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 ABSTRACT 

In this paper, we consider a type of security game in cyber space that called the cybersecurity game. 

In many of real-world applications, the information and data are vague and inaccurate. In this paper, 

vagueness and imprecision are modelled by fuzzy theory. The game payoffs are represented by the 

neutrosophic fuzzy numbers. The problem is formulated as a bi-level programming problem with fuzzy 

coefficients. The nearest interval approximation of neutrosophic fuzzy numbers is used to transform the 

problem to a bi-level programming problem with interval parameters. Using KKT conditions, the problem 

is rewritten into a single-level programming problem which can be solved by any solver. Finally, a 

numerical example is presented to consider the validity and applicability of the proposed method.  
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1 INTRODUCTION 

The digital world has created a new threat which is called cyber warfare. Since information and 

communication technologies have developed to such an extent which become a major element of national 

power, cyber warfare has become a day problem. The critical infrastructures such as nuclear power plants, 

airports and oil pipelines are vulnerable under attacks. In cyber space, there are many weapons, such as 

upgraded viruses, trojan horses, worms, social engineering, flooding Denial-of-service (DOS), Distributed 

Denial-of-service (DDOS) or botnets, and advanced persistent threat (APTS).  

Game theory provides a mathematical approach for deploying limited security resources to maximize 

their effectiveness. The connection between game theory and security has been studied for the last several 

decades [2,3,4]. Cybersecurity games are between a defender and an attacker. In this game defender try to 

detect the vulnerability. Detecting a vulnerability by the defender has two main implications on cyber 

weapons: 1) It makes the attacker’s weapon exploiting the vulnerability ineffective and 2),  he enhances the 

target’s defence. The security games are studied by several authors [3,5]. Milind Tambe [5], in the “security 

game” book, reviewed the different works in this field. In this book, the applications of these games are 

studied in real world and the different approaches are considered to solve security game problems. 

Since the payoffs of these games depend on the expert opinions, they are usually involved vagueness 

due to the lack of information and/or imprecision. For this purpose, the authors are considered these games 

with fuzzy payoffs. Studies of fuzzy games have been made by incorporating fuzzy set theory[1-4].  

In this paper, we consider the cybersecurity game in which players' payoffs are expressed as fuzzy 

numbers and players’ pure and mixed strategies are assumed to be crisp. We propose a fuzzy bi-level model 

for these games. 

The remainder of this paper is organized as follows. In section 2, some preliminaries and definitions 

of fuzzy sets are presented. In Section 3, a method is proposed to solve the cyber security games with fuzzy 
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payoffs. In Section 4, a numerical example is presented to illustrate the mathematical approach. Conclusion 

is made in Section 5.  

 

2 PRELIMINARIES 

In this section, we provide some definitions and preliminaries that are required in this paper. The 

notations are taken from reference [4]. 

Definition2.1. Let 𝑋 be a space of points (objects) with a generic element in 𝑋 denoted by 𝑥 i.e. 𝑥 ∈

𝑋. A neutrosophic set 𝐴̃ in 𝑋 is characterized by truth-membership function 𝑇𝐴̃, indeterminacy-

membership function 𝐼𝐴̃ and falsity-membership function 𝐹𝐴̃, where 𝑇𝐴̃, 𝐼𝐴̃, 𝐹𝐴̃: 𝑋 → [0,1] that means 

𝑇𝐴̃, 𝐼𝐴̃, 𝐹𝐴̃ are the real standard or nonstandard subset of (0−, 1+).  

