

6th International Conference on

Combinatorics, Cryptography, Computer Science and Computing

November: 17-18, 2021

On the tree-number of conjugacy class graphs of some metacyclic groups

Zeinab Foruzanfar

Imam Khomeini International University - Buin Zahra Higher Education Center of Engineering and Technology, Qazvin, Iran

Abstract

For a finite group G with V(G) as the set of all non-central conjugacy classes of it, the conjugacy class graph $\Gamma(G)$ is defined as: its vertex set is the set V(G) and two distinct vertices a^G and b^G are connected with an edge if (o(a), o(b)) > 1. In this paper, we determine the tree-number of the conjugacy class graphs of metacyclic groups of order less than thirty.

Keywords: Metacyclic group, conjugacy class graph, tree-number

Mathematics Subject Classification [2010]: 20E45, 05C50, 20D60

1 Introduction

A graph Γ is a pair (V, E), where V is a set whose elements are called vertices and E is a set of paired vertices, whose elements are called edges. Suppose that Γ be a graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E = \{e_1, \ldots, e_m\}$. The adjacency matrix of Γ denoted by A, is an $n \times n$ matrix whose entries a_{ij} are 1, when v_i and v_j are adjacent and 0 otherwise. The degree of a vertex v_i is denoted by $deg(v_i)$ and the degree matrix denoted by $deg(v_i)$ is defined as $deg(v_i)$, $deg(v_i)$, $deg(v_i)$, which is a diagonal matrix. Then, the Laplacian matrix of Γ is denoted by $deg(v_i)$ which satisfies $deg(v_i)$ where $deg(v_i)$ is denoted by $deg(v_i)$ and $deg(v_i)$ is denoted by $deg(v_i)$. The tree-number of $deg(v_i)$ is defined of the Laplacian matrix $deg(v_i)$ is defined of the number of spanning trees of $deg(v_i)$ and is denoted by $deg(v_i)$. For disconnected graphs $deg(v_i)$ is defined of (see [3]).

Let G be a finite non-abelian group and V(G) be the set of all non-central conjugacy classes of G. A conjugacy class graph $\Gamma(G)$ according to the orders of representatives of conjugacy classes is defined in [6] as below: its vertex set is the set V(G) and two distinct vertices a^G and b^G are connected with an edge if (o(a), o(b)) > 1. A metacyclic group is an extension of a cyclic group by a cyclic group. Equivalently, a metacyclic group is a group G having a cyclic normal subgroup G, such that the quotient G is also cyclic. Clearly, every cyclic group is metacyclic. There are some known results about metacyclic groups which we point them briefly. One can find the proofs in [4] and [5]. The subgroups and quotient groups of metacyclic groups are metacyclic. The direct product or semidirect product of two cyclic groups is metacyclic. So, the dihedral groups and the semi-dihedral groups are metacyclic. The dicyclic groups are metacyclic. Every finite group of squarefree order is metacyclic. Recall that $K \times H$ is a semidirect product of K and K with normal subgroup K and $K \times_f H$ is the Frobenius group with kernel K and complement K. All further unexplained notations are standard. In this paper, we compute the tree-number of conjugacy class graphs of metacyclic groups of order less than thirty.

2 Examples and Preliminaries

In this section, we give some examples and preliminary results that will be used in the proof of our main results.

Proposition 2.1. ([2]) The multiplicity of 0 as an eigenvalue of Q is equal to the number of connected components of the graph.

Proposition 2.2. ([1]) The Laplacian matrix of the complete graph K_n has eigenvalues 0 with multiplicity 1 and n with multiplicity n-1.

Corollary 2.3. (Corollary 6.5 of [3]) Let $0 \le \mu_1 \le ... \le \mu_{n-1}$ be the Laplacian spectrum of a graph Γ with n vertices. Then $\kappa(\Gamma) = \frac{\mu_1 \mu_2 ... \mu_{n-1}}{n}$.

In the following we present some examples of metacyclic groups and find their characteristic Laplacian polynomials and eigenvalues.

Example 2.4. Since \mathbb{Z}_4 is a cyclic normal subgroup of Q_8 such that $|\frac{Q_8}{\mathbb{Z}_4}| = 2$, we deduce that Q_8 is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 3)^2$.

Example 2.5. Since \mathbb{Z}_8 is a cyclic normal subgroup of Q_{16} such that $\left|\frac{Q_{16}}{\mathbb{Z}_8}\right| = 2$, we deduce that Q_{16} is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 5)^4$.

