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 ABSTRACT 

Let 𝐶 be a linear code of length 𝑛 over ℤ4. The Lee support weight of  𝐶, denoted by 𝑤𝑡𝐿(𝐶), is the 

sum of Lee weights of all columns of A(𝐶) that A(𝐶) is the |𝐶| × 𝑛 array of all code words in 𝐶. For 1 ≤
𝑟 ≤ 𝑟𝑎𝑛𝑘(𝐶), the 𝑟-th generalized Lee weight with respect to rank (GLWR) for C, denoted by 𝑑𝑟

𝐿(C), is 

defined the minimum of all Lee weights of ℤ4-submodules of 𝐶 with  𝑟𝑎𝑛𝑘 = 𝑟. In other words 

 

𝑑𝑟
𝐿(C) = 𝑚𝑖𝑛{𝑤𝑡𝐿(𝐷);  D is a ℤ4 − submodule of 𝐶, rank(D) =  𝑟 }. 

 

For linear codes 𝐶1 and 𝐶2 over ℤ4 of  length 𝑛1and 𝑛2, respectively, the Direct Sum of them ,denoted 

by 𝐶1⨁𝐶2, is defined as follows: 

 

𝐶1⨁𝐶2 = {(𝑐1, 𝑐2); 𝑐1 ∈ 𝐶1, 𝑐2 ∈ 𝐶2}. 
 

Motivated by finding 𝑑𝑟
𝐿(𝐶1⊕𝐶2)  in terms of  𝑑𝑟

𝐿(𝐶1) and 𝑑𝑟
𝐿(𝐶2),   we investigated  𝑑𝑟

𝐿(𝐶1⊕𝐶2) 
and we  obtained  𝑑𝑟

𝐿(𝐶1⊕𝐶2) for 𝑟 = 1,2. Moreover, we generally obtained an upper bound for  

𝑑𝑟
𝐿(𝐶1⊕𝐶2)  for all r, 1 ≤ 𝑟 ≤ 𝑟𝑎𝑛𝑘(𝐶1⊕𝐶2). 

 

 

 

EYWORDS: Linear code, Hamming Weight, Lee Weight, Generalized Lee Weight, Direct Sum of 

Codes. 

 

 INTRODUCTION 

 
Let ℤ𝑚 be alphabet. The Lee Weight of an integer i, for 0 ≤ 𝑖 ≤ 𝑚 is defined as follows: 

 

𝑤𝐿(𝑖) = 𝑚𝑖𝑛{𝑖,𝑚 − 𝑖}. 
 

The Lee metric on ℤ𝑚
𝑛  is defined by 

 

𝑤𝐿(𝑎) = ∑ 𝑤𝐿(𝑎𝑖)
𝑛
𝑖=1                 (1) 

 

Where the sum is defined in ℕ0. We define Lee distance by 

 

𝑑𝐿(𝑥, 𝑦) = 𝑤𝐿(𝑥 − 𝑦). 
 

Note that in ℤ4, we have  𝑤𝐿(0) = 0,𝑤𝐿(1) = 𝑤𝐿(3) = 1,𝑤𝐿(2) = 2 .  
 

For more information, see [6]. The concept of Generalized Lee weight for codes over ℤ4, introduced 

by S. T. Dougherty in his seminal paper [1] for the first time. Then this concept was investigated by several 
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authors, for example see [8]. This work is similar to what V. Wei did in [7] for Hamming weight and named 

it as Generalized Hamming Weight (GHW). This recent concept has been studied by several authors, see 

[2], [3], [4] and [5]. 

 

A code of length 𝑛 over ℤ4 is a subset of the free module ℤ4
𝑛 and the code is linear if it is a ℤ4–

submodule of ℤ4
𝑛. 

Suppose that 𝐶 is a code of length 𝑛 over ring ℤ4. The rank of 𝐶 which is denoted by 𝑟𝑎𝑛𝑘(𝐶), is 

defined to be the minimum number of generators of 𝐶. For more information, see [1]. 