Definition2.2. A single-valued neutrosophic set 𝐴̃ in a universe of discourse 𝑋, is given by 𝐴̃ =

{⟨𝑥, (𝑇𝐴̃, 𝐼𝐴̃, 𝐹𝐴̃)⟩: 𝑥 ∈ 𝑋}, where 𝑇𝐴̃, 𝐼𝐴̃, 𝐹𝐴̃: 𝑋 → [0,1]  with the condition 

0 ≤ 𝑇𝐴̃(𝑥) + 𝐼𝐴̃(𝑥) + 𝐹𝐴̃(𝑥) ≤ 3, ∀𝑥 ∈ 𝑋 

Definition2.3. A generalized single-valued triangular neutrosophic number 𝐴̃ with the set of 

parameters 𝑐1
𝐹 ≤ 𝑏1

𝐼 ≤ 𝑎1
𝑇 ≤ 𝑐2 ≤ 𝑏2 ≤ 𝑎2 ≤ 𝑎3

𝑇 ≤ 𝑏3
𝐼 ≤ 𝑐3

𝐹 denotes as 𝐴̃ =

((𝑎1
𝑇 , 𝑎2, 𝑎3

𝑇; 𝑤𝑎), (𝑏1
𝐼 , 𝑏2, 𝑏3

𝐼 ; 𝜂𝑎), (𝑐1
𝐹 , 𝑐2, 𝑐3

𝐹; 𝜏𝑎)) is the set of real numbers ℝ. The truth 

membership, indeterminacy membership and falsity membership functions of 𝐴̃ can be defined as 

follows: 

 𝑇𝐴̃ =

{
 
 

 
 𝑤𝑎

𝑥−𝑎1
𝑇

𝑎2−𝑎1
𝑇      𝑎1

𝑇 < 𝑥 < 𝑎2

𝑤𝑎𝑥 = 𝑎2

𝑤𝑎
𝑎3
𝑇−𝑥

𝑎3
𝑇−𝑎2

     𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑇

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Definition2.4. Let 𝐴̃ = ((𝑎1
𝑇 , 𝑎2, 𝑎3

𝑇; 𝑤𝑎), (𝑏1
𝐼 , 𝑏2, 𝑏3

𝐼 ; 𝜂𝑎), (𝑐1
𝐹 , 𝑐2, 𝑐3

𝐹; 𝜏𝑎)) be a generalized single-

valued triangular neutrosophic number. An (𝛼, 𝛽, 𝛾) −cut is a crisp subset of ℝ and is defined by 

𝐴̃𝛼,𝛽,𝛾 = {𝑥|𝑇𝐴̃(𝑥) ≥ 𝛼, 𝐼𝐴̃(𝑥) ≤ 𝛽, 𝐹𝐴̃(𝑥) ≤ 𝛾} = 

{[𝐿𝛼(𝐴̃), 𝑅𝛼(𝐴̃)], [𝐿𝛽(𝐴̃), 𝑅𝛽(𝐴̃)], [𝐿𝛾(𝐴̃), 𝑅𝛾(𝐴̃)]} 

=

{
 

 [𝑎1
𝑇 +

𝛼

𝑤𝛼
(𝑎2 − 𝑎1

𝑇), 𝑎3
𝑇 −

𝛼

𝑤𝛼
(𝑎3
𝑇 − 𝑎2)] , [𝑏1

𝐼 +
𝛽

𝜂𝛼
(𝑏2 − 𝑏1

𝐼), 𝑏3
𝐼 +

𝛽

𝜂𝛼
(𝑏3
𝐼 − 𝑏2)] ,

[𝑐1
𝐹 +

𝛾

𝜏𝛼
(𝑐2 − 𝑐1

𝐹), 𝑐3
𝐹 +

𝛾

𝜏𝛼
(𝑐3
𝐹 − 𝑐2)] }

 

 
 

Now, we want to introduce the nearest interval approximation for neutrosophic number. 

