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 ABSTRACT 

In this paper we introduce a particular number sequence, namely Jacobsthal-Lucas-Leonardo 

sequence. Some interesting identities like as Cassini’s identity, Binet formula and summation formulas 

about this sequence are given in this paper. In addition, we represent some examples related to these 

identities and summation formulas. Also, a PYTHON code to generate the first 𝑛 terms of Jacobsthal-

Lucas-Leonardo sequence is given in this paper. 
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1 INTRODUCTION 

In matrix algebras, combinatory theories, computer science, engineering and social sciences we can 

see the fundamental roles of special number sequences like as Fibonacci sequence, Lucas sequence, 

Jacobsthal-Lucas sequence and other number sequences. Therefore, numerous authors have widely studied 

these sequences. They proposed different results and identities about these sequences and illustrated various 

applications of these sequences. For example the authors in [9] investigated the eigenvalues and determinant 

of special circulant matrix involving (k,h)-Jacobsthal sequence and (k,h)-Jacobsthal-like sequence. 

In this paper we introduce a particular number sequence, namely Jacobsthal-Lucas-Leonardo 

sequence which is a combination of Jacobsthal- sequence, Lucas sequence and Leonardo numbers. Some 

interesting identities like as Cassini’s identity, Binet formula and summation formulas about this sequence 

are given in this paper. In addition, some examples related to these identities and summation formulas are 

represented in this paper. Also, a PYTHON code to generate the first 𝑛 terms of Jacobsthal-Lucas-Leonardo 

sequence is given in this paper 

For more information about Jacobsthal sequence, Pell sequence, sequence, Tetranacci sequences and 

some generalizations of these sequences and applications of these sequences we refer to [2-5], [7-12]. 

The Jacobsthal-Lucas sequence {𝑗𝑛}  is defined by  

𝑗𝑛 = 𝑗𝑛−1 + 2𝑗𝑛−2,     𝑗0 = 2, 𝑗1 = 1, 𝑛 ≥ 0.     (1) 
The first values of Jacobsthal-Lucas sequence are:  

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191. 

Catarino and Borges [1] introduced Leonardo numbers. This number sequence is defined by the following 

recurrence relation; 

𝐿𝑒𝑛 = 𝐿𝑒𝑛−1 + 𝐿𝑒𝑛−2 + 1,     (2) 
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With initial values 𝐿𝑒0 = 1 and 𝐿𝑒1 = 1. The first few values of Leonardo numbers are: 

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753. 

From [13] we have the following properties of Leonardo numbers: 

a) 𝐿𝑒𝑛 = 2𝐹𝑛+1 − 1 ,                      𝑛 ≥ 1 

b) 𝐿𝑒𝑛+1 = 2𝐿𝑒𝑛 − 𝐿𝑒𝑛−2,             𝑛 ≥ 2 

c) 𝐿𝑒𝑛+1 + 𝐿𝑒𝑛−1 = 2𝐿𝑛+1 − 2,    𝑛 ≥ 1 

d) 𝐿𝑒𝑛 + 𝐹𝑛 + 𝐿𝑛 = 2𝐿𝑒𝑛 + 1,       𝑛 ≥ 1 

e) 𝐿𝑒𝑛 + 2𝐹𝑛 = 𝐿𝑒𝑛+1 .                   𝑛 ≥ 1 

Where 𝐹𝑛 is the 𝑛th Fibonacci number and 𝐿𝑛 is the 𝑛th Lucas number. For more information we refer to 

[1] and [12]. 

2 JACOBSTHAL-LUCAS-LEONARDO SEQUENCE 

This section is devoted to introduction of Jacobsthal-Lucas-Leonardo sequence. For convenience, we 

call this sequence Petroudi sequence and accept the expression (𝑃𝐿𝑛) to denote the 𝑛th term of this 

sequence. 

Definition (2.1). The Petroudi sequence is defined by the following recurrence relation 

𝑃𝐿𝑛 = 𝑃𝐿𝑛−1 + 2𝑃𝐿𝑛−2 + 1,    (2.1) 

with initial values 𝑃𝐿0 = 2 and  𝑃𝐿1 = 1. The first few values of Petroudi sequence are; 

 

2, 1, 6, 9, 22, 41, 86, 169, 342, 681, 1366, 2729, 5462, 10921, 21846, 43689, 87382, 174761, 349526, 

699049, 1398102, 2796201, 5592406, 11184809, 22369622, 44739241, 89478486. 