 

 

For 1 ≤ 𝑟 ≤ 𝑟𝑎𝑛𝑘(𝐶), we define the 𝑟-th  generalized Lee weight with respect to 𝑟𝑎𝑛𝑘 (GLWR) for 

𝐶, denoted by 𝑑𝑟
𝐿(𝐶), as follows 

 

𝑑𝑟
𝐿(𝐶) = 𝑚𝑖𝑛{𝑤𝑡𝐿(𝐷):𝐷 𝑖𝑠 𝑎 ℤ4 − 𝑠𝑢𝑏𝑚𝑜𝑑𝑢𝑙𝑒 𝑜𝑓 𝐶 𝑤𝑖𝑡ℎ 𝑟𝑎𝑛𝑘(𝐷) = 𝑟}. 

 

Let C be a linear code of length n over ℤ4. Let 𝐴(𝐶) be the |𝐶| × 𝑛 array of all code words in C. 

Each column of A(C) corresponds to the following three cases: 

i) The column contains only 0 

ii) The column contains 0 and 2 equally often 

iii) The column contains all elements of ℤ4 equally often, 

 

we define the Lee support weight of these columns by 0, 2 and 1, respectively. Then we define Lee 

support weight ,𝑤𝑡𝐿(𝐶), by the sum of the Lee support weight of all columns of 𝐴(𝐶). For 

example, if 

 

𝐶 = {(2,0,0), (1,0,2), (0,0,0), (3,0,2), (3,2,2), (1,2,0), (0,2,2), (2,2, 0)} 
 

So we have 

𝐴(𝐶) =

[
 
 
 
 
 
 
 
2
1
0

0
0
0

0
2
0

3 0 2
3
1
0
2

2
2
2
2

2
0
2
0]
 
 
 
 
 
 
 

. 

 

If  𝑐𝑖 denotes the 𝑖-th column of C so we have 𝑤𝑡𝐿(𝑐1)=1, 𝑤𝑡𝐿(𝑐2)=2  and  𝑤𝑡𝐿(𝑐3)=2 . Then we 

obtain 𝑤𝑡𝐿(𝐶) = 1 + 2 + 2 = 5. It is easy to show that if C is generated by one vector 𝑥, then 𝑤𝑡𝐿(𝐶) =
𝑤𝐿(𝑥). In this paper we will show by 𝐶 = [𝑛, 𝑘], the code 𝐶 of length 𝑛 and 𝑟𝑎𝑛𝑘 = 𝑘. 

 

 

 

1 MAIN RESULTS 

 
 

Definition 1.1. Let 𝐶𝑖 be an [𝑛𝑖, 𝑘𝑖]linear code over ℤ4, for 𝑖 = 1,2. Then the direct sum 

of 𝐶1 and 𝐶2 defined by 
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 𝐶1⨁𝐶2 = {(𝑐1, 𝑐2); 𝑐1 ∈ 𝐶1, 𝑐2 ∈ 𝐶2} 
 

 is an [ 𝑛1 + 𝑛2, 𝑘1 + 𝑘2]-linear code over ℤ4.  
 

Theorem 1.2.[1]  Let 𝐶1 and 𝐶2 be an [𝑛; 𝑘1, 𝑘2] codes over ℤ4, then we have  

 

𝑤𝐿(𝐶) =
4

|𝐶|
∑ (𝑤𝐿(𝑥) − 𝑤𝑡(𝑥))𝑥∈𝐶 . 

 

Theorem 1.3.(main result)  Let 𝐶1 and 𝐶2 be linear codes over ℤ4, then we have  

 

𝑑1
𝐿(𝐶1⊕𝐶2) = min {𝑑1

𝐿(𝐶1), 𝑑1
𝐿(𝐶2)}. 