Let 𝐴̃ and 𝐵̃ be two neutrosophic numbers. The distance between them can be measured according 

to Euclidean metric as 
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 𝑑̃𝐸
2 =

1

2
∫ (𝑇𝐴𝐿(𝛼) − 𝑇𝐵𝐿(𝛼))

2 +
1

2

1

0
∫ (𝑇𝐴𝑈(𝛼) − 𝑇𝐵𝑈(𝛼))

2𝑑𝛼 +
1

2
∫ (𝐼𝐴𝐿(𝛼) − 𝐼𝐵𝐿(𝛼))

2𝑑𝛼
1

0

1

0
 

+
1

2
∫ (𝐼𝐴𝑈(𝛼) − 𝐼𝐵𝑈(𝛼))

2𝑑𝛼 +
1

2

1

0

∫ (𝐹𝐴𝐿(𝛼) − 𝐹𝐵𝐿(𝛼))
2 +

1

2
∫ (𝐹𝐴𝑈(𝛼) − 𝐹𝐵𝑈(𝛼))

2𝑑𝛼
1

0

1

0

 

The approximation of nearest interval of the neutrosophic number 𝐴̃ with respect to the metric 𝑑̃𝐸 is 

 𝐶 = [∫
𝑇𝐴𝐿(𝛼)+𝐼𝐴𝐿(𝛼)+𝐹𝐴𝐿(𝛼)

3
𝑑𝛼, ∫

𝑇𝐴𝑈(𝛼)+𝐼𝐴𝑈(𝛼)+𝐹𝐴𝑈(𝛼)

3
𝑑𝛼

1

0

1

0
] 

= [
𝑎1
𝑇 + 𝑏1

𝐼 + 𝑐1
𝐹

3
+
𝑎2 − 𝑎1

𝑇

6𝑤𝑎
+
𝑏2 − 𝑏1

𝐼

6𝜂𝑎
+
𝑐2 − 𝑐1

𝐹

6𝜏𝑎
,
𝑎3
𝑇 + 𝑏3

𝐼 + 𝑐3
𝐹

3
+
𝑎2 − 𝑎3

𝑇

6𝑤𝑎
+
𝑏3
𝐼 − 𝑏2
6𝜂𝑎

+
𝑐3
𝐹 − 𝑐2
6𝜏𝑎

]. 

 

Let 𝑎 = [𝑎𝐿 , 𝑎𝑅] be an interval. The interval 𝑎 can also be represented in the form  

𝑎 = ⟨𝑎𝑐 , 𝑎𝑤⟩ = {𝑥 ∈ ℝ|𝑎𝑐 − 𝑎𝑤 ≤ 𝑥 ≤ 𝑎𝑐 + 𝑎𝑤} 

where 𝑎𝑐 =
1

2
(𝑎𝑅 + 𝑎𝐿) and 𝑎𝑤 =

1

2
(𝑎𝑅 − 𝑎𝐿) are the center and half-width of 𝑎 respectively.  

Note that an interval is the better than another one if its left side and centre be the greater then the other [1].  

3 CYBERSECURITY GAME IN NEUTROSOPHIC ENVIRONMENT 

A cyber security game is among two players: an attacker and a defender. In these games, the defender 

allocates the available resources to defend against an attacker whereas the attacker can attempt to 

compromise targets that the defender is protecting from possible attacks. The attacker and defender are 

most often considered as the agents in network security problems.  

Let 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} be a set of 𝑛 targets that are at the risk of being attacked and 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑚} a set of resources to protect the targets. A vector ⟨𝑎𝑡⟩ can represent the attacker’s mixed 

strategy where 𝑎𝑡 is the probability of attacking the target 𝑡. The defender’s mixed strategy is the vector 
⟨𝑝𝑡⟩ where the marginal probability of protecting the target 𝑡 is 𝑝𝑡. Players’ access to mixed strategies 

allows them to apply probability distributions over their pure strategies. A strategy profile ⟨𝑎, 𝑐⟩ is a pair of 

mixed strategies for the attacker and the defender, respectively. Let 𝑟̃𝑑(𝑡) be the defender’s reward if the 

attacked target 𝑡 is covered and 𝑐̃𝑑(𝑡) his cost if the target is uncovered. Similarly, the attacker’s reward is 

denoted by 𝑟̃𝑎(𝑡) if the attacked target 𝑡 is uncovered and by 𝑐̃𝑎(𝑡) the attacker’s costs if the attacked target 