 

Remark. (2.2). From definition of Petroudi sequence we see that 

𝑃𝐿𝑛+1 = 𝑃𝐿𝑛 + 2𝑃𝐿𝑛−1 + 1.  (2.2) 

By subtraction of (2.2) and (2.1) we conclude that 

𝑃𝐿𝑛+1 = 2𝑃𝐿𝑛 + 𝑃𝐿𝑛−1 − 2𝑃𝐿𝑛−2 .  (2.3) 

 

This recurrence relation has the characteristic equation 𝑡3 − 2𝑡2 − 𝑡 + 2 = 0. This equation has three 

distinct real roots 𝛼 = 1 , 𝛽 = −1 and 𝜆 = 2. 
Theorem (2.3). The generating function for the Petroudi sequence(𝑃𝐿𝑛) is given as 

∑ 𝑃𝐿𝑛𝑥𝑛 =
2 − 𝑥 + 2𝑥2

1 − 2𝑥 − 𝑥2 + 2𝑥3

∞

𝑛=0

. 

Proof.  Suppose that the generating function for the Petroudi sequence (𝑃𝐿𝑛) has the formal power series 

𝑔(𝑥) = ∑ 𝑃𝐿𝑛𝑥𝑛 =

∞

𝑛=0

𝑃𝐿0 + 𝑃𝐿1𝑥 + 𝑃𝐿2𝑥2 + 𝑃𝐿3𝑥3 + ⋯ +  𝑃𝐿𝑛𝑥𝑛 + ⋯     . 

Then we have 

𝑥𝑔(𝑥) = 𝑃𝐿0𝑥 + 𝑃𝐿1𝑥2 + 𝑃𝐿2𝑥3 + 𝑃𝐿3𝑥4 + ⋯ +  𝑃𝐿𝑛𝑥𝑛+1 + ⋯      
𝑥2𝑔(𝑥) = 𝑃𝐿0𝑥2 + 𝑃𝐿1𝑥3 + 𝑃𝐿2𝑥4 + 𝑃𝐿3𝑥5 + ⋯ + 𝑃𝐿𝑛𝑥𝑛+2 + ⋯   ,  

And  

2𝑥3𝑔(𝑥) = 2𝑃𝐿0𝑥3 + 2𝑃𝐿1𝑥4 + 2𝑃𝐿2𝑥5 + 2𝑃𝐿3𝑥6 + ⋯ + 2𝑃𝐿𝑛𝑥𝑛+3 + ⋯ .    
Thus, we obtain  

𝑔(𝑥) − 2𝑥𝑔(𝑥) − 𝑥2𝑔(𝑥) + 2𝑥3𝑔(𝑥) =(𝑃𝐿0 + 𝑃𝐿1𝑥 + 𝑃𝐿2𝑥2 + 𝑃𝐿3𝑥3 + ⋯ +  𝑃𝐿𝑛𝑥𝑛 +
⋯ ) – (2𝑃𝐿0𝑥 + 2𝑃𝐿1𝑥2 + 2𝑃𝐿2𝑥3 + 2𝑃𝐿3𝑥4 + ⋯ + 2 𝑃𝐿𝑛𝑥𝑛+1 + ⋯  ) − (𝑃𝐿0𝑥2 + 𝑃𝐿1𝑥3 +
𝑃𝐿2𝑥4 + 𝑃𝐿3𝑥5 + ⋯ + 𝑃𝐿𝑛𝑥𝑛+2 + ⋯ )+(2𝑃𝐿0𝑥3 + 2𝑃𝐿1𝑥4 + 2𝑃𝐿2𝑥5 + 2𝑃𝐿3𝑥6 + ⋯ + 2𝑃𝐿𝑛𝑥𝑛+3 +
⋯ ) = ( 𝑃𝐿0 + 𝑃𝐿1𝑥 − 2𝑃𝐿0𝑥 ) + (𝑃𝐿2 − 2𝑃𝐿1 − 𝑃𝐿0)𝑥2 + (𝑃𝐿3 − 2𝑃𝐿2 − 𝑃𝐿1 + 2𝑃𝐿0)𝑥3 + ⋯ =
( 2 + 1𝑥 − 2𝑥 ) + (6 − 2 × 1 − 2)𝑥2 + 0 = 2 − 𝑥 + 2𝑥2. 
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Therefore, by some computations we have 

𝑔(𝑥) − 2𝑥𝑔(𝑥) − 𝑥2𝑔(𝑥) + 2𝑥3𝑔(𝑥) = 2 − 𝑥 + 2𝑥2. 
So  

𝑔(𝑥)(1 − 2𝑥 − 𝑥2 + 2𝑥3) = 2 − 𝑥 + 2𝑥2. 