 

Proof. Let 𝑑1
𝐿(𝐶1) ≤ 𝑑1

𝐿(𝐶2). We will show that 𝑑1
𝐿(𝐶1⊕𝐶2) = 𝑑1

𝐿(𝐶1). 
 Suppose that 𝑑1

𝐿(𝐶1) = 𝑤𝐿(𝑐1), where 𝑐1 ∈ 𝐶1. So, (𝑐1, 0) ∈ 𝐶1⊕𝐶2. Since < (𝑐1, 0) > is of rank 

one as a submodule of 𝐶1⊕𝐶2 and its Lee weight satisfy 

 

{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐻) = 1}, 
 also we have 

min{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐻) = 1} = 𝑑1
𝐿(𝐶1⊕𝐶2), 

 

so we obtain 𝑑1
𝐿(𝐶1⊕𝐶2) ≤ 𝑤𝐿(𝑐1, 0). We notice that by using equation (1), we have  

 

𝑤𝐿(𝑐1, 0) = 𝑤𝐿(𝑐1) + 𝑤𝐿(0) = 𝑤𝐿(𝑐1) = 𝑑1
𝐿(𝐶1) ⇒ 

 

𝑑1
𝐿(𝐶1⊕𝐶2) ≤ 𝑑1

𝐿(𝐶1).                  (2) 

 

Now let 𝑑1
𝐿(𝐶1⊕𝐶2) = 𝑤𝐿(𝐷), in which 𝑟𝑎𝑛𝑘(𝐷) = 1. Suppose that 𝐷 =< (𝑐1, 𝑐2) > where 

𝑐1 ∈ 𝐶1 and 𝑐2 ∈ 𝐶2.  Therefore, by using equation (1) and definition of 𝑟-th GLWR, we have 

 

𝑤𝐿(𝐷) = 𝑤𝐿((𝑐1, 𝑐2))

= {

𝑤𝐿(𝑐2) ≥ 𝑑1
𝐿(𝐶2) ≥ 𝑑1

𝐿(𝐶1),                                                                     𝑐1 = 0

𝑤𝐿(𝑐1) ≥ 𝑑1
𝐿(𝐶1),                                              𝑐2 = 0                                                         

𝑤𝐿(𝑐1) + 𝑤𝐿(𝑐2) ≥ 𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2) ≥ 𝑑1
𝐿(𝐶1),                                   𝑐1, 𝑐2 ≠ 0

 

 

 

Hence we obtain 

 

𝑑1
𝐿(𝐶1⊕𝐶2) ≥ 𝑑1

𝐿(𝐶1)     (3) 

 

By using equations (2) and (3), we have 𝑑1
𝐿(𝐶1⊕𝐶2) = 𝑑1

𝐿(𝐶1) . It is desired. 

 

 

 

Theorem 1.4. Let 𝐶1 and 𝐶2 be linear codes over ℤ4, then we have  

 

𝑑2
𝐿(𝐶1⊕𝐶2) = min {𝑑2

𝐿(𝐶1), 𝑑2
𝐿(𝐶2),

1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)]}. 

 

 Proof. Let 𝑑2
𝐿(𝐶1) = 𝑤𝐿(𝐷1), 𝐷1 =< 𝑥1, 𝑦1 > and 𝑑2

𝐿(𝐶2) = 𝑤𝐿(𝐷2), 𝐷2 =< 𝑥2, 𝑦2 >. Let 
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 𝐷 =< (𝑥1, 0), (𝑦1, 0) >. By using theorem (1.2), we have 

 

𝑤𝐿(𝐷) =
4

|𝐷|
∑ (𝑤𝐿(𝛼, 𝛽) − 𝑤𝑡(𝛼, 𝛽))

(𝛼,𝛽)∈𝐷

= 

4

|𝐷1|
∑ (𝑤𝐿(𝛾) − 𝑤𝑡(𝛾))𝛾∈𝐷1 = 𝑤𝐿(𝐷1) = 𝑑2

𝐿(𝐶1). 