𝑡 is covered. For the strategy profile ⟨𝑎, 𝑐⟩ , the expected payoffs of the two players are as  

𝐸̃𝑑(𝑎, 𝑐) =∑𝑎𝑡[𝑝𝑡𝑟̃𝑑(𝑡) − (1 − 𝑝𝑡)𝑐̃𝑑(𝑡)]

𝑡∈𝑇

 

and 

𝐸̃𝑎(𝑎, 𝑐) =∑𝑎𝑡[(1 − 𝑝𝑡)𝑟̃𝑎(𝑡) − 𝑝𝑡𝑐̃𝑎(𝑡)]

𝑡∈𝑇

, 

where 𝑟̃𝑑(𝑡), 𝑐̃𝑑(𝑡), 𝑟̃𝑎(𝑡) and 𝑐̃𝑎(𝑡) are the triangular neutrosophic fuzzy numbers. As we see these payoffs 

depend only on the attacked targets and their protection and these payoffs do not consider the targets that 

are not attacked. Now if the players move simultaneously, the solution of this cyber security game is a Nash 

equilibrium. However, if the game is played sequentially in which the defender moves first (leader) and 

commits to a strategy and the attacker (follower) reacts to the defender’s move, Stackelberg equilibrium 

appears as the standard solution in this leader-follower interaction. 

 

This problem is formulated as a bi-level problem as follows: 

max  𝐸̃𝑑(𝑎, 𝑐) =∑𝑎𝑡[𝑝𝑡𝑟̃𝑑(𝑡) − (1 − 𝑝𝑡)𝑐̃𝑑(𝑡)]

𝑡∈𝑇

 

                ∑𝑝𝑡 ≤ 𝑚

𝑡∈𝑇
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                0 ≤ 𝑝𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 
          where 𝑎𝑡  solves 

                    max  𝐸̃𝑎(𝑎, 𝑐) =∑𝑎𝑡[(1 − 𝑝𝑡)𝑟̃𝑎(𝑡) − 𝑝𝑡𝑐̃𝑎(𝑡)]

𝑡∈𝑇

 

                       ∑𝑎𝑡 = 1

𝑡∈𝑇

 

                              𝑎𝑡 ≥ 0, ∀𝑡 ∈ 𝑇                                                                 (1) 

Using nearest interval approximation of the neutrosophic fuzzy numbers, we have 

max  [𝐸𝑑
𝐿(𝑎, 𝑐), 𝐸𝑑

𝑅(𝑎, 𝑐)] 

       ∑𝑝𝑡 ≤ 𝑚

𝑡∈𝑇

 

      0 ≤ 𝑝𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 
      where 𝑎𝑡  solves 
           max  [𝐸𝑎

𝐿(𝑎, 𝑐), 𝐸𝑎
𝑅(𝑎, 𝑐)] 

          ∑𝑎𝑡 = 1

𝑡∈𝑇

 

                                 𝑎𝑡 ≥ 0, ∀𝑡 ∈ 𝑇                                        (2) 

Using the KKT conditions for low-level problem, the problem is transformed as follows: 

𝑚𝑎𝑥  [𝐸𝑑
𝐿(𝑎, 𝑐), 𝐸𝑑

𝑅(𝑎, 𝑐)] 

          ∑ 𝑝𝑡 ≤ 𝑚

  𝑡∈𝑇

 

           0 ≤ 𝑝𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 

           𝜆𝐿
𝜕(𝐸𝑎

𝐿(𝑐, 𝑎))

𝜕𝑎𝑡
+ 𝜆𝑅

𝜕(𝐸𝑎
𝑅(𝑐, 𝑎))

𝜕𝑎𝑡
− 𝜇0 + 𝜇𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

            𝜇𝑡𝑎𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

          ∑𝑎𝑡 = 1

𝑡∈𝑇

 

          𝑎𝑡 ≥ 0, ∀𝑡 ∈ 𝑇 
            0 ≤ 𝛼 ≤ 1, 𝜆𝐿 ≥ 0, 𝜆𝑅 ≥ 0, 𝜇𝑡 ≥ 0, 𝑡 = 1, . . . , 𝑛.                (3) 

We recall that the interval is the better in which the left side and the centre of interval is the greater [1]. So, 

we have the following bi-objective programming model. 

