

Combinatorics, Cryptography, Computer Science and Computing

November: 17-18, 2021

On the conjugacy class graphs of some dicyclic groups

Zeinab Foruzanfar¹

Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Mehdi Rezaei

Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Abstract

Let G be a dicyclic group and $\Gamma(G)$ be the attached graph related to its conjugacy classes, which is defined as: the vertices of $\Gamma(G)$ are represented by the non-central conjugacy classes of G and two distinct vertices x^G and y^G are connected with an edge if (o(x), o(y)) > 1. In this paper, we calculate the clique number and the girth of $\Gamma(G)$ for dicyclic groups of orders $4p, 8p, 4p^2, 4pq$ and 2^m .

Keywords: Dicyclic group, Conjugacy class, Clique number, Girth Mathematics Subject Classification [2010]: 05C25, 20D60

1 Introduction and Preliminaries

There are many possible ways for associating a graph with a group, for the purpose of investigating these algebraic structures using properties of the associated graph, see for example [[1], [2], [5], [7]]. Let G be a finite group and V(G) be the set of all non-central conjugacy classes of G. From orders of representatives of conjugacy classes, the following conjugacy class graph $\Gamma(G)$ was introduced in [8]: its vertex set is the set V(G) and two distinct vertices x^G and y^G are connected with an edge if (o(x), o(y)) > 1. This graph has been widely studied. See, for instance [3] and [6]. A subset X of the vertices of Γ is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in a graph Γ is called the clique number of Γ and is denoted by $\omega(\Gamma)$. A graph Γ is connected if there is a path between each pair of the vertices of Γ . The length of the shortest cycle in a graph Γ is called the girth of Γ and is denoted by girth(Γ). Recall that $Dic_n = \langle a, b \mid a^{2n} = 1, a^n = b^2, b^{-1}ab = a^{-1} \rangle$ is a dicyclic group of order 4n $(n \geq 2)$. In this paper, we calculate the clique number and the girth of conjugacy class graph of dicycle groups of orders $4p, 8p, 4p^2, 4pq$ and 2^m , where p and q are two odd primes and m in a natural number.

Lemma 1.1. [4] The group $G = Dic_n$ has precisely (n+3) conjugacy classes: $\{1\}, \{a^n\}, \{a^i, a^{-i}\} (1 \le i \le n-1), \{a^{2j}b, 0 \le j \le n-1\}, \{a^{2j+1}b, 0 \le j \le n-1\}.$

 1 speaker

Lemma 1.2. [4] Let $G = Dic_n$ be a dicyclic group of order $4n \ (n \ge 2)$. If g_i for $1 \le i \le n+3$ are the representatives of the conjugacy classes of G, then we have table 1:

Table 1: Representatives of the conjugacy classes of a dicyclic group of order 4n

g_i	1	a^n	$a^r \ (1 \le r \le n-1)$	b	ab
$o(g_i)$	1	2	$\frac{2n}{(2n,r)}$	4	4

Lemma 1.3. Let $G = Dic_n$ be a dicyclic group of order $4n \ (n \ge 2)$. If n = p, where p is an odd prime, then the number of conjugacy classes of G with representatives of type $a^r \ (1 \le r \le n-1)$ are given in Table 2.

	+		•	0	-	1	
$o(a^r) \ (1 \le r \le n-1)$	The number of	conjugacy	classes of	f G	with	$\operatorname{representatives}$	of type a^r
p			$\frac{\varphi(p)}{2} =$	$= \frac{p}{2}$	1		
2p			$\frac{\varphi(2p)}{2} =$	$= \frac{p}{2}$	$\frac{-1}{2}$		

Table 2: Representatives of type a^r in dicyclic groups of order 4p

Lemma 1.4. Let $G = Dic_n$ be a dicyclic group of order $4n \ (n \ge 2)$. If $n = p^2$, where p is an odd prime, then the number of the conjugacy classes of G with representative of type $a^r \ (1 \le r \le n-1)$ are listed in Table 3.

$o(a^r) \ (1 \le r \le n-1)$	The number of conjugacy classes of G with representatives of type a^r
$2p^2$	$\frac{\varphi(2p^2)}{2} = \frac{p(p-1)}{2}$
p^2	$\frac{\varphi(p^2)}{2} = \frac{p(p-1)}{2}$
p	$rac{arphi(p)}{2} = rac{p-1}{2}$
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$

Table 3: Representatives of type a^r in dicyclic groups of order $4p^2$

Lemma 1.5. Let $G = Dic_n$ be a dicyclic group of order $4n \ (n \ge 2)$. If n = pq, where p and q are distinct odd primes, then the number of conjugacy classes of G with representatives of type $a^r \ (1 \le r \le n-1)$ are listed in Table 4.

