n− |i− j| , if |i− j| > d(Cn)

(iii) dS(u
h
i , u

k
j ) =

 |h− k|+ |i− j| , if |i− j| ≤ d(Cn)

|h− k|+ n− |i− j| , if |i− j| > d(Cn)

where d(Cn) = n/2 when n is even and d(Cn) = (n− 1)/2 when n is odd.

Proposition 2.1: d(Sn(m)) = m− 1 + d(Cn).

Proof. Set d := d(Cn). Let u
h
i , u

k
j be two arbitrary vertices of S = Sn(m).60

If |i− j| ≤ d, then ds(u
h
i , u

k
j ) = |h− k|+ |i− j| ≤ m− 1 + d. Let us assume that

|i− j| ≥ d+ 1. Then ds(u
h
i , u

k
j ) = |h− k|+ n− |i− j|.

As d = n
2 when n is even and d = n−1

2 when n is odd, then n− d− 1 = d or d− 1. Thus

ds(u
h
i , u

k
j ) ≤ m− 1 + n− |i− j|

≤ m− 1 + n− d− 1

≤ m− 1 + d

Therefore,
d(Sn(m)) ≤ m− 1 + d

Now, let um
k be the vertex of Cm

n that satisfies d = ds(u
m
1 , um

k ). Then

ds(u
1
1, u

m
k ) = ds(u

1
1, u

m
1 ) + ds(u

m
1 , um

k ) = m− 1 + d.

Hence,
d(Sn(m)) = m− 1 + d.2

65

Our next result concerns the Wiener dimension of Sn(m). Recall that the Wiener dimen-
sion [1] of a graph G, denoted dimWG, is the number of different distances of its vertices.
But before embarking in this direction, notice that the Wiener dimension of a cycle Cn is 1.
Indeed, since all the vertices u ∈ Cn have a common distance, namely

dCn(u) =


n2

4 , n even.

n2−1
4 , n odd.

70
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Proposition 2.2: dimW (Sn(m)) =


m
2 ,m even.

m+1
2 ,m odd.

Proof. For convenience, we set S := Sn(m). Since dS(u
k
i ) = dS(u

k
1), then the possible

different distances of vertices of S are among

{dS(u1
1), dS(u

2
1), ..., dS(u

m
1 )}.

We will evaluate dS(u
k
1) for each k ∈ {1, 2, ...,m}.

dS(u
k
1) =

∑
m
h=1

∑
u∈Ch

n
dS(u

k
1 , u)

=
∑

m
h=1

∑
u∈Ch

n
dS(u

k
1 , u

h
1 ) + dS(u

h
1 , u)75

=
∑

m
h=1(

∑
u∈Ch

n
|h− k|+

∑
u∈Ch

n
dS(u

h
1 , u))

=
∑

m
h=1(n|h− k|+ dCh

n
(uh

1 ))

= n[(1 + 2 + ...+ (k − 1)) + (1 + 2 + ...+ (m− k))] +mdCn(u
1
1)

= n
2 [(m− k)2 + (k − 1)2 +m− 1] +mdCn(u

1
1)

Note that
dS(u

k
1)− dS(u

h
1 ) = n(k − h)(k + h−m− 1)

for h, k ∈ {1, 2, ...,m}. So dS(u
k
1) = dS(u

h
1 ) when h = k or h+ k = m+ 1. It follows that

{dS(u1
1), dS(u

2
1), ..., dS(u

m
2
1 )}

is the set of different distances when m is even, and

{dS(u1
1), dS(u

2
1), ..., dS(u

m−1
2

1 ), dS(u
m+1

2
1 )}

is the set of different distances when m is odd.80

3. Topological indices of Spider’s web graph

We continue to set S := Sn(m). To compute different indices simultaneously, we intro-
duce the following function which will play a prominent role: Let F : S → N be the function

defined by

F (u) =


a , u ∈ V (C1

n

∪
Cm

n )

b , u ∈
∪m−1

h=2 V (Ch
n)

85

Let ∗ be an operation defined on {a, b} by the table
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∗ a b

a α β
b β γ

and consider the polynomial

F (x) =
∑

{u,v}⊆V (Sn(m))

F (u) ∗ F (v)xdS(u,v).

We will evaluate F (x) in terms of α, β, γ. To this end, we introduce two polynomials Ts(x)
and Rs(x) defined by

T0(x) = 0 , Ts(x) = sx+ (s− 1)x2 + ...+ 2xs−1 + xs, s ≥ 190

R0(x) = 0 , Rs(x) = x+ x2 + ...+ xs, s ≥ 1

It is easy to show that
Ts(x) +Rs+1(x) = Ts+1(x)

Lemma 3.1: For s ≥ 1, Ts(x) =
∑

1≤h<k≤s+1

xk−h.

Proof: For each t ∈ {1, 2, ..., s}, define

Bt = {(h, k) ∈ {1, 2, ..., s+ 1}2 : k − h = t}.

