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Abstract

A coloring of the vertex set V of graph G = (V,E) with m colors, is called perfect
if all color are used, and for all i, j the number of neighbors colors j of any vertex
V of color i is a constant aij . The matrix A = (aij)i,j∈1,...,m is called the parameter
matrix .In this paper we study the Perfect 2- coloring of the cuboctahedral and
chvatal 4 regular graph.

A cuboctahedral graph is the graph of vertices and edges of the cuboctahedron.
It can also be constructed as the line graph of the cube.
The chvatal graph is an undirected graph with 12 vertices and 24 edges.
First, by applying the condition and limitation of the initial theorems, we identify
the possible parameter matrices and then with the help of coloring our graphs, we
examine their existence or non- existence.
Keywords: Connected graph, Parameter matrices, Perfect coloring, Equitable par-
tition.

1 Introduction

Definition 1.1. A vertex coloring of a graph is called perfect if each vertex of color i has
exactly aij neighbors of color j.
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Definition 1.2. For each graph G and each integer m, a mapping T : V (G) → 1, ...,m

is called a perfect m- coloring with matrix A = (aij)i,j∈1,...,m if it is surjective, and for all
i, j for every vertex of color i, the number of its neighbors of color j is equal to aij. The
matrix A is called the parameter matrix of a perfect coloring. When m = 2, we denote
the two colors by W and B representing white and black respectively.

The cuboctahedral and chvatal graphs given as follow.
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In this article, we enumerate parameter matrices perfect 2- coloring of the cuboctahe-
dral and chvatal 4 regular graph. We present all possible parameter matrices for perfect
2- colorings 4 regular graph. In Section 2, we also prove which of matrices can have 2-
perfect coloring in cuboctahedral graph. In Section 3, we prove 2- perfect coloring in
chvatal graph.
First we have the following basic Theorems 1, ..., 5 see [6] and then we obtain the param-
eter matrices for the perfect coloring of our graphs.

Theorem 1.3. Suppose that G is a k- regular graph and T is a perfect m- coloring with
matrix A = (aij) in graph G. Then the sum of each row in matrix A is k.

Theorem 1.4. If T is a perfect coloring of the graph G with m colors, then any eigenvalue
of the parameter matrix is an eigenvalue subset of the adjacent matrix G.

Theorem 1.5. Suppose that T is a perfect 2- coloring with [ a b
c d ] in a connected graph G.

Then a and b are opposite to zero.

Theorem 1.6. If W is the set of white vertex in a perfect 2- coloring of a graph G with
matrix A = (aij)i, j = 1, 2, then |W | = |V (G)| a21

a12+a21
.

Theorem 1.7. Suppose that [ a b
c d ] is a parameter matrix of a perfect 2- coloring of a k-

regular graph. Then eigenvalues of the parameter matrix are k and a − c such that we
obviously have a − c ̸= k. So from Theorem 2.2 we conclude that a − c is an eigenvalue
of a k- regular connected graph which is not equal to k.
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By the given conditions, we can see that a parameter matrix of a perfect 2- coloring
of cubic graphs may be one of the following matrices:

A1 =

[
0 4

1 3

]
, A2 =

[
0 4

2 2

]
, A3 =

[
0 4

3 1

]
, A4 =

[
0 4

4 0

]
, A5 =

[
1 3

1 3

]
, A6 =

[
1 3

2 2

]
, A7 =

[
1 3

3 1

]
,

A8 =

[
2 2

1 3

]
, A9 =

[
2 2

2 2

]
, A10 =

[
3 1

1 3

]
.

And also in Theorem 1.4 we obtained a formula for calculating the number of white vertex
in a perfect 2- coloring.

2 perfect 2- coloring of the cuboctahedral graph

In this section, with the help of the given theorems, we remove the parameter matrices
that are not perfect coloring and examine the perfect 2- coloring of the cuboctahedral
graph.

Theorem 2.1. The cuboctahedral graph has a perfect 2- coloring with the matrix
[
0 4

2 2

]
.

Proof. By using the Theorem 1.4 the matrix A2 can be a parameter matrix because it
does have the condition of Theorem 1.4 with consideration eigenvalues adjacent matrix
graph and using Theorems 1.2, 1.4.
The cuboctahedral graph has perfect 2- coloring with the matrix A2. Using the Theorem
1.6 we have |W | = 4 and |B| = 8 so consider mapping T as follows:
T (a1) = T (a3) = T (a9) = T (a11) = W ,
T (a2) = T (a4) = T (a5) = T (a6) = T (a7) = T (a8) = T (a10) = T (a12) = B.
It is clear that T is a perfect 2- coloring with the matrix A2.

Theorem 2.2. There are no perfect 2- coloring of the cuboctahedral with the matrices
A5, A7, and A10.