Consequently  

∑ 𝑃𝐿𝑛𝑥𝑛 =
2 − 𝑥 + 2𝑥2

1 − 2𝑥 − 𝑥2 + 2𝑥3

∞

𝑛=0

 . 

Now we can describe an interesting result about the 𝑛th terms of Petroudi sequence. 

Theorem (2.4). Let 𝑛 ≥ 0 be an integer. Then the Binet-like formula for the Petroudi sequence (𝑃𝐿𝑛) is  

𝑃𝐿𝑛 =
1

6
[2𝑛+3 + 7(−1)𝑛 − 3]. 

Proof. Exploiting remark (2.2), we see that the equation𝑓(𝑡) = 𝑡3 − 2𝑡2 − 𝑡 + 2 = 0 has three distinct 

roots 𝛼 = 1, 𝛽 = −1 and 𝛾 = 2. Therefore the 𝑛th term of Petroudi sequence has the following form 

𝑃𝐿𝑛 = 𝐴 + 𝐵(−1)𝑛 + 𝐶 2𝑛,     (2.4.1) 

Where 𝐴, 𝐵 and 𝐶 are constants which can be computed by initial values of Petroudi sequence𝑃𝐿0 = 2,
𝑃𝐿1 = 1 and 𝑃𝐿2 = 6.   

As  𝐽𝐿0 = 2,  we obtain 

𝐴 + 𝐵 + 𝐶 = 2.     (2.4.2) 

As 𝐽𝐿1 = 1, we obtain 

𝐴 − 𝐵 + 2𝐶 = 1.    (2.4.3) 

And as 𝐽𝐿2 = 2, we obtain 

𝐴 + 𝐵 + 4𝐶 = 6.    (2.4.4) 

These linear equations form a system of linear equation. By solving this linear system, we find that 

𝐴 =
−1

2
, 𝐵 =

7

6
 and 𝐶 =

4

3
 . By substituting the values of 𝐴, 𝐵 and 𝐶 in (2.4.1) we conclude that 

𝑃𝐿𝑛 = −
1

2
+

7

6
(−1)𝑛 +

4

3
(2𝑛) =

7(−1)𝑛

6
+

2𝑛+2

3
−

1

2
=

1

6
[2𝑛+3 + 7(−1)𝑛 − 3].  

Hence the proof is completed.  

Example (2.5). For 𝑛 = 10 we have 

𝑃𝐿10 =
1

6
[210+3 + 7(−1)10 − 3] =

1

6
[8192 + 7 − 3] = 1366. 

Theorem (2.6). Let 𝑛 ≥ 0 be an integer. Then  

(a)   𝑃𝐿𝑛+1 + 𝑃𝐿𝑛 = 2𝑛+2 − 1. 

(b)   𝑃𝐿𝑛+1 − 𝑃𝐿𝑛 =
1

3
[2𝑛+2 − 7(−1)𝑛].  

(c)  𝑃𝐿2𝑛 =
2

3
(22𝑛+1 + 1).   

(d)   𝑃𝐿2𝑛+1 =
1

3
(22𝑛+3 − 5).  

Proof. We prove part(a). Other identities, similarly can be proved. Using theorem (2.4) we have 

𝑃𝐿𝑛+1 + 𝑃𝐿𝑛 =
1

6
[2𝑛+4 + 7(−1)𝑛+1 − 3] +

1

6
[2𝑛+3 + 7(−1)𝑛 − 3]

=
1

6
[4(2𝑛+2) − 7(−1)𝑛 − 3 + 2(2𝑛+2) + 7(−1)𝑛 − 3] =

6(2𝑛+2) − 6

6
= 2𝑛+2 − 1. 

