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Abstract

Let G be a dicyclic group and I'(G) be the attached graph related to its conjugacy classes, which is defined
as: the vertices of I'(G) are represented by the non-central conjugacy classes of G and two distinct vertices
2% and y“ are connected with an edge if (o(x),0(y)) > 1. In this paper, we calculate the clique number

and the girth of I'(G) for dicyclic groups of orders 4p, 8p, 4p?, 4pq and 2™.
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1 Introduction and Preliminaries

There are many possible ways for associating a graph with a group, for the purpose of investigating these
algebraic structures using properties of the associated graph, see for example [[1], [2], [5], [7]]. Let G be a
finite group and V(G) be the set of all non-central conjugacy classes of G. From orders of representatives
of conjugacy classes, the following conjugacy class graph I'(G) was introduced in [8]: its vertex set is the
set V(G) and two distinct vertices ¢ and y“ are connected with an edge if (o(x),0(y)) > 1. This graph
has been widely studied. See, for instance [3] and [6]. A subset X of the vertices of I' is called a clique if
the induced subgraph on X is a complete graph. The maximum size of a clique in a graph I is called the
clique number of I' and is denoted by w(I'). A graph I' is connected if there is a path between each pair of
the vertices of I'. The length of the shortest cycle in a graph I' is called the girth of I' and is denoted by
girth(T). Recall that Dic, = {a,b | a®® = 1,a™ = b*,b=tab = o™ ') is a dicyclic group of order 4n (n > 2).
In this paper, we calculate the clique number and the girth of conjugacy class graph of dicycle groups of
orders 4p, 8p, 4p?, 4pq and 2™, where p and ¢ are two odd primes and m in a natural number.

Lemma 1.1. [}/ The group G = Dic,, has precisely (n+ 3) conjugacy classes:
{1}7 {an}7 {ai7 aii}(l S { S n— 1)7 {a2jb7 0 S .7 S n— 1}7 {a2j+1ba 0 S ] S n— 1}
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Lemma 1.2. [}/ Let G = Dic, be a dicyclic group of order 4n (n > 2). If g; for 1 < i < n+ 3 are the
representatives of the conjugacy classes of G, then we have table 1:

a

a"(1<r<n-1)
o(gi) | 1| 2

Table 1: Representatives of the conjugacy classes of a dicyclic group of order 4n
gi |1]a"

b | ab
2n

(2n,r) 4 4

Lemma 1.3. Let G = Dic,, be a dicyclic group of order 4n (n > 2). If n = p, where p is an odd prime,
2.

then the number of conjugacy classes of G with representatives of type a” (1 < r < n—1) are given in Table

Table 2: Representatives of type a” in dicyclic groups of order 4p
o(a") (1 <r <n-—1) | The number of conjugacy classes of G with representatives of type a"
o) _ p—1
3 G — o1
e(2p) _ p—
2p =5
Table 3.

Lemma 1.4. Let G = Dic, be a dicyclic group of order 4n (n > 2). If n = p?, where p is an odd prime,
then the number of the conjugacy classes of G with representative of type a” (1 < r < n — 1) are listed in

Table 3: Representatives of type a” in dicyclic groups of order 4p?
o(a") (1 <r<n-—1) | The number of conjugacy classes of G with representatives of type a”
92 e(2p%) _ pp—1)
. (22) - ( 21)
2 e(?) _ plp—
P 2, )— 2
©(2p) _ p—
2p o=

Lemma 1.5. Let G = Dic,, be a dicyclic group of order 4n (n > 2). If n = pq, where p and q are distinct
odd primes, then the number of conjugacy classes of G with representatives of type a” (1 <r <n —1) are
listed in Table 4.

Table 4: Representatives of type a” in dicyclic groups of order 4pq
o(a") (1 <r <n-—1) | The number of conjugacy classes of G with representatives of type a”

2pq %(221711) _ (pfl)z(qfl)
g <p(§q) _ (p—1)2(q—1)
p el) _ el

2p elfe) — 2

g 2 - o1

2 200 — ot

5.

Lemma 1.6. Let G = Dic,, be a dicyclic group of order 4n (n > 2). If n = 2p, where p is an odd prime,
then the number of conjugacy classes of G with representatives of type a” (1 < r < n—1) are given in Table
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Table 5: Representatives of type a” in dicyclic groups of order 8p

o(a") (1 <r <n—1) | The number of conjugacy classes of G with representatives of type a”
2 <p(§p) _ pT—l
!
4p @ =p—1
P 9"(5’)4; on
4 Hr=1

In the following examples, we draw the conjugacy class graphs of some dicyclic groups.

Example 1.7. By Table 2 and Table 5, the conjugacy class graphs of dicyclc groups of orders 24 and 28
are given in Figure 1 and Figure 2, respectively.

Figure 1: Conjugacy class graph of Dicg

Figure 2: Conjugacy class graph of Dicy

2 Main results

Theorem 2.1. Let G = Dicy, be a dicyclic group of order 4n.

i) If n = p, where p is odd prime, then w(I'(Dicy)) = p—1 for p > 5 and w(I'(Dic3)) = 3. Also,
girth(I'(Dicy)) = 3 for p > 3.
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i) If n = p?, where p is an odd prime, then w(I'(Dic,2)) = p* — 1 and girth(I'(Dic,2)) = 3.

i) If n = pq, where p and q are distinct odd primes, such that p > q, then w(I'(Dicyq)) = q(p — 1) and
girth(I'(Dicyg)) = 3.

i) If n = 2p, where p is an odd prime, then w(I'(Dicgp)) = 2(p — 1) for p > 7 and w(I'(Dicyy)) = #
for p=3,5. Also girth(I'(Dicyp)) = 3 for p > 3.

v) If n = 2™, where m is a positive integer, then w(I'(Dicam)) = 2™ + 1 and girth(I'(Dicom)) = 3.
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