It is easy to show that |Bt| = s+ 1− t. Therefore,

∑
1≤h<k≤s+1

xk−h =

s∑
t=1

∑
(h,k)∈Bt

xt =

s∑
t=1

(s+ 1− t)xt = TS(x). 2

Proposition 3.2 :95

F (x) = [αxm−1 + (2β − γ)Rm−2 + γTm−2](n+ 2W (Cn, x))

+(2α+ γ(m− 2))W (Cn, x).

Proof: We have F (x) = A+B + C, where A,B,C are evaluated separately below:

A =
∑

1≤h<k≤m,i∈{1,2,...,n} f(u
h
i ) ∗ f(uk

i )x
dS(uh

i ,u
k
i )

= n
∑

2≤h<k≤m−1 γx
k−h + n

∑m−1
k=2 βxk−1 + n

∑m−1
h=2 βxm−h + αnxm−1

100

= nγ
∑

2≤h<k≤m−1 x
k−h + 2nβ

∑m−1
k=2 xk−1 + αnxm−1

= nγ(Tm−2 −Rm−2) + 2nβRm−2 + αnxm−1

= αnxm−1 + n(2β − γ)Rm−2 + nγTm−2

= n(αxm−1 + (2β − γ)Rm−2 + γTm−2)
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B =
∑

h∈{1,2,...,m},1≤i<j≤n f(u
h
i ) ∗ f(uh

j )x
ds(u

h
i ,u

h
j )105

= α
∑

1≤i<j≤n x
ds(u

1
i ,u

1
j ) +

∑m−1
h=2 γ

∑
1≤i<j≤n x

ds(u
h
i ,u

h
j ) + α

∑
1≤i<j≤n x

ds(u
m
i ,um

j )

= 2αW (Cn, x) + γ(m− 2)W (Cn, x) = (2α+ γ(m− 2))W (Cn, x)

C =
∑

1≤h<k≤m,i̸=j∈{1,2,...,m} f(u
h
i ) ∗ f(uk

j )x
ds(u

h
i ,u

k
j )

= 2
∑

1≤h<k≤m,1≤i<j≤n f(u
h
i ) ∗ f(uk

j )x
ds(u

h
i ,u

k
j )

Since
(dS(u

h
i , u

k
j ) = dS(u

h
i , u

k
i ) + dS(u

k
i , u

k
j ) = k − h+ dS(u

k
i , u

k
j ))

= 2
∑

1≤h<k≤m f(uh
i ) ∗ f(uk

j )x
k−h

∑
1≤i<j≤n x

ds(u
k
i ,u

k
j )110

= 2A
nW (Cn, x).

Thus, F (x) can be deduced by adding A,B and C. 2

Theorem 3.3: W (Sn(m), x) = Tm−1(n+ 2W (Cn, x)) +mW (Cn, x).

Proof: Consider F : S = Sn(m) → N defined by F (u) = 1 for all u ∈ V (S), and let ∗
be the usual multiplication. Then

α = β = γ = 1.

In this case, we have

F (x) = W (S, x) = (xm−1 +Rm−2 + Tm−2)(n+ 2W (Cn, x)) +mW (Cn, x)115

= Tm−1(n+ 2W (Cn, x)) +mW (Cn, x). 2

By differentiating W (Sn(m), x), we derive the values of W (Sn(m)) and WW (Sn(m)).

Corollary 3.4:

1) W (Sn(m)) = m2W (Cn) +
n2

6 m(m2 − 1).120

2) WW (Sn(m)) = m2WW (Cn) +
1
3m(m2 − 1)W (Cn) +

n2

24m(m2 − 1)(m+ 2).

3) Wp(Sn(m)) = 3n(2m− 3).

Theorem 3.5:

W+(Sn(m), x) = (6Tm−1 + 2Tm−2)(n+ 2W (Cn, x)) + (8m− 4)W (Cn, x)

Proof: Consider F : S = Sn(m) → N the function defined by F (u) = δ(u), and let ∗
be the usual addition. Then

α = 6, β = 7, γ = 8.
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In this case, we have125

W+(S, x) = (6xm−1 + 6Rm−2 + 8Tm−2)(n+ 2W (Cn, x)) + (8m− 4)W (Cn, x)

= (6Tm−1 + 2Tm−2)(n+ 2W (Cn, x)) + (8m− 4)W (Cn, x). 2

By differentiating W+(Sn(m), x), we obtain the values of M1(Sn(m)) and W+(Sn(m)).

Corollary 3.6:130

1) W+(Sn(m)) = m(2m− 1)W+(Cn) +
n2

3 m(m− 1)(4m+ 1)

2) M1(Sn(m)) = 2n(8m− 7)

Theorem 3.7:

W∗(Sn(m), x) = (xm−1 + 8Tm−1 + 8Tm−2)(n+ 2W (Cn, x)) + (16m− 14)W (Cn, x)

Proof: Consider the function F : S = Sn(m) → N defined by F (u) = δ(u), and let ∗
be the usual multiplication. Then

α = 9, β = 12, γ = 16.