Example (2.7). Correspond to identities of the last theorem, for 𝑛 = 12 we have   

 𝑃𝐿13 + 𝑃𝐿12 = 10921 + 5462 = 16383 = 16384 − 1 = 214 − 1, 

 𝑃𝐿13 − 𝑃𝐿12 = 10921 − 5462 = 5459 =
1

3
(16384 − 7) =

1

3
[214 − 7(−1)12], 

 𝑃𝐿24 =
2

3
(225 + 1) = 22369622, 

𝑃𝐿25 = 𝑃𝐿24+1 =
1

3
(224+3 − 5) = 44739241.  

Theorem (2.8). Let 𝑛 ≥ 0 be an integer and 𝑘 be an arbitrary integer. Then 
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(a)   𝑃𝐿𝑛+𝑘 + 𝑃𝐿𝑛−𝑘 =
4

3
[2𝑛+𝑘 + 2𝑛−𝑘] +

7

6
[(−1)𝑛+𝑘 + (−1)𝑛−𝑘] − 1. 

 

(b)  𝑃𝐿𝑛+𝑘 − 𝑃𝐿𝑛−𝑘 =
4

3
[2𝑛+𝑘 − 2𝑛−𝑘] +

7

6
[(−1)𝑛+𝑘 − (−1)𝑛−𝑘]. 

Proof. They can be proved directly, by using the definition of Petroudi sequence. 
 

Corollary (2.9). Let 𝑛 ≥ 0 be an integer. Then we have 

(a)  𝑃𝐿𝑛+1 + 𝑃𝐿𝑛−1 =
10

3
( 2𝑛) −

7

3
(−1)𝑛 − 1, 

(b) 𝑃𝐿𝑛+1 − 𝑃𝐿𝑛−1 = 2𝑛+1. 

Proof. They can be proved by substituting 𝑘 = 1 in theorem (2.8). 

 

Example (2.10). For n=11 we have 

6828 = 1366 +  5462 = 𝑃𝐿12 + 𝑃𝐿10 =
10

3
( 211) −

7

3
(−1)11 − 1,   

4096 = 5462 − 1366 = 𝑃𝐿12 − 𝑃𝐿10 = 211+1. 
Theorem (Cassini’s identity) (2.11). Let 𝑛 ≥ 0 be an integer. Then 

𝑃𝐿𝑛+1 × 𝑃𝐿𝑛−1 − (𝑃𝐿𝑛)2 =
7(−1)𝑛 − 21 (−2)𝑛 − 2𝑛

3
 . 

Proof. Using theorem (2.4), one can prove it, by direct calculations. 

Example (2.12). For 𝑛 = 9 we have 

𝑃𝐿10 × 𝑃𝐿8 − (𝑃𝐿9)2 = 1366 × 342 − (681)2 = 3411 =
7 (−1)9 − 21(−2)9 − 29

3
. 

 

3 SUMMATION FORMULA S 

In this section we establish some summation formulas for the Petroudi sequence. 

Lemma (3.1). [7] Let 𝑛 ≥ 0 be an integer. Then we have  

∑ 𝑥𝑘 =
𝑥𝑛−1

𝑥−1

𝑛−1
𝑘=0  ,                                                                                                             (10)  

∑ 𝑘𝑥𝑘 =
(𝑛−1)𝑥𝑛−𝑛𝑥𝑛−1+1

(𝑥−1)2
𝑛−1
𝑘=0 .                                                                                         (11) 

Theorem (3.2). Let 𝑛 ≥ 0 be an integer. Then 

(𝑎) ∑ 𝑃𝐿𝑘 =

𝑛

𝑘=0

1

12
[2𝑛+5 + 7(−1)𝑛 − 6𝑛 − 15]. 

(𝑏) ∑ 𝑃𝐿𝑘 =

2𝑛

𝑘=0

1

3
(22𝑛+3 − 3𝑛 − 2). 

