

Combinatorics, Cryptography, Computer Science and Computing November: 17-18, 2021



# Vertex decomposability path complexes of trees

Seyed Mohammad Ajdani<sup>1</sup> Department of Mathematics, Zanjan Branch Islamic Azad University, Zanjan, Iran

Kamal Ahmadi

Department of Mathematics, Zanjan Branch Islamic Azad University, Zanjan, Iran

#### Abstract

A tree is called double starlike if it has exactly two vertices of degree greater than two. Let H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to one pendant vertex of the path Pn and q pendant vertices to the other pendant vertex of Pn. Also let H(p, n) be graph obtained by attaching p pendant vertices to one pendant vertex of the path Pn. Let G be an undirected tree. We prove that  $\Delta_t(G)$  is vertex decomposable for all  $t \geq 2$  if and only if G = H(p, n, q) or G = H(p, n).

Keywords: Vertex decomposable, simplicial complex, Shellable

Mathematics Subject Classification [2010]: 13F20, 05E40, 13F55

## 1 Introduction

Let  $R = K[x_1, \ldots, x_n]$ , where K is a field. Fix an integer  $n \ge t \ge 2$  and let G be an undirected graph. A sequence  $x_{i_1}, \ldots, x_{i_t}$  of distinct vertices is called a **path** of length t if there are t-1 distinct edges  $e_1, \ldots, e_{t-1}$  where  $e_j$  is a edge from  $x_{i_j}$  to  $x_{i_{j+1}}$  or from  $x_{i_{j+1}}$  to  $x_{i_j}$ . Then the path ideal of G of length t is the monomial ideal  $I_t(G) = (x_{i_1} \ldots x_{i_t} : x_{i_1}, \ldots, x_{i_t})$  is a path of length t in G be an undirected graph.

in the polynomial ring  $R = K[x_1, \ldots, x_n]$ . The distance d(x, y) of two vertices x and y of a graph G is the length of the shortest path from x to y. Also we define the simplicial complex  $\Delta_t(G)$  to be

 $\Delta_t(G) = \langle \{x_{i_1}, \dots, x_{i_t}\} : x_{i_1}, \dots, x_{i_t} \text{ is a path of length t in } \mathbf{G} \ \rangle.$ 

Path ideals of graphs were first introduced by Conca and De Negri [5] in the context of monomial ideals of linear type. In [6] it has been shown that,  $\Delta_t(G)$  is a simplicial tree if G is a rooted tree and  $t \geq 2$ . Ajdani and Bulnes in [1] proved vertex decomposability path complexes of cycles. In this paper, we focus on the path complexes of trees. Throughout the paper, we mean by tree, an undirected tree and by a path, an undirected path. This paper is organized as follows. In next Section we recall several definitions and terminology which we need later. In Section 3, for all  $t \geq 2$  we show that  $\Delta_t(G)$  is vertex decomposable if and only if G = H(p, n, q) or G = H(p, n).

<sup>&</sup>lt;sup>1</sup>speaker

#### 2 Preliminaries

In this section we recall some definitions and results which will be needed later.

**Definition 2.1.** A simplicial complex  $\Delta$  over a set of vertices  $V = \{x_1, \ldots, x_n\}$ , is a collection of subsets of V, with the property that:

- (a)  $\{x_i\} \in \Delta$ , for all i;
- (b) if  $F \in \Delta$ , then all subsets of F are also in  $\Delta$  (including the empty set).

An element of  $\Delta$  is called a *face* of  $\Delta$  and complement of a face F is  $V \setminus F$  and it is denoted by  $F^c$ . Also, the complement of the simplicial complex  $\Delta = \langle F_1, \ldots, F_r \rangle$  is  $\Delta^c = \langle F_1^c, \ldots, F_r^c \rangle$ . The *dimension* of a face F of  $\Delta$ , dim F, is |F| - 1 where, |F| is the number of elements of F. A *non-face* of  $\Delta$  is a subset F of V with  $F \notin \Delta$ . we denote by  $\mathcal{N}(\Delta)$ , the set of all minimal non-faces of  $\Delta$ . The maximal faces of  $\Delta$  under inclusion are called *facets* of  $\Delta$ . The *dimension* of the simplicial complex  $\Delta$ , dim  $\Delta$ , is the maximum of dimensions of its facets. If all facets of  $\Delta$  have the same dimension, then  $\Delta$  is called *pure*. Let  $\mathcal{F}(\Delta) = \{F_1, \ldots, F_q\}$ be the facet set of  $\Delta$ . It is clear that  $\mathcal{F}(\Delta)$  determines  $\Delta$  completely and we write  $\Delta = \langle F_1, \ldots, F_q \rangle$ . A simplicial complex with only one facet is called a *simplex*. A simplicial complex  $\Gamma$  is called a *subcomplex* of  $\Delta$ , if  $\mathcal{F}(\Gamma) \subset \mathcal{F}(\Delta)$ .