Example 2.6. Since \mathbb{Z}_8 is a cyclic normal subgroup of $M_4(2)$ such that $|\frac{M_4(2)}{\mathbb{Z}_8}| = 2$, we deduce that $M_4(2)$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 6)^5$.

Example 2.7. Since \mathbb{Z}_6 is a cyclic normal subgroup of $\mathbb{Z}_3 \times S_3$ such that $|\frac{\mathbb{Z}_3 \times S_3}{\mathbb{Z}_6}| = 3$, we deduce that $\mathbb{Z}_3 \times S_3$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 2)(\mu - 5)^2(\mu - 6)^2$.

Example 2.8. Since \mathbb{Z}_{12} is a cyclic normal subgroup of $\mathbb{Z}_4 \times S_3$ such that $|\frac{\mathbb{Z}_4 \times S_3}{\mathbb{Z}_{12}}| = 2$, we deduce that $\mathbb{Z}_4 \times S_3$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 3)(\mu - 7)^3(\mu - 8)^3$.

Example 2.9. Since \mathbb{Z}_{12} is a cyclic normal subgroup of $\mathbb{Z}_3 \times D_8$ such that $|\frac{\mathbb{Z}_3 \times D_8}{\mathbb{Z}_{12}}| = 2$, we deduce that $\mathbb{Z}_3 \times D_8$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 9)^8$.

Example 2.10. Since \mathbb{Z}_{12} is a cyclic normal subgroup of $\mathbb{Z}_3 \times Q_8$ such that $|\frac{\mathbb{Z}_3 \times Q_8}{\mathbb{Z}_{12}}| = 2$, we deduce that $\mathbb{Z}_3 \times Q_8$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 9)^8$.

Example 2.11. Since \mathbb{Z}_6 is a cyclic normal subgroup of $\mathbb{Z}_2 \times Dic_3$ such that $\frac{\mathbb{Z}_2 \times Dic_3}{\mathbb{Z}_6} \cong \mathbb{Z}_4$, we deduce that $\mathbb{Z}_2 \times Dic_3$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 3)(\mu - 7)^3(\mu - 8)^3$.

Example 2.12. Since \mathbb{Z}_9 is a cyclic normal subgroup of $(\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_3$ such that $|\frac{(\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_3}{\mathbb{Z}_9}| = 2$, we deduce that $(\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_3$ is metacyclic. Also, we have $\sigma(\Gamma, \mu) = \mu(\mu - 8)^7$.

Example 2.13. Since the direct product and semidirect product of two cyclic groups, the dihedral groups, the semi-dihedral groups and the dicyclic groups are metacyclic, we deduce that S_3 , D_8 , D_{10} , D_{12} , D_{12} , D_{13} , D_{14} , D_{16} , SD_{16} , $\mathbb{Z}_4 \times \mathbb{Z}_4$, D_{18} , D_{20} , $\mathbb{Z}_5 \rtimes_f \mathbb{Z}_4$, D_{16} , $\mathbb{Z}_7 \rtimes_f \mathbb{Z}_3$, D_{22} , D_{24} , D_{16} , $\mathbb{Z}_3 \rtimes_g \mathbb{Z}_8$, D_{26} , D_{16} , and D_{28} are metacyclic groups.

3 Main results

Theorem 3.1. Let G be a non-abelian metacyclic group of order least than 30 and $\Phi = (|g_1^G|, |g_2^G|, \ldots, |g_n^G|)$, such that g_i^G are the conjugacy classes of G for $1 \le i \le n$. Then the values of tree-numbers of $\Gamma(G)$ is given in Table 1.