(𝑐) ∑ 𝑃𝐿𝑘 =

2𝑛+1

𝑘=0

1

3
(22𝑛+4 − 𝑛 − 7) 

Proof. Exploiting theorem (2.4) and summation formulas of (10), we obtain 
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∑ 𝑃𝐿𝑘 =

𝑛

𝑘=0

∑
1

6
[2𝑘+3 + 7(−1)𝑘 − 3]

𝑛

𝑘=0

=
1

6
(∑(2𝑘+3)

𝑛

𝑘=0

+ ∑ 7(−1)𝑘 − ∑ 3

𝑛

𝑘=0

𝑛

𝑘=0

)

=
1

6
(8 ∑ 2𝑘

𝑛

𝑘=0

+ 7 ∑(−1)𝑘 − 3 ∑ 1

𝑛

𝑘=0

𝑛

𝑘=0

)

=
1

6
([

8(2𝑛+1 − 1)

2 − 1
] + 7 [

(−1)𝑛+1 − 1

−1 − 1
] − 3(𝑛 + 1))

=
1

12
[2𝑛+5 + 7(−1)𝑛 − 6𝑛 − 15]. 

  

This equality completes the proof of part (a). Other summation identities can be proved by 

similar manner. 

Example (3.3). For n=23 we find that 

∑ 𝑃𝐿𝑘 = 22369608,

23

𝑘=0

   ∑ 𝑃𝐿𝑘 = 187649984473747,

46

𝑘=0

   ∑ 𝑃𝐿𝑘 = 375299968947516.

47

𝑘=0

 

Theorem (3.4). Let 𝑘 ≥ 0 be an integer. Then 

∑ 2𝑘+1 × 𝑃𝐿𝑘 =

𝑛

𝑘=0

1

9
[22𝑛+4 + 7(−2)𝑛 + 4] − 2𝑛. 

Proof. It can be proved by similar method which we used in theorem (3.2). 

The next theorem shows an interesting relation between theorem (3.4) and product of two 

consecutive terms of Petroudi sequence 𝑃𝐿𝑛. 
Theorem (3.5). Let 𝑘 > 0 be an integer. Then 

∑ 2𝑘+1 × 𝑃𝐿𝑘 =

𝑛

𝑘=1

𝑃𝐿𝑛 × 𝑃𝐿𝑛+1 − 2.          (I)     

Proof. We prove this theorem by mathematical induction on 𝑛. 

For 𝑛 = 1 we have ∑ 2𝑘+1𝑃𝐿𝑘 = 22𝑃𝐿1 = 4 × 1 = 6 − 21
𝑘=1 = 𝑃𝐿1 × 𝑃𝐿2 − 2. Hence 

both sides are equal and (I) is true for 𝑛 = 1.  
Now suppose that (I) is true for 𝑛 = 𝑘.  In exact suppose ∑ 2𝑚+1𝑃𝐿𝑚 =𝑘

𝑚=1 𝑃𝐿𝑘 × 𝑃𝐿𝑘+1 −
2 is true. Then  

∑ 2𝑚+1 × 𝑃𝐿𝑚 = ∑ 2𝑚+1𝑃𝐿𝑚 +

𝑘

𝑚=1

2𝑘+2𝑃𝐿𝑘+1 =

𝑘+1

𝑚=1

𝑃𝐿𝑘 × 𝑃𝐿𝑘+1 − 2 + 2𝑘+2𝑃𝐿𝑘+1

= 𝑃𝐿𝑘+1(𝑃𝐿𝑘+2𝑘+2) − 2. 
Using theorem (2.6) (a) we know that 𝑃𝐿𝑘+1 + 𝑃𝐿𝑘 = 2𝑘+2 − 1. Thus, we find that  

∑ 2𝑚 × 𝑃𝐿𝑚 =

𝑘+1

𝑚=1

𝑃𝐿𝑘+1(𝑃𝐿𝑘 + 𝑃𝐿𝑘+1 + 𝑃𝐿𝑘 + 1) − 2 = 𝑃𝐿𝑘+1(𝑃𝐿𝑘+1 + 2𝑃𝐿𝑘 + 1) − 2

= 𝑃𝐿𝑘+1 ×  𝑃𝐿𝑘+2 − 2. 
Thus, (I) is true for 𝑛 = 𝑘 + 1. Consequently, by the principle of Mathematical induction, 

(I) is true for all positive integers 𝑛.   

Theorem (3.6). Let 𝑘 ≥ 0 be an integer. Then 
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(𝑎) ∑ 𝑃𝐿2𝑘 =
2

9
(22𝑛+3 + 3𝑛 + 1).

