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ABSTRACT

Let C be a linear code of length n over Z,. The Lee support weight of C, denoted by wt; (C), is the
sum of Lee weights of all columns of A(C) that A(C) is the |C| x n array of all code words in C. For 1 <
r < rank(C), the r-th generalized Lee weight with respect to rank (GLWR) for C, denoted by dZ(C), is
defined the minimum of all Lee weights of Z,-submodules of C with rank = r. In other words

dL(C) = min{wt,(D); D is a Z, — submodule of C,rank(D) = 7 }.

For linear codes C; and C, over Z, of length n,and n,, respectively, the Direct Sum of them ,denoted
by C,®C,, is defined as follows:

C1BC; = {(c1,¢3); ¢1 € Cp,c5 € Gy}
Motivated by finding d%(C; @ C,) interms of dk(C,) and d%(C,), we investigated d:(C, @ C,)

and we obtained dL(C, @ C,) for r = 1,2. Moreover, we generally obtained an upper bound for
d-(C, ® C,) forallr, 1 <r < rank(C, ® C,).

EYWORDS: Linear code, Hamming Weight, Lee Weight, Generalized Lee Weight, Direct Sum of
Codes.

INTRODUCTION
Let Z,,, be alphabet. The Lee Weight of an integer i, for 0 < i < m is defined as follows:
wy (1) = min{i,m — i}.
The Lee metric on Z7, is defined by
wi(a) = Xizgwi(a;) 1)
Where the sum is defined in N,. We define Lee distance by
dp,(x,y) = wy(x = y).
Note that in Z4, we have w;(0) =0,w, (1) =w;(3) =1, w;(2) = 2.

For more information, see [6]. The concept of Generalized Lee weight for codes over Z,, introduced
by S. T. Dougherty in his seminal paper [1] for the first time. Then this concept was investigated by several
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authors, for example see [8]. This work is similar to what V. Wei did in [7] for Hamming weight and named
it as Generalized Hamming Weight (GHW). This recent concept has been studied by several authors, see
[2], [3], [4] and [3].

A code of length n over Z, is a subset of the free module Z} and the code is linear if it is a Z,—
submodule of Z.

Suppose that C is a code of length n over ring Z,. The rank of C which is denoted by rank(C), is
defined to be the minimum number of generators of C. For more information, see [1].

For1 <r < rank(C), we define the r-th generalized Lee weight with respect to rank (GLWR) for
C, denoted by dk(C), as follows

d:(C) = min{wt, (D): D is a Z, — submodule of C withrank(D) = r}.

Let C be a linear code of length n over Z,. Let A(C) be the |C| x n array of all code words in C.
Each column of A(C) corresponds to the following three cases:

i) The column contains only 0

i) The column contains 0 and 2 equally often

iii) The column contains all elements of Z, equally often,

we define the Lee support weight of these columns by 0, 2 and 1, respectively. Then we define Lee
support weight ,wt; (C), by the sum of the Lee support weight of all columns of A(C). For

example, if
¢ ={(2,0,0),(1,0,2),(0,0,0), (3,0,2), (3,2,2),(1,2,0),(0,2,2), (2,2, 0)}
So we have
2 0 07
1 0 2
0 0 0
_13 0 2
AC) = 3 2 2|
1 2 0
0 2 2
2 2 0

If ¢; denotes the i-th column of C so we have wt; (c;)=1, wt;(c,)=2 and wt;(c3)=2 . Then we
obtain wt;(C) =1+ 2+ 2 = 5. It is easy to show that if C is generated by one vector x, then wt, (C) =
wy, (x). In this paper we will show by C = [n, k], the code C of length n and rank = k.

1 MAIN RESULTS

Definition 1.1. Let C; be an [n;, k;]linear code over Z,, for i = 1,2. Then the direct sum
of C; and C, defined by
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C1@0C; = {(c1,¢3); ¢ € Cp,¢c;5 € Gy}
isan [ ny + ny, k; + k,]-linear code over Z,.

Theorem 1.2.[1] Let C; and C, be an [n; kq, k,] codes over Z,, then we have
w1 () = 15 xec(wy () — wE ().

Theorem 1.3.(main result) Let C; and C, be linear codes over Z,, then we have

d1(C; @ C3) = min{d{(Cy), di(C2)}-
Proof. Let d%(C;) < d(C,). We will show that d¥ (C; @ C,) = di(Cy).
Suppose that d¥(C;) = wy(c,), where ¢; € C;. S0, (c1,0) € C; @ C,. Since < (cy,0) > is of rank

one as a submodule of C; @ C, and its Lee weight satisfy
{w,(H);H < C; @ Cp,rank(H) = 1},
also we have
min{w;, (H); H < C; @ Cy, rank(H) = 1} = d7(C; @ C,),
so we obtain d¥(C; @ C,) < w;(cy, 0). We notice that by using equation (1), we have
wy,(c1,0) = wy(c1) + wi(0) = wy(cy) = di(Cy) =
di(C, @ C;) < di(Cy). )

Now let d2(C; @ C,) = w, (D), in which rank(D) = 1. Suppose that D =< (¢4, ¢;) > Where
c; € Cy and ¢, € C,. Therefore, by using equation (1) and definition of r-th GLWR, we have

w,(D) = WL((CIJ Cz))

WL(CZ) 2 d%(CZ) 2 d%(cl)J Cl = O
= {w(c) = di(Cy), ;=0
wy (1) + wi(cy) = di(Cy) + di(C) = di(Cy), €1, #0

Hence we obtain
di(C, ® C) =di(C) ()

By using equations (2) and (3), we have di(C; @ C,) = di(C,) . It is desired.