For  $v \in V$ , the subcomplex of  $\Delta$  obtained by removing all faces  $F \in \Delta$  with  $v \in F$  is denoted by  $\Delta \setminus v$ . That is,

$$\Delta \setminus v = \langle F \in \Delta \colon v \notin F \rangle.$$

The link of a face  $F \in \Delta$ , denoted by  $\operatorname{link}_{\Delta}(F)$ , is a simplicial complex on V with the faces,  $G \in \Delta$  such that,  $G \cap F = \emptyset$  and  $G \cup F \in \Delta$ . The link of a vertex  $v \in V$  is simply denoted by  $\operatorname{link}_{\Delta}(v)$ .

$$\operatorname{link}_{\Delta}(v) = \{ F \in \Delta : \quad v \notin F, \quad F \cup \{v\} \in \Delta \}.$$

**Definition 2.2.** Let  $\Delta$  be a simplicial complex over *n* vertices  $\{x_1, \ldots, x_n\}$ . For  $F \subset \{x_1, \ldots, x_n\}$ , we set:

$$\mathbf{x}_F = \prod_{x_i \in F} x_i$$

We define the facet ideal of  $\Delta$ , denoted by  $I(\Delta)$ , to be the ideal of S generated by  $\{\mathbf{x}_F: F \in \mathcal{F}(\Delta)\}$ . The non-face ideal of the Stanley-Reisner ideal of  $\Delta$ , denoted by  $I_{\Delta}$ , is the ideal of S generated by square-free monomials  $\{\mathbf{x}_F: F \in \mathcal{N}(\Delta)\}$ . Also we call  $K[\Delta] := S/I_{\Delta}$  the Stanley-Reisner ring of  $\Delta$ .

**Definition 2.3.** A simplicial complex  $\Delta$  is recursively defined to be *vertex decomposable*, if it is either a simplex, or else has some vertex v so that,

- (a) Both  $\Delta \setminus v$  and  $link_{\Delta}(v)$  are vertex decomposable, and
- (b) No face of  $link_{\Delta}(v)$  is a facet of  $\Delta \setminus v$ .

A vertex v which satisfies in condition (b) is called a *shedding vertex*.

**Definition 2.4.** A simplicial complex  $\Delta$  is *shellable*, if the facets of  $\Delta$  can be ordered  $F_1, \ldots, F_s$  such that, for all  $1 \le i < j \le s$ , there exists some  $v \in F_j \setminus F_i$  and some  $l \in \{1, \ldots, j-1\}$  with  $F_j \setminus F_l = \{v\}$ .

**Definition 2.5.** A graded S-module M is called *sequentially Cohen-Macaulay* (over K), if there exists a finite filtration of graded S-modules,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each  $M_i/M_{i-1}$  is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1}).$$

A simplicial complex  $\Delta$  is called (sequentially) Cohen-Macaulay over K, if the ring  $K[\Delta] = S/I_{\Delta}$  is (sequentially) Cohen-Macaulay. A simplicial complex  $\Delta$  is called disconnected, if the vertex set V of  $\Delta$  is a disjoint union  $V = V_1 \cup V_2$  such that no face of  $\Delta$  has vertices in both  $V_1$  and  $V_2$ . Otherwise  $\Delta$  is connected.

Remark 2.6. All Cohen-Macaulay simplicial complexes of positive dimension are connected.

**Lemma 2.7.** Let  $\Delta_t(Pn)$  be a simplicial complex on the vertices  $\{x_1, \ldots, x_n\}$  and  $Pn = x_1, \ldots, x_n$ . Then  $\Delta_t(Pn)$  is vertex decomposable for all  $t \ge 2$ .