𝑚𝑎𝑥 {𝐸𝑑
𝐿(𝑎, 𝑐),

𝐸𝑑
𝐿(𝑎, 𝑐) + 𝐸𝑑

𝑅(𝑎, 𝑐)

2
} 

      ∑𝑝𝑡 ≤ 𝑚

𝑡∈𝑇

 

     0 ≤ 𝑝𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 

    𝜆𝐿
𝜕(𝐸𝑎

𝐿(𝑐, 𝑎))

𝜕𝑎𝑡
+ 𝜆𝑅

𝜕(𝐸𝑎
𝑅(𝑐, 𝑎))

𝜕𝑎𝑡
− 𝜇0 + 𝜇𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

     𝜇𝑡𝑎𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

    ∑𝑎𝑡 = 1

𝑡∈𝑇

 

    𝑎𝑡 ≥ 0, ∀𝑡 ∈ 𝑇 
    𝜆𝐿 ≥ 0, 𝜆𝑅 ≥ 0, 𝜇𝑡 ≥ 0, 𝑡 = 1, . . . , 𝑛. 

We solve this problem by the weighted sum approach. For this purpose, consider 𝑤1 = 𝑤2 =
1

2
  as 

the important degrees associated to the objective functions. Thus, we have  
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max  
3𝐸𝑑

𝐿(𝑎, 𝑐) + 𝐸𝑑
𝑅(𝑎, 𝑐)

4
 

∑𝑝𝑡 ≤ 𝑚

𝑡∈𝑇

 

0 ≤ 𝑝𝑡 ≤ 1, ∀𝑡 ∈ 𝑇 

𝜆𝐿
𝜕(𝐸𝑎

𝐿(𝑐, 𝑎))

𝜕𝑎𝑡
+ 𝜆𝑅

𝜕(𝐸𝑎
𝑅(𝑐, 𝑎))

𝜕𝑎𝑡
− 𝜇0 + 𝜇𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

𝜇𝑡𝑎𝑡 = 0, 𝑡 = 1, . . . , 𝑛 

∑𝑎𝑡 = 1

𝑡∈𝑇

 

𝑎𝑡 ≥ 0, ∀𝑡 ∈ 𝑇 
𝜆𝐿 ≥ 0, 𝜆𝑅 ≥ 0, 𝜇𝑡 ≥ 0, 𝑡 = 1, . . . , 𝑛.                                      (4) 

By solving this problem, we obtain the Pareto optimal strategies of the defender and the attacker. 

4 NUMERICAL EXAMPLE 

We consider a game between a defender and an attacker. In this game, there are 4 targets and two 

resources that defender can cover any of the two targets. For each target, there are two payoffs: the payoff 

of the defender and the payoff of the attacker. Each payoff consists of two parts: a reward and a cost. The 

defender can cover a target and get a reward if the target is attacked. He can also leave the target uncovered 

and incur a cost if it is attacked. The attacker can attack a target and get a reward if the target is uncovered. 

He can also incur a cost if the target is covered. The information of the problem presented in the following 

matrix. 