$o(a^r) \ (1 \le r \le n-1)$	The number of conjugacy classes of G with representatives of type a^r
2pq	$\frac{\varphi(2pq)}{2} = \frac{(p-1)(q-1)}{2}$
pq	$\frac{\varphi(pq)}{2} = \frac{(p-1)(q-1)}{2}$
p	$rac{arphi(p)}{2}=rac{p-1}{2}$
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$
q	$rac{arphi(q)}{2} = rac{q-1}{2}$
2q	$\frac{\varphi(2q)}{2} = \frac{q-1}{2}$

Table 4: Representatives of type a^r in dicyclic groups of order 4pq

Lemma 1.6. Let $G = Dic_n$ be a dicyclic group of order $4n \ (n \ge 2)$. If n = 2p, where p is an odd prime, then the number of conjugacy classes of G with representatives of type $a^r \ (1 \le r \le n-1)$ are given in Table 5.

$o(a^r) \ (1 \le r \le n-1)$	The number of conjugacy classes of G with representatives of type a^r
2p	$\frac{\varphi(2p)}{2} = \frac{p-1}{2}$
4p	$\frac{\varphi(4p)}{2} = p - 1$
p	$\frac{\varphi(p)}{2} = \frac{p-1}{2}$
4	$\frac{\varphi(4)}{2} = 1$

Table 5: Representatives of type a^r in dicyclic groups of order 8p

In the following examples, we draw the conjugacy class graphs of some dicyclic groups.

Example 1.7. By Table 2 and Table 5, the conjugacy class graphs of dicyclc groups of orders 24 and 28 are given in Figure 1 and Figure 2, respectively.

Figure 1: Conjugacy class graph of Dic_6

Figure 2: Conjugacy class graph of *Dic*₇

2 Main results

Theorem 2.1. Let $G = Dic_n$ be a dicyclic group of order 4n.

i) If n = p, where p is odd prime, then $\omega(\Gamma(Dic_p)) = p - 1$ for $p \ge 5$ and $\omega(\Gamma(Dic_3)) = 3$. Also, $girth(\Gamma(Dic_p)) = 3$ for $p \ge 3$.

- ii) If $n = p^2$, where p is an odd prime, then $\omega(\Gamma(Dic_{p^2})) = p^2 1$ and $girth(\Gamma(Dic_{p^2})) = 3$.
- iii) If n = pq, where p and q are distinct odd primes, such that p > q, then $\omega(\Gamma(Dic_{pq})) = q(p-1)$ and $girth(\Gamma(Dic_{pq})) = 3$.
- iv) If n = 2p, where p is an odd prime, then $\omega(\Gamma(Dic_{2p})) = 2(p-1)$ for $p \ge 7$ and $\omega(\Gamma(Dic_{2p})) = \frac{3p+3}{2}$ for p = 3, 5. Also girth $(\Gamma(Dic_{2p})) = 3$ for $p \ge 3$.
- v) If $n = 2^m$, where m is a positive integer, then $\omega(\Gamma(Dic_{2^m})) = 2^m + 1$ and $girth(\Gamma(Dic_{2^m})) = 3$.

References

- A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), pp. 468–492.
- [2] E. A. Bertram, Some applications of graph theory to finite groups, Discrete Math., 44 (1983), pp. 31–43.
- [3] Z. Foruzanfar, and Z. Mostaghim, Classification of non-solvable groups with a given property, Proc. Math. Sci., 125(1) (2015), pp. 29–36.
- [4] G. James, and M. Liebeck, Representations and Characters of Groups, Cambridge University Press, 1993.
- [5] A. R. Moghaddamfar, W. J. Shi, W. Zhou, and A. R. Zokayi, On non-commuting graph associated with a finite group, Siberian Math. J., 46 (2005), pp. 325–332.
- [6] M. Rezaei, and Z. Foruzanfar, Classification of solvable groups with a given property, Bull. Iranian Math. Soc., 43(6) (2017), pp. 1791–1800.
- [7] Y. Segev, The commuting graph of minimal nonsolvable groups, Geom. Dedicata., 88(13) (2001), pp. 55–66.
- [8] X. You, and G. Qian, A new graph related to conjugacy classes of finite groups, Chinese Ann. Math. Ser. A, 28(5)(2007), pp. 631–636.

Email: zforouzanfar@gmail.com, z.forozanfar@bzeng.ikiu.ac.ir Email: mehdrezaei@gmail.com, m.rezaei@bzeng.ikiu.ac.ir