𝑛

𝑘=0

 

(𝑏) ∑ 𝑃𝐿2𝑘 =
2

9
(24𝑛+3 + 6𝑛 + 1).

2𝑛

𝑘=0

 

(𝑐) ∑ 𝑃𝐿2𝑘 =
2

9
(24𝑛+5 + 6𝑛 + 4).

2𝑛+1

𝑘=0

 

(𝑑) ∑ 𝑃𝐿2𝑘+1 =
1

9
(22𝑛+5 − 15𝑛 − 23).

𝑛

𝑘=0

 

(𝑒) ∑ 𝑃𝐿2𝑘+1 =
1

9
(24𝑛+5 − 30𝑛 − 23).

2𝑛

𝑘=0

 

(𝑓) ∑ 𝑃𝐿2𝑘+1 =
2

9
(24𝑛+6 − 15𝑛 − 9).

2𝑛+1

𝑘=0

 

Proof. Exploiting theorem (2.4), and using summation formula of (10) one can prove these 

summation formulas by similar method, which we used to prove theorem (3.2). 

Theorem (3.7). Let 𝑘 ≥ 0 be an integer. Then 

(𝑎) ∑ 𝑘 ×  𝑃𝐿𝑘 = −
1

24
[(14𝑛 − 7)(−1)𝑛−2𝑛+5(𝑛 − 2) + 6𝑛(6𝑛 − 1) − 57].

𝑛−1

𝑘=0

 

(𝑏) ∑ 𝑘 × 𝑃𝐿2𝑘 =
1

27
[22𝑛(12𝑛 − 16) + 9𝑛(9𝑛 − 1) + 16].

𝑛−1

𝑘=0

 

(𝑐) ∑ 𝑘 × 𝑃𝐿2𝑘+1 =
1

54
[22𝑛(48 − 64) − 45𝑛(𝑛 − 1) + 64].

𝑛−1

𝑘=0

 

Proof. They can be proved by direct calculation using summation formula of (11) and 

theorem (2.4). 

 

Theorem (3.8). Let 𝑛 ≥ 0 be an integer. Then 

(𝑎) ∑  𝑃𝐿𝑘 ×  𝑃𝐿𝑘+1 =
2

27
[22𝑛+4 − 27(2𝑛) − 7(−2)𝑛 − 15𝑛 + 18].

𝑛−1

𝑘=0

 

(𝑏) ∑  𝑃𝐿𝑘−1 ×  𝑃𝐿𝑘+1 =
1

108
[22𝑛+6 − 180(2𝑛) + 140(−2)𝑛 − 63(−1)𝑛 + 174𝑛 + 39]

𝑛−1

𝑘=0

. 

Proof. It can be proved by direct calculation using summation formula of (10), (11) and 

theorem (2.4).  
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4 PYHTON CODE 

In this section, we give PYTHON code to generate the first 𝑛 terms of Petroudi sequence. In 

order to performing this code, we used online PYTHON compiler.  

  
# Program to display the Petroudi sequence up to n-th term 

nterms = int(input("How many terms would you like to display? "))# first two terms 

n1, n2 = 2, 1 

count = 0 

# the number of terms must be valid. thus check if the number of terms is valid.  

if nterms <= 0: 

   print("It is note correct. Please enter a positive integer") 

# if there is only one term, return n1 

elif nterms == 1: 

   print("Petroudi sequence upto",nterms,":") 

   print(n1) 

# generate Petroudi sequence 

else: 

   print("Petroudi sequence:") 

   while count < nterms: 

       print(n1) 

       nth =n2+2*n1+1 

       # this section update values 

       n1 = n2 

       n2 = nth 

       count += 1 

5 CONCLUSION 

In this paper we introduced, Jacobsthal-Lucas-Leonardo sequence (Petroudi sequence). We 

represented the Binet-like formulas and generating function of this sequence. We obtained some 

interesting identities and summation formulas about this sequence. Moreover, we gave some 

examples about these identities and summation formulas. Also, we proposed PYTHON code to 

generate the first 𝑛 terms of this, using online PYTHON compiler. For the future work, one can prove 

summation formulas about the combination of Padovan sequence, Perrin sequence and Narayana sequence 

with Leonardo sequence. Also, we can consider some matrices involving Petroudi sequence and investigate 

their spectral norm properties. 
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