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Abstract

Let G be a dicyclic group and Γ(G) be the attached graph related to its conjugacy classes, which is defined
as: the vertices of Γ(G) are represented by the non-central conjugacy classes of G and two distinct vertices
xG and yG are connected with an edge if (o(x), o(y)) > 1. In this paper, we calculate the clique number
and the girth of Γ(G) for dicyclic groups of orders 4p, 8p, 4p2, 4pq and 2m.
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1 Introduction and Preliminaries

There are many possible ways for associating a graph with a group, for the purpose of investigating these
algebraic structures using properties of the associated graph, see for example [[1], [2], [5], [7]]. Let G be a
finite group and V (G) be the set of all non-central conjugacy classes of G. From orders of representatives
of conjugacy classes, the following conjugacy class graph Γ(G) was introduced in [8]: its vertex set is the
set V (G) and two distinct vertices xG and yG are connected with an edge if (o(x), o(y)) > 1. This graph
has been widely studied. See, for instance [3] and [6]. A subset X of the vertices of Γ is called a clique if
the induced subgraph on X is a complete graph. The maximum size of a clique in a graph Γ is called the
clique number of Γ and is denoted by ω(Γ). A graph Γ is connected if there is a path between each pair of
the vertices of Γ. The length of the shortest cycle in a graph Γ is called the girth of Γ and is denoted by
girth(Γ). Recall that Dicn = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉 is a dicyclic group of order 4n (n ≥ 2).
In this paper, we calculate the clique number and the girth of conjugacy class graph of dicycle groups of
orders 4p, 8p, 4p2, 4pq and 2m, where p and q are two odd primes and m in a natural number.

Lemma 1.1. [4] The group G = Dicn has precisely (n + 3) conjugacy classes:
{1}, {an}, {ai, a−i}(1 ≤ i ≤ n− 1), {a2jb, 0 ≤ j ≤ n− 1}, {a2j+1b, 0 ≤ j ≤ n− 1}.
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Lemma 1.2. [4] Let G = Dicn be a dicyclic group of order 4n (n ≥ 2). If gi for 1 ≤ i ≤ n + 3 are the
representatives of the conjugacy classes of G, then we have table 1:

Table 1: Representatives of the conjugacy classes of a dicyclic group of order 4n
gi 1 an ar (1 ≤ r ≤ n− 1) b ab

o(gi) 1 2 2n
(2n,r) 4 4

Lemma 1.3. Let G = Dicn be a dicyclic group of order 4n (n ≥ 2). If n = p, where p is an odd prime,
then the number of conjugacy classes of G with representatives of type ar (1 ≤ r ≤ n− 1) are given in Table
2.

Table 2: Representatives of type ar in dicyclic groups of order 4p
o(ar) (1 ≤ r ≤ n− 1) The number of conjugacy classes of G with representatives of type ar

p ϕ(p)
2 = p−1

2

2p ϕ(2p)
2 = p−1

2

Lemma 1.4. Let G = Dicn be a dicyclic group of order 4n (n ≥ 2). If n = p2, where p is an odd prime,
then the number of the conjugacy classes of G with representative of type ar (1 ≤ r ≤ n − 1) are listed in
Table 3.

Table 3: Representatives of type ar in dicyclic groups of order 4p2

o(ar) (1 ≤ r ≤ n− 1) The number of conjugacy classes of G with representatives of type ar

2p2 ϕ(2p2)
2 = p(p−1)

2

p2 ϕ(p2)
2 = p(p−1)

2

p ϕ(p)
2 = p−1

2

2p ϕ(2p)
2 = p−1

2

Lemma 1.5. Let G = Dicn be a dicyclic group of order 4n (n ≥ 2). If n = pq, where p and q are distinct
odd primes, then the number of conjugacy classes of G with representatives of type ar (1 ≤ r ≤ n − 1) are
listed in Table 4.

Table 4: Representatives of type ar in dicyclic groups of order 4pq
o(ar) (1 ≤ r ≤ n− 1) The number of conjugacy classes of G with representatives of type ar

2pq ϕ(2pq)
2 = (p−1)(q−1)

2

pq ϕ(pq)
2 = (p−1)(q−1)

2

p ϕ(p)
2 = p−1

2

2p ϕ(2p)
2 = p−1

2

q ϕ(q)
2 = q−1

2

2q ϕ(2q)
2 = q−1

2

Lemma 1.6. Let G = Dicn be a dicyclic group of order 4n (n ≥ 2). If n = 2p, where p is an odd prime,
then the number of conjugacy classes of G with representatives of type ar (1 ≤ r ≤ n− 1) are given in Table
5.
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Table 5: Representatives of type ar in dicyclic groups of order 8p
o(ar) (1 ≤ r ≤ n− 1) The number of conjugacy classes of G with representatives of type ar

2p ϕ(2p)
2 = p−1

2

4p ϕ(4p)
2 = p− 1

p ϕ(p)
2 = p−1

2

4 ϕ(4)
2 = 1

In the following examples, we draw the conjugacy class graphs of some dicyclic groups.

Example 1.7. By Table 2 and Table 5, the conjugacy class graphs of dicyclc groups of orders 24 and 28
are given in Figure 1 and Figure 2, respectively.

Figure 1: Conjugacy class graph of Dic6

Figure 2: Conjugacy class graph of Dic7

2 Main results

Theorem 2.1. Let G = Dicn be a dicyclic group of order 4n.

i) If n = p, where p is odd prime, then ω(Γ(Dicp)) = p − 1 for p ≥ 5 and ω(Γ(Dic3)) = 3. Also,
girth(Γ(Dicp)) = 3 for p ≥ 3.
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ii) If n = p2, where p is an odd prime, then ω(Γ(Dicp2)) = p2 − 1 and girth(Γ(Dicp2)) = 3.

iii) If n = pq, where p and q are distinct odd primes, such that p > q, then ω(Γ(Dicpq)) = q(p − 1) and
girth(Γ(Dicpq)) = 3.

iv) If n = 2p, where p is an odd prime, then ω(Γ(Dic2p)) = 2(p − 1) for p ≥ 7 and ω(Γ(Dic2p)) = 3p+3
2

for p = 3, 5. Also girth(Γ(Dic2p)) = 3 for p ≥ 3.

v) If n = 2m, where m is a positive integer, then ω(Γ(Dic2m)) = 2m + 1 and girth(Γ(Dic2m)) = 3.
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