*Proof.* If t = n, then  $\Delta_n(Pn)$  is a simplex which is vertex decomposable. Let  $2 \le t < n$  then one has

$$\Delta_t(Pn) = \langle \{x_1, \dots, x_t\}, \{x_2, \dots, x_{t+1}\}, \dots, \{x_{n-t+1}, \dots, x_n\} \rangle.$$

So  $\Delta_t(Pn) \setminus x_n = \langle \{x_1, \ldots, x_t\}, \{x_2, \ldots, x_{t+1}\}, \ldots, \{x_{n-t}, \ldots, x_{n-1}\} \rangle$ . Now we use induction on the number of vertices of Pn and by induction hypothesis  $\Delta_t(Pn) \setminus x_n$  is vertex decomposable. On the other hand, it is clear that  $\lim_{\Delta_t(Pn)} \{x_n\} = \langle \{x_{n-t+1}, \ldots, x_{n-1}\} \rangle$ . Thus  $\lim_{\Delta_t(Pn)} \{x_n\}$  is a simplex which is not a facet of  $\Delta_t(Pn) \setminus x_n$ . Therefore  $\Delta_t(Pn)$  is vertex decomposable.

### 3 Characterization of path complexes of trees

As the main result of this section, for all  $t \geq 2$ , we characterize all such trees whose  $\Delta_t(G)$  is vertex decomposable. Let H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to one pendant vertex of the path Pn and q pendant vertices to the other pendant vertex of Pn. Also let H(p, n) be graph obtained by attaching p pendant vertices to one pendant vertex of the path Pn.

**Remark 3.1.** Let  $Pn = x_1, \ldots, x_n$  be a path on vertices  $\{x_1, \ldots, x_n\}$  and H(2, n) be a graph obtained by attaching two pendant vertices to pendant vertex  $x_n$ . Then  $\Delta_t(H(2, n))$  is vertex decomposable for all  $t \ge 2$ .

Proof. By lemma 2.7 proof is trivial.

**Proposition 3.2.** Let  $Pn = x_1, \ldots, x_n$  be a path on vertices  $\{x_1, \ldots, x_n\}$  and H(p, n) be a graph obtained by attaching p pendant vertices to pendant vertex  $x_n$ . Then  $\Delta_t(H(p, n))$  is vertex decomposable for all  $t \ge 2$ .

*Proof.* We prove the proposition by induction on p the number of pendant vertices to pendant vertex  $x_n$  of Pn. If p = 0 or 1 then H(p, n) is a path and by lemma 2.7  $\Delta_t(H(p, n))$  is vertex decomposable. If p = 2 then by remark 3.1  $\Delta_t(H(p, n))$  is vertex decomposable. Now let p > 2 and  $\{y_1, \ldots, y_p\}$  be p pendant vertices to pendant vertex  $x_n$  of Pn then one has

$$H(p,n) \setminus \{y_1\} = H(p-1,n)$$

and

$$\Delta_t(H(p,n)) \setminus \{y_1\} = \Delta_t(H(p-1,n)).$$

Therefore by induction hypothesis  $\Delta_t(H(p-1,n))$  is vertex decomposable. So  $\Delta_t(H(p,n)) \setminus \{y_1\}$  is vertex decomposable. If t = 3 then we have

$$link_{\Delta_3(H(p,n))}\{y_1\} = \langle \{x_{n-1}, x_n\}, \{y_2, x_n\}, \dots, \{y_p, x_n\} \rangle$$

It is easy to see that  $link_{\Delta_3(H(p,n))}{y_1}$  is vertex decomposable and  $y_1$  is a shedding vertex. If t = 2 or t > 3, one has

 $\operatorname{link}_{\Delta_t(H(p,n))}\{y_1\} = \langle \{x_{n-t+2}, \dots, x_n\} \rangle.$ 

Thus  $\lim_{\Delta_t(H(p,n))} \{y_1\}$  is a simplex, which is not a facet of  $\Delta_t(H(p,n)) \setminus \{y_1\}$ , therefore  $\Delta_t(H(p,n))$  is vertex decomposable.

**Lemma 3.3.** Let p = 2 and  $q \ge 2$ , Then  $\Delta_t(H(2, n, q))$  is vertex decomposable for all  $2 \le t \le n+2$ 

*Proof.* Let H(2, n, q) denote the double starlike tree obtained by attaching two pendant vertices  $\{y_1, y_2\}$  to pendant vertex  $x_1$  of path Pn and  $\{y'_1, \ldots, y'_q\}$  be pendant vertices to pendant vertex  $x_n$  of Pn. So by proposition 3.2  $\Delta_t(H(2, n, q)) \setminus \{y_1\}$  is vertex decomposable. Now we prove that  $\lim_{\Delta_t(H(2, n, q))} \{y_1\}$  is vertex decomposable. Now we prove that  $\lim_{\Delta_t(H(2, n, q))} \{y_1\}$  is vertex decomposable. If t = 3 then  $\lim_{\Delta_3(H(2, n, q))} \{y_1\} = \langle \{x_1, x_2\}, \{x_1, y_2\} \rangle$  which is vertex decomposable. If t = n + 2 then

$$link_{\Delta_{n+2}(H(2,n,q))}\{y_1\} = \langle \{x_1, \dots, x_n, y_1'\}, \{x_1, \dots, x_n, y_2'\}, \dots, \{x_1, \dots, x_n, y_q'\} \rangle.$$