Theorem 1.4. Let C; and C, be linear codes over Z,, then we have
d}(C, @ C2) = min{d5(Cy), b (C), [dL(Cy) + dH(C)T}.

PI’OOf Let dé‘(Cl) = WL(Dl)l D1 =< X1, Y1 > and d%(CZ) = WL(DZ)'DZ =< X2,¥Y2 >. Let
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D =< (x4,0), (¥1,0) >. By using theorem (1.2), we have

4
w,(D) = W(Q;ED(WL(“' B) — wt(a, B)) =

o7 Zyen, WL (Y) = we(r)) = wy (D) = d3(Cy).

Note that w; (a, 8) = w,(a) + w (B), wt(a, B) = wt(a) + wt(B). Since D is of rank two and it is
a submodule of C; @ C,, satisfying

{w,(H);H < C, & Cy,rank(D) = 2},
Also we have
min{w, (H); H < C; @ Cy, rank(D) = 2} = d5(C, @ C,),
so we have
d3(C, @ ;) <w, (D)(=d5(Cy)) =
d3(C; ® C) <dz(C)  (4).
By using the above method for D' =< (0, x3), (0,y,) >, we obtain

d5(C, @ Cy) < d5(Cy) (5)

Let d2(C)) = w,(x);x € C; and d4(C,) = w,(v); y € C,. For D =< (x,0),(0,y) >, we have

4 4
w®@) =155 ) (@) —wi@p) =155 D wilerx,e2y) — wi(erx,e)

(a,B)ED C1,C2€Zy

4 1
= ] Z wi(c1%) + wi(cy) — wt(cyx) — wt(cy) = 7 [di(Cy) + dk(Cy)]

C1,C2€Zy4
> d5(C, @ Cp) <[dH(C) +db(Cy)] (6).
By equations (4), (5) and (6), we obtain
d5(C, @ C7) < min{d}(Cy), d5(C2), 5 [d4(Cy) + AL (C)} ().

On the other hand, let d5(C; @ C,) = w,.(D); D =< (ay, B1), (a3, B,) >. Suppose that i number
of {a;, @, }and j number of {f,, B,} are independent. Thismeansthat j = 2 —t,t <i < 2. We have
following three cases:

i) If i +j > 2 then we have
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4
d3(C, ®C,) =w, (D) = m Z wy,(Cray + oy, ¢1 01 + C2B2) — wi(ciay + caap,¢161 + €282)

C1,C1€Z4
1
> Z [d}(Cy) + di(Cx)] = d5(Cy @ Cp).
Hence d5(C, @ C,) > d5(C, @ C,) which it is a contradiction.

i) Ifi +j < 2,s0wehave i # 0since D is linearly independent. Leti = 1 and j = 0. Hence
D =< (a4,0), (kaq,0) >. Assume

Tl(al, 0) + T‘z(kal,O) = 0 (8)
so we have

"aq + rzkal =0
= ™ + rzk =0

This means that equation (8) has non-zero solution, which it is a contradiction since D is linearly
independent. Therefore we should have i +j = 2.

iii) Ifi+j=2leti =tandj = 2 —t. Hence we have
(11 i .
Z[dl (C1) +d7(Cr)], i=j=1
L — —
dZ(Cl@CZ)_WL(D)_id%(CZ) iZO,jZZ
ak(c) i=2,j=0.

Therefore, we obtain that
d5(C, @ C3) = min{d4(Cy), d5(C,),5 [dE(Cy) + db(C)T} 9).
Equations (7) and (9) complete the proof.

Theorem 2.5.(main result) Let C; be linear codes of length n over Z, for i = 1,2. Then we have

1

dL(C, @ C;) < min {4r_t

1
dH(C) + 57 dk((C), 0t r}.

Proof. Consider D;and D, be submodules of rank t and r — t, respectively, where

d%(cl) = WtL(Dl)' D1 =<< X1, X, ey Xt >,xi S Z4 y

df_(Cy) = wty(Dy); Dy =< y1,¥2, wo0s Yot >, Vi € Ly,

Let D =< (x1,0), ..., (x,,0),(0,,),...,(0,¥._,) >. So we have rank(D) = r. We have
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4 t r—t
wt, D = DI Z wy () —wt(x;) + Z wi(y;) — we(y;)| =
i=1 j=1

1
47—t

dE(Cy) + b (C2).
Since D is of rank r, satisfying

{fw,(H); H<C; @ C,,rank(D) =1},
also we have

min{w, (H); H < C; @ Gy, rank(D) =1} (= dz(C; © (3)),

S0 we obtain d:(C,; @ C,) < wt, D = ﬁ dk(c,) + %dﬁ_t(cz). The proof is completed.
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