In this case, we have135

W∗(S, x) = (9xm−1 + 8Rm−2 + 16Tm−2)(n+ 2W (Cn, x)) + (16m− 14)W (Cn, x)

= (xm−1 + 8Tm−1 + 8Tm−2)(n+ 2W (Cn, x)) + (16m− 14)W (Cn, x). 2

By differentiating W∗(S, x), we get the values of M2(S) and W∗(S).

Corollary 3.8:140

1) W∗(S) = (2m− 1)2W∗(Cn) +
n2

3 (m− 1)(8m2 − 4m+ 3)

2) M2(S) = 2n(16m− 19)

We end this work by an example of application.

Example 3.9: Let S := S4(4). Then

1. d(S) = 5 , dimW (S) = 2.145

2. W (S : x) = 28x+ 40x2 + 32x3 + 16x4 + 4x5.

3. W+(S : x) = 200x+ 280x2 + 224x3 + 104x4 + 24x5.

4. W∗(S : x) = 360x+ 516x2 + 388x3 + 168x4 + 36x5.

5. W (S) = 288 , WW (S) = 560 , Wp(S) = 60.

6. W+(S) = 1984 , M1(S) = 200.150

7. W∗(S) = 3408 , M2(S) = 360.
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Table 1: Topological indices of Spider’s web graph

(n,m) M1 M2 W WW W+ W∗

(3 , 3) 102 174 63 96 177 1278
(3 , 4) 150 270 138 243 418 2799
(3 , 5) 198 366 255 510 810 5112
(3 , 6) 246 462 423 948 1389 8361
(4 , 3) 136 232 136 234 896 2496
(4 , 4) 200 360 288 560 1984 6192
(4 , 5) 264 488 520 1130 3680 12576
(4 , 6) 328 616 848 2040 6112 22416
(5 , 3) 170 290 235 425 625 5130
(5 , 4) 250 450 490 995 1410 10545
(5 , 5) 330 610 875 1975 2650 18240
(5 , 6) 410 770 1415 3520 4445 28455

4. Possible applications of Spider’s web graph

In combinatorial chemistry, so-called topological indices are used for the description of
the structural properties of molecular graphs. If we consider each vertex in Spider’s web
graph to be a carbon atom (the valence of carbon atom is equal four), possible this a graph155

is chemical graph, since it is a connected, planar and the degree (valence) of every vertex
(atom) in this graph is not more than four. In other side, by above definition of a Spider’s
web graph, it is an union of paths (alkanes ) together with cycles ( cycloalkanes) that is
mean we can study the properties of Spider’s web graph from its initial compounds ( alkanes
and cycloalkanes). By general, there is no theoretical result on the correlation between the160

different indices yet, thus should be natural to study some strong correlation between them,
since they all reflect the structural properties of graphs in some way [17]. This section
tries to fill this gap a little by proposing measures for the correlation of two indices and
discussing them. Then we choose the best topological index to use for the description of
the structural properties of Spider’s web graph. Table 1 shows some topological indices165

(first Zagreb index, second Zagreb index, Wiener index, Hyper Wiener index, Schultz index
and Gutman index) of the spider diagram resulting from the union of alkanes P3, P4, P5

with cycloalkanes C3, C4, C5, C6. Note: In general, it is possible to calculate the topological
indices for the spider web from any group of alkanes with a group of cycloalkanes using the
program in the appendix (where we designed it using the MATLAB program). According170

to Table 2, all topological indices considered are a strong correlated where 0.80 ≤ r ≤ 1.
Therefore, we can use these indices to properties of Spider’s web graph that result from
two chemical groups alkanes with cycloalkanes. Also, we conclude among the topological
indices we considered, the three best correlation coefficients between first Zagreb index,
second Zagreb index (r = 0.999185), and then between Wiener index, Hyper Wiener index175

(r = 0.998185), and then between Wiener index, Gutman index (r = 0.984969).

5. Concluding Remarks

Several articles are concerned the calculations of topological indices for different types of
graphs. Some of them have found applications, but others were devoted to the mathematical
side in order to throw more light on the relationship between these various concepts. In this180

paper, we computed some topological indices of new graphs called Spider’s web. Moreover,
we found a strong correlation between these indices of Spider’s web graph. this paper open
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Table 2: Correlation between topological indices of Spider’s web graph

r M1 M2 W WW W+ W∗

M1 1.000000 0.999185 0.972662 0.962192 0.830710 0.973015
M2 0.999185 1.000000 0.969683 0.960472 0.834101 0.971030
W 0.972662 0.969683 1.000000 0.998185 0.804334 0.984969

WW 0.962192 0.960472 0.998185 1.000000 0.805326 0.982561
W+ 0.830710 0.834101 0.804334 0.805326 1.000000 0.886309
W∗ 0.973015 0.971030 0.984969 0.982561 0.886309 1.000000

a wide window for other researches on Spider’s web graph such as some other topological
indices or their coindices.
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