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Abstract

The graph entropy measures take part in various problem domains such as graph theory, biology and

chemistry. Using the calculated values of topological indices, degree weighted entropy of graph the en-

tropy measures are calculated viz., symmetric division index, inverse sum index atom-bond connectivity

entropy and geometric arithmetic entropy for the nanotube HAC5C7[p, q].
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1. Introduction

In the last fifty years, the investigations into the information content of graphs and networks have

been based on the profound and initial works due to Shannon [2] and [3]. In order to measure the

structural complexity of graphs and networks, the concept of graph entropy has been proposed [9] and

[4]. Determining the complexity of the graphs has been used in various filed of sciences, including

information theory, biology, chemistry and sociology.

We have different applications of graph entropy in communications and economics. We use the

concept of graph entropy as a weighted graph, as in [7] who solved the problem of weighted chemical

graph entropy by using a special information functional. Some degree-based indices are characterized by

investigating the extremes of the entropy of certain class of graphs[10] and [6]. In this paper, we compute

graph entropy for concatenated 5-cycles in one rows and in two rows of various lengths by taking Zagreb

indices, augmented Zagreb index, modified Zagreb indices and Randic index.

Entropy

The entropy of a graph is a functional depending both on the graph itself and on a probability

distribution on its vertex set. This graph functional originated from the problem of source coding in

information theory and was introduced by J. Krner in 1973. Although the notion of graph entropy has its

roots in information theory, it was proved to be closely related to some classical and frequently studied

graph theoretic concepts. For example, it provides an equivalent definition for a graph to be perfect and
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Figure 2.1: The cylinder lattice of HAC5C7[p, q] nanotube.

Figure 2.2: The 2-dimensional lattice of HAC5C7[p, q] nanotube.

it can also be applied to obtain lower bounds in graph covering problems.

Definition 1.1. (Entropy). Let the probability density function

Pij =
w(uv)∑
W (uv)

then the entropy of graph G is defined as

I(G,w) =
∑

Pij logPij .

2. HAC5C7[p, q] Nanotube

The molecular graphs of carbon nanotube HAC5C7[p, q] are shown in Figure 1. For structure we

refer [5].
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It can be observed from figure 2 that the edge set of HAC5C7 can be divided into following classes

E1 = {uv ∈ E(HAC5C7)[p, q] : du = 2, dv = 2},

E2 = {uv ∈ E(HAC5C7)[p, q] : du = 3, dv = 2},

E3 = {uv ∈ E(HAC5C7[p, q]) : du = 3, dv = 3},

Such that

|E1| = 0,

|E2| = 4p,

|E3| = 12pq − 2p,

Now from this edge partition, we can have following results immediately.

3. Entropies of HAC5C7[p, q] Nanotube

Theorem 3.1. The entropy of HAC5C7[p, q] with Symmetric division Index is

I(HAC5C7[p, q], SSD) = log(24pq + 4.667p)− 1

24pq + 4.667p

[7.22471pq + 1.706078p].

Proof. By definition, we have

SSD(HAC5C7[p, q]) = 24pq + 4.667p
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I(SSD) = log(24pq + 4.667p)− 1

24pq + 4.667p[
|E1|[

min(2, 2)

max(2, 2)
+

max(2, 2)

min(2, 2)
]× log[

min(2, 2)

max(2, 2)
+

max(2, 2)

min(2, 2)
]

]
+[

|E2|[
min(3, 2)

max(3, 2)
+

max(3, 2)

min(3, 2)
]× log[

min(3, 2)

max3, 2
+

max(3, 2)

min(3, 2)
]

]
+[

|E3|[
min(3, 3)

max(3, 3)
+

max(3, 3)

min(3, 3)
]× log[

min(3, 3)

max3, 3
+

max(3, 3)

min(3, 3)
]

]
= log(24pq + 4.667p)− 1

24pq + 4.667p[
(0)(

2

2
+

2

2
× log(

2

2
+

2

2
)) + (4p)(

2

3
+

3

2
).log(

2

3
+

3

2
)

]
+(12pq − 2p)

[
(
3

3
+

3

3
)× log(

3

3
+

3

3
)

]
= log(24pq + 4.667p)− 1

24pq + 4.667p

[2.910198p + 7.22471pq − 1.204119p]

= log(24pq + 4.667p)− 1

24pq + 4.667p

[7.22471pq + 1.706078p] .