 

 Defender's payoff Attacker's payoff 

 Reward Cost Reward Cost 

Target1  

(

(3,4,5; 0.3)
(2.5,5,6; 0.3)

(2,6,4; 0.6)
) (

(2,3,5; 0.4)
(3,4,5; 0.3)

(1.5,2,4; 0.3)
) (

(8,9,10; 0.5)
(7.5,8.5,9; 0.3)

(7,9,11; 0.3)
) (

(5,6,7; 0.5)
(4,6,8; 0.5)

(3,5,7; 0.5)
) 

Target2 

(

(2,3,5; 0.4)
(1.5,3,4; 0.3)

(2,4,5; 0.4)
) (

(1,2,3; 0.6)
(. 5,2.5,3.5; 0.4)

(1,3,4; 0.3)
) (

(5,7,8; 0.4)
(6,7,9; 0.3)

(6,8,10; 0.3)
) (

(5,6,7; 0.5)
(6,7,8; 0.4)

(4,6,8; 0.3)
) 

Target3 

(

(5,6,7; 0.4)
(4,6,8; 0.3)

(5,7,8; 0.4)
) (

(2,4,6; 0.8)
(1,3,5; 0.3)

(3,4,6; 0.5)
) (

(10,11,12; 0.6)
(9,10,12; 0.7)

(10,12,14; 0.3)
) (

(7,8,9; 0.5)
(6,8,10; 0.5)

(8,8,8; 0.6)
) 

Target4 

(

(2,3,4; 0.3)
(1,2,3; 0.8)

(1,3,4; 0.5)
) (

(1,2,4; 0.6)
(2,3,5; 0.3)

(1,3,5; 0.5)
) (

(11,12,13; 0.6)
(10,11,14; 0.5)

(10,12,14; 0.6)
) (

(5,6,7; 0.5)
(6,7,8; 0.4)

(4,6,8; 0.3)
) 

 

The single-level model of this problem is as 

 

max  9.3𝑎1𝑝1 − 3.8𝑎1 + 7.3𝑎2𝑝2 − 3.2𝑎2 + 12.2𝑎3𝑝3 − 4.7𝑎3 + 6.4𝑎4𝑝4 − 3.4𝑎4 
𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 ≤ 2 
0 ≤ 𝑝𝑡 ≤ 1, 𝑡 = 1,2,3,4 
𝜆𝐿(8.4 − 14.1𝑝) + 𝜆𝑅(11 − 19.4𝑝) − 𝜇0 + 𝜇1 = 0, 
𝜆𝐿(7.75 − 14.61𝑝) + 𝜆𝑅(10.81 − 19.67𝑝) − 𝜇0 + 𝜇2 = 0, 
𝜆𝐿(11.29 − 19.29𝑝) + 𝜆𝑅(13.98 − 23.28𝑝) − 𝜇0 + 𝜇3 = 0, 
𝜆𝐿(11.5 − 18.36𝑝) + 𝜆𝑅(14.94 − 23.8𝑝) − 𝜇0 + 𝜇4 = 0, 
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𝜇𝑡𝑎𝑡 = 0, 𝑡 = 1,2,3,4 
𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 1 
𝑎𝑡 ≥ 0, 𝑡 = 1,2,3,4 
𝜆𝐿 ≥ 0, 𝜆𝑅 ≥ 0, 𝜇𝑡 ≥ 0, 𝑡 = 1,2,3,4. 

The optimal solution of the problem obtained by Lingo software is   

𝑃 = (𝑜. 47,0.46,0.52,0.55), 
𝑎 = (0,0,1,0). 

 

5 CONCLUSION 

In this paper, a cybersecurity game with payoffs of neutrosophic fuzzy numbers was 

considered. For solving the problem, the model was formulated as a bi-level programming problem 

with fuzzy coefficients. By introducing the concept of nearest interval approximation of the fuzzy 

neutrosophic numbers, the mentioned problem was rewritten as a bi-level programming problem 

with interval coefficients. The KKT optimality conditions were applied in lower level of bi-level 

problem. By this approach, the bi-level programming problem was transformed to a single level 

programming problem with interval coefficients in objective functions. Finally, the validity and 

applicability of the method were illustrated by a practical example. 
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