 

Note that 𝑤𝐿(𝛼, 𝛽) = 𝑤𝐿(𝛼) + 𝑤𝐿(𝛽),𝑤𝑡(𝛼, 𝛽) = 𝑤𝑡(𝛼) + 𝑤𝑡(𝛽). Since 𝐷 is of rank two and it is 

a submodule of 𝐶1⊕𝐶2, satisfying 

 
{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐷) = 2}, 

 

Also we have  

 

min{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐷) = 2} = 𝑑2
𝐿(𝐶1⊕𝐶2), 

 

so we have 

 

𝑑2
𝐿(𝐶1⊕𝐶2) ≤ 𝑤𝐿(𝐷)(= 𝑑2

𝐿(𝐶1) ) ⇒         
 

𝑑2
𝐿(𝐶1⊕𝐶2) ≤ 𝑑2

𝐿(𝐶1)          (4). 

 

By using the above method for 𝐷′ =< (0, 𝑥2), (0, 𝑦2) >, we obtain 

 

𝑑2
𝐿(𝐶1⊕𝐶2) ≤ 𝑑2

𝐿(𝐶2)   (5) 

 

 

Let 𝑑1
𝐿(𝐶1) = 𝑤𝐿(𝑥); 𝑥 ∈ 𝐶1 and 𝑑1

𝐿(𝐶2) = 𝑤𝐿(𝑦); 𝑦 ∈ 𝐶2. For 𝐷 =< (𝑥, 0), (0, 𝑦) >, we have 

 

𝑤𝐿(𝐷) =
4

|𝐷|
∑ (𝑤𝐿(𝛼, 𝛽) − 𝑤𝑡(𝛼, 𝛽))

(𝛼,𝛽)∈𝐷

=
4

|𝐷|
∑ 𝑤𝐿(𝑐1𝑥, 𝑐2𝑦) − 𝑤𝑡(𝑐1𝑥, 𝑐2𝑦)

𝑐1,𝑐2∈𝑍4

=
4

|𝐷|
∑ 𝑤𝐿(𝑐1𝑥) + 𝑤𝐿(𝑐2𝑦) − 𝑤𝑡(𝑐1𝑥) − 𝑤𝑡(𝑐2𝑦)

𝑐1,𝑐2∈ℤ4

=
1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)] 

 

⇒ 𝑑2
𝐿(𝐶1⊕𝐶2) ≤

1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)]   (6). 

 

By equations (4), (5) and (6), we obtain 

 

𝑑2
𝐿(𝐶1⊕𝐶2) ≤ min {𝑑2

𝐿(𝐶1), 𝑑2
𝐿(𝐶2),

1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)]}             (7). 

 

On the other hand, let 𝑑2
𝐿(𝐶1⊕𝐶2) = 𝑤𝐿(𝐷);𝐷 =< (𝛼1, 𝛽1), (𝛼2, 𝛽2) >. Suppose that 𝑖 number 

of {𝛼1, 𝛼2  } and j number  of {𝛽1, 𝛽2} are independent. This means that 𝑗 = 2 − 𝑡, 𝑡 < 𝑖 ≤ 2. We have 

following three cases: 

 

i) If 𝑖 + 𝑗 > 2 then we have  
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𝑑2
𝐿(𝐶1⊕𝐶2) = 𝑤𝐿(𝐷) =

4

|𝐷|
∑ 𝑤𝐿(𝑐1𝛼1 + 𝑐2𝛼2, 𝑐1𝛽1 + 𝑐2𝛽2) − 𝑤𝑡(𝑐1𝛼1 + 𝑐2𝛼2, 𝑐1𝛽1 + 𝑐2𝛽2)

𝑐1,𝑐1∈ℤ4

>
1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)] ≥ 𝑑2
𝐿(𝐶1⊕𝐶2). 

 

Hence 𝑑2
𝐿(𝐶1⊕𝐶2) > 𝑑2

𝐿(𝐶1⊕𝐶2) which it is a contradiction. 

 

ii) If 𝑖 + 𝑗 < 2, so we have  𝑖 ≠ 0 since 𝐷 is linearly independent. Let 𝑖 = 1 and  𝑗 = 0. Hence 

𝐷 =< (𝛼1, 0), (𝑘𝛼1, 0) >. Assume 

 

𝑟1(𝛼1, 0) + 𝑟2(𝑘𝛼1, 0) = 0  (8) 

 so we have 

 

𝑟1𝛼1 + 𝑟2𝑘𝛼1 = 0 
 

⇒ 𝑟1 + 𝑟2𝑘 = 0  
 

This means that equation (8) has non-zero solution, which it is a contradiction since 𝐷 is linearly 

independent. Therefore we should have 𝑖 + 𝑗 = 2. 