Theorem 3.2. The Entropy of HAC5C7[p, q] with inverse sum index Weight is

I[HAC5C7[p, q], ISI] = log(18pq + 1.8p)− 1

18pq + 1.8p

[3.169642pq − 0.54666p].

Proof. By definition, we have

ISI[HAC5C7[p, q]] = 18pq + 1.8p,
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I[HAC5C7[p, q], ISI] = log[18pq + 1.8p]− 1

18pq + 1.8p

[+|E1|[
2.2

2 + 2
× log

2.2

2 + 2
] + |E2|[

2.3

2 + 3
× log

2.3

2 + 3
]

+|E3|[
3.3

3 + 3
× [

3.3

3 + 3
]

= log(18pq + 1.8p)− 1

18pq + 1.8p
[(0)(1× log1)

+(4p)(
5

6
× log

5

6
) + (12pq − 2p)(

3

2
× log

3

2
)]

= log(18pq + 1.8p)− 1

18pq + 1.8p
[−0.263937p

+3.169642pq + 0.528273p]

= log(18pq + 1.8p)− 1

18pq + 1.8p

[3.169642pq − 0.54666p].

Theorem 3.3. The entropy of HAC5C7[p, q] with Aotm Bond Connectivity is

I(HAC5C7[p, q], ABC) = log(8pq + 1.495093p)− 1

8pq + 1.495093p

[−0.19093235459p− 1.408730072pq] .

Proof. By definition, we have

ABC(HAC5C7[p, q]) = 8pq + 1.495093p,

I(HAC5C7[p, q], ABC) = log(8pq + 1.495093p)− 1

8pq + 1.495093p

[|E1|
√

2 + 2− 2

2.2
× log

√
2 + 2− 2

2.2

+|E2|
√

3 + 2− 2
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× log

√
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3.2

+|E2|
√

3 + 3− 2

3.3
× log

√
3 + 3− 2

3.3
]

= log(8pq + 1.495093p)− 1

8pq + 1.495093p

[(0)(

√
1

2
× log

√
1

2
) + (4p)(

√
1

2
× log

√
1

2
)

[(12pq − 2p)(
2

3
× log

2

3
)]

= log(8pq + 1.495093p)− 1

8pq + 1.495093p

[−0.42572070p− 1.408730072pq − 0.234788345p]

= log(8pq + 1.495093p)− 1

8pq + 1.495093p

[−0.19093235459p− 1.408730072pq] .
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Theorem 3.4. The entropy of HAC5C7[p, q] with Geometric Arthmetic Index is

I(HAC5C7[p, q], GA) = log(12pq + 3.5192p)− 1

12pq + 3.5192p
[−0.03474114p].

Proof. By definition, we have

GA(HAC5C7[p, q]) = 12pq + 3.5192p

I(HAC5C7[p, q], GA) = log(12pq + 3.5192p)− (
1

12pq + 3.5192p
)

[|E1|[2
2(
√

2.2)

2 + 2
× log2

2(
√

2.2)

2 + 2
]

+|E2|[2
2(
√

(3.2)

3 + 2
× log2

2(
√

3.2)
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]

+|E3|[2
2(
√

3.3)

3 + 3
× log2

2(
√

3.3)

3 + 3
]

= log(12pq + 3.5192p)− 1

12pq + 3.5192p

[(0)(1× log1)(4p)(2

√
6

5
× log2

√
6

5
)

+(12pq − 2p)(1× log1)]

= log(12pq + 3.5192p)− 1

12pq + 3.5192p

[−0.03474114p].
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