G	Φ	Orders of representatives of conjugacy classes of G	$\kappa(\Gamma)$
S_3	(1, 3, 2)	(1,2,3)	0
Q_8	(1, 2, 2, 1, 2)	(1, 4, 4, 2, 4)	3
D_8	(1, 2, 2, 1, 2)	(1, 2, 4, 2, 2)	3
D_{10}	(1, 5, 2, 2)	(1, 2, 5, 5)	0
D_{12}	(1,3,2,2,3,1)	(1, 2, 6, 3, 2, 2)	3
Dic_3	(1,3,1,2,3,2)	(1,4,2,3,4,6)	3
D_{14}	(1,7,2,2,2)	(1, 2, 7, 7, 7)	0
D_{16}	(1,4,2,2,1,4,2)	(1, 2, 8, 4, 2, 2, 8)	125
Q_{16}	(1,4,2,2,1,4,2)	(1,4,8,4,2,4,8)	125
SD_{16}	(1,4,4,2,1,2,2)	(1, 4, 2, 4, 2, 8, 8)	125
$M_4(2)$	(1, 2, 2, 1, 1, 2, 2, 2, 1, 2)	(1, 8, 2, 4, 2, 8, 8, 4, 4, 8)	1296
$\mathbb{Z}_4 \rtimes \mathbb{Z}_4$	(1, 2, 2, 1, 1, 2, 2, 2, 1, 2)	(1,4,4,2,2,4,4,4,2,4)	1296
D_{18}	(1, 9, 2, 2, 2, 2)	(1, 2, 9, 3, 9, 9)	0
$\mathbb{Z}_3 \times S_3$	(1,3,1,2,3,1,2,3,2)	(1, 2, 3, 3, 6, 3, 3, 6, 3)	300
D_{20}	(1,5,1,2,5,2,2,2)	(1, 2, 2, 5, 2, 10, 5, 10)	192
$\mathbb{Z}_5 \rtimes_f \mathbb{Z}_4$	(1, 5, 5, 4, 5)	(1,4,2,5,4)	0
Dic_5	(1, 5, 1, 2, 5, 2, 2, 2)	(1,4,2,5,4,10,5,10)	192
$\mathbb{Z}_7 \rtimes_f \mathbb{Z}_3$	(1,7,3,7,3)	(1, 3, 7, 3, 7)	0
D_{22}	(1,11,2,2,2,2,2)	(1, 2, 11, 11, 11, 11, 11)	0
D_{24}	(1,6,2,1,2,6,2,2,2)	(1, 2, 4, 2, 3, 2, 12, 6, 12)	5292
Dic_6	(1,6,2,1,2,6,2,2,2)	(1,4,4,2,3,4,12,6,12)	5292
$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$	(1,3,1,1,2,3,3,1,2,2,3,2)	(1, 8, 4, 2, 3, 8, 8, 4, 12, 6, 8, 12)	65856
$\mathbb{Z}_4 \times S_3$	(1,3,1,1,2,3,3,1,2,2,3,2)	(1, 2, 4, 2, 3, 4, 2, 4, 12, 6, 4, 12)	65856
$\mathbb{Z}_3 \times D_8$	(1,2,2,1,1,2,2,2,1,1,2,2,2,1,2)	(1, 2, 2, 3, 2, 4, 6, 6, 3, 6, 12, 6, 6, 6, 12)	4782969
$\mathbb{Z}_3 \times Q_8$	(1,2,2,1,1,2,2,2,1,1,2,2,2,1,2)	(1,4,4,3,2,4,12,12,3,6,12,12,12,6,12)	4782969
$\mathbb{Z}_2 \times Dic_3$	(1,3,1,1,2,3,3,1,2,2,3,2)	(1,4,2,2,3,4,4,2,6,6,4,6)	65856
D_{26}	(1, 13, 2, 2, 2, 2, 2, 2,)	(1, 2, 13, 13, 13, 13, 13, 13)	0
$(\mathbb{Z}_3)^2 \rtimes \mathbb{Z}_3$	(1,3,3,1,3,3,3,1,3,3,3)	(1,3,3,3,3,3,3,3,3)	262144
Dic_7	(1,7,1,2,7,2,2,2,2,2)	(1,4,2,7,4,14,7,14,7,14)	34560
D_{28}	(1,7,1,2,7,2,2,2,2,2)	(1, 2, 2, 7, 2, 14, 7, 14, 7, 14)	34560

Table 1: Tree number of metacyclic groups of order less than 30

References

- [1] R. B. Bapat, Graphs and Matrices, Springer, New York, 2010.
- [2] L. W. Beineke, and R. J. Wilson, *Topics in algebraic graph theory*, Vol. 102, Cambridge University Press, New York, 2004.
- [3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, Second edition, 1993.
- [4] C. E. Hempel, *Metacyclic Groups*, Commun. Algebra, 28 (2000), pp. 3865-3897.
- [5] J. S. Rose, A Course on Group Theory, New York: Dover, 1994.
- [6] X. You, and G. Qian, A new graph related to conjugacy classes of finite groups, (Chinese) Chinese Ann. Math. Ser. A, 28 (2007), pp. 631-636.

Email: zforouzanfar@gmail.com, z.forozanfar@bzeng.ikiu.ac.ir