Proof. A parameter matrix corresponding to perfect 2- coloring of the cuboctahedral may
be one of the matrices A5, A7, and A10. Using the Theorem 1.4 the matrix A5 cannot be a
parameter matrix, because of the Theorem 1.6 we have |W | = 4 which is a contradiction
with the first row of A7 we have |W | = |B| = 6 so using this number and considering
entry the matrix A7 , we being to color the vertex and examine different states.
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Now have the following possibilities:
(1)T (a1) = T (a2) = W and T (a6) = T (a5) = T (a4) = B then T (a12) = W , which is a
contradiction with the first row of A7.
(2)T (a1) = T (a5) = B and T (a2) = T (a4) = T (a6) = W so T (a9) = W , which is a
contradiction with the first row of A7. Hence cuboctahedral has no perfect 2- coloring
with the matrix A7.
Also by using Theorems 1.6 for matrix A10 we have |W | = |B| = 6.
Now have the following possibilities:
(1)T (a1) = T (a2) = T (a5) = T (a6) = W and T (a4) = B then T (a4) = B, which is a
contradiction with the second row of A10.
(2)T (a1) = T (a2) = T (a5) = T (a6) = B and T (a4) = W then T (a4) = W , which is a
contradiction with the first row of A10. Hence cuboctahedral has no perfect 2- coloring
with the matrix A10.

Theorem 2.3. The cuboctahedral graph has a perfect 2- coloring with the matrix
[
2 2

2 2

]
.

Proof. By using the Theorem 1.4 the matrix A9 can be a parameter matrix because it
does have the condition of Theorem 1.4 with consideration eigenvalues adjacent matrix
graph and using Theorems 1.2, 1.4.
The cuboctahedral graph has perfect 2- coloring with the matrix A9. Using the Theorem
1.6 we have |W | = 6 and |B| = 6 so consider mapping T as follows:
T (a1) = T (a2) = T (a6) = T (a8) = T (a11) = T (a12) = W ,
T (a3) = T (a4) = T (a5) = T (a9) = T (a10) = T (a7) = B.
It is clear that T is a perfect 2- coloring with the matrix A9.

3 Perfect 2- colorings the chvatal graph

In this section, with the help of the given theorems, we remove the parameter matrices
that are not perfect coloring and examine the perfect 2- coloring of the cchvatal graph.

Theorem 3.1. The chvatal graph has a perfect 2- coloring with the matrix
[
2 2

1 3

]
.

Proof. By using the Theorem 1.4 the matrix A8 can be a parameter matrix because it
does have the condition of Theorem 1.4 with consideration eigenvalues adjacent matrix
graph and using Theorems 1.2, 1.4.
The chvatal graph has perfect 2- coloring with the matrix A8. Using the Theorem 1.6 we
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have |W | = 4 and |B| = 8 so consider mapping T as follows:
T (a1) = T (a2) = T (a3) = T (a4) = W ,
T (a5) = T (a6) = T (a7) = T (a8) = T (a9) = T (a10) = T (a11) = T (a12) = B.
It is clear that T is a perfect 2- coloring with the matrix A8.

Theorem 3.2. There are no perfect 2- coloring of the chvatal with the matrices A1, A3, A5, A6,

and A10.

Proof. A parameter matrix corresponding to perfect 2- coloring of the chvatal may be one
of the matrices A1, A3, A5, A6, and A10. Using the Theorem 1.4 the matrix A1, A3,and A6

cannot be a parameter matrix, because of the Theorem 1.6 the number of white colors is
not an integer. Also by using Theorems 1.6 for matrix A5 we have |W | = 3, |B| = 9 but
according to the entry matrix A5, each W must be only adjacent to one W , and given
the number of W and the shape of the graph, this is impossible.
Using Theorems 1.6 for matrix A10 we have |W | = |B| = 6. Now have the following
possibilities:
(1)T (a1) = T (a4) = T (a6) = T (a7) = W and T (a2) = B then T (a2) = B, which is a
contradiction with the second row of A10.
(2)T (a1) = T (a4) = T (a6) = T (a7) = B and T (a2) = W then T (a2) = W , which is a
contradiction with the first row of A10. Hence chvatal has no perfect 2- coloring with the
matrix A10.

Theorem 3.3. The chvatal graph has a perfect 2- coloring with the matrix
[
2 2

2 2

]
.

Proof. By using the Theorem 1.4 the matrix A9 can be a parameter matrix because it
does have the condition of Theorem 1.4 with consideration eigenvalues adjacent matrix
graph and using Theorems 1.2, 1.4.
The chvatal graph has perfect 2- coloring with the matrix A9. Using the Theorem 1.6 we
have |W | = 6 and |B| = 6 so consider mapping T as follows:
T (a1) = T (a2) = T (a6) = T (a9) = T (a11) = T (a12) = W ,
T (a3) = T (a4) = T (a5) = T (a8) = T (a10) = T (a7) = B.
It is clear that T is a perfect 2- coloring with the matrix A9.
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