 

iii) If 𝑖 + 𝑗 = 2, let 𝑖 = 𝑡 and 𝑗 = 2 − 𝑡. Hence we have 

 

𝑑2
𝐿(𝐶1⊕𝐶2) = 𝑤𝐿(𝐷) =

{
 

 
1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)],             𝑖 = 𝑗 = 1

𝑑2
𝐿(𝐶2)                                     𝑖 = 0, 𝑗 = 2

𝑑2
𝐿(𝐶1)                                    𝑖 = 2, 𝑗 = 0.

 

 

Therefore, we obtain that 

 

𝑑2
𝐿(𝐶1⊕𝐶2) ≥ min {𝑑2

𝐿(𝐶1), 𝑑2
𝐿(𝐶2),

1

4
[𝑑1
𝐿(𝐶1) + 𝑑1

𝐿(𝐶2)]}             (9). 

 

Equations (7) and (9) complete the proof. 

 

Theorem 2.5.(main result) Let 𝐶𝑖  be linear codes of length 𝑛 over ℤ4 for 𝑖 = 1,2. Then we have 

 

𝑑𝑟
𝐿(𝐶1⊕𝐶2) ≤ min {

1

4𝑟−𝑡
𝑑𝑡
𝐿(𝐶1) +

1

4𝑡
𝑑𝑟−𝑡
𝐿 (𝐶2), 0 ≤ 𝑡 ≤ 𝑟}.  

 

Proof. Consider 𝐷1and 𝐷2 be submodules of rank 𝑡 and 𝑟 − 𝑡, respectively, where 

 
𝑑𝑡
𝐿(𝐶1) = 𝑤𝑡𝐿(𝐷1); 𝐷1 =< 𝑥1, 𝑥2, … , 𝑥𝑡 >, 𝑥𝑖 ∈ ℤ4 , 

 

 

𝑑𝑟−𝑡
𝐿 (𝐶2) = 𝑤𝑡𝐿(𝐷2); 𝐷2 =< 𝑦1, 𝑦2, … , 𝑦𝑟−𝑡 >, 𝑦𝑖 ∈ ℤ4. 

 

Let 𝐷 =< (𝑥1, 0),… , (𝑥𝑡, 0), (0, 𝑦1 ), … , (0, 𝑦𝑟−𝑡) >. So we have 𝑟𝑎𝑛𝑘(𝐷) = 𝑟. We have 
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𝑤𝑡𝐿𝐷 =
4

|𝐷|
[∑𝑤𝐿(𝑥𝑖) − 𝑤𝑡(𝑥𝑖)

𝑡

𝑖=1

+∑𝑤𝐿(𝑦𝑗) − 𝑤𝑡(𝑦𝑗)

𝑟−𝑡

𝑗=1

] = 

 
1

4𝑟−𝑡
𝑑𝑡
𝐿(𝐶1) +

1

4𝑡
𝑑𝑟−𝑡
𝐿 (𝐶2). 

 
Since 𝐷 is of rank 𝑟, satisfying 

 

{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐷) = 𝑟}, 
 

also we have 

 

min{𝑤𝐿(𝐻);𝐻 ≤ 𝐶1⊕𝐶2, 𝑟𝑎𝑛𝑘(𝐷) = 𝑟} (= 𝑑𝑟
𝐿(𝐶1⊕𝐶2)), 

 

so we obtain 𝑑𝑟
𝐿(𝐶1⊕𝐶2) ≤  𝑤𝑡𝐿𝐷 =

1

4𝑟−𝑡
𝑑𝑡
𝐿(𝐶1) +

1

4𝑡
𝑑𝑟−𝑡
𝐿 (𝐶2). The proof is completed. 
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