It is easy to see that  $\lim_{\Delta_{n+2}(H(2,n,q))} \{y_1\}$  is vertex decomposable. If t = 2 or  $4 \le t \le n+1$  then we have  $\lim_{\Delta_t(H(2,n,q))} \{y_1\} = \langle \{x_1, \ldots, x_{t-1}\} \rangle$ . Thus  $\lim_{\Delta_t(H(2,n,q))} \{y_1\}$  is a simplex which is vertex decomposable. It is clear that  $y_1$  is a shedding vertex.

**Proposition 3.4.** Let  $Q_1, Q_2$  be two paths of maximum length k in tree G and y be a leaf of G such that  $y \in Q_1 \cap Q_2$ ,  $|Q_1 \cap Q_2| = L$ . Then  $\Delta_k(G)$  is not vertex decomposable.

Proof. Suppose  $Q_1 = y_1, y_2, \ldots, y_{k-L}, x_1, x_2, \ldots, x_{L-1}, y$  and  $Q_2 = y'_1, y'_2, \ldots, y'_{k-L}, x_1, x_2, \ldots, x_{L-1}, y$  be two paths of length k in G such that  $Q_1 \cap Q_2 = \{x_1, x_2, \ldots, x_{L-1}, y\}$ and deg(y) = 1. Since  $link_{\Delta_k(G)}\{x_1, \ldots, x_{L-1}, y\}$  is disconnected and pure of positive dimension. By remark 2.6  $\Delta_k(G)$  is not Cohen-Macaulay and hence  $\Delta_k(G)$  is not vertex decomposable.

**Proposition 3.5.** Let G be a double starlike tree such that G = H(p, n, q). Then  $\Delta_t(G)$  is vertex decomposable for all  $2 \le t \le n+2$ .

Proof. Let G = H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to one pendant vertex of the path Pn and q pendant vertices to the other pendant vertex of Pn. We prove the theorem by induction on p the number of pendant vertices to pendant vertex  $x_1$  of Pn. If p = 0 or p = 1 then by proposition  $3.2 \Delta_t(G)$  is vertex decomposable. If p = 2 then by lemma  $3.3 \Delta_t(G)$  is vertex decomposable. Now let p > 2 and  $\{y_1, \ldots, y_p\}$  be p pendant vertices to pendant vertex  $x_1$  of Pn. Since  $G \setminus \{y_1\}$  is again double starlike tree on p - 1 pendant vertices. Therefore by induction hypothesis  $\Delta_t(G \setminus \{y_1\})$  is vertex decomposable. So  $\Delta_t(G \setminus \{y_1\}) = \Delta_t(G) \setminus \{y_1\}$  is vertex decomposable. Let t = 2 then  $link_{\Delta_2(G)}\{y_1\} = \langle \{x_1\} \rangle$ is simplex and vertex decomposable. Let t = 3 then  $link_{\Delta_3(G)}\{y_1\} = \langle \{x_2, x_1\}, \{y_2, x_1\}, \ldots, \{y_p, x_1\} \rangle$  is vertex decomposable. Let  $3 < t \le n + 1$  then  $link_{\Delta_t(G)}\{y_1\} = \langle \{x_1, x_2, \ldots, x_{t-1}\} \rangle$  is simplex and vertex decomposable. Let t = n + 2 then  $link_{\Delta_t(G)}\{y_1\} = \langle \{x_1, \ldots, x_n, y_1\}, \{x_1, \ldots, x_n, y_2\}, \ldots, \{x_1, \ldots, x_n, y_p\} \rangle$  is a path complex of a starlike tree which is vertex decomposable. It is easy to see that no face of  $link_{\Delta_t(G)}\{y_1\}$ is a facet of  $\Delta_t(G) \setminus \{y_1\}$ . So  $\Delta_t(G)$  is vertex decomposable.

Now, we are ready that prove the main result of this paper.

**Theorem 3.6.** Let G be a tree such that is not a path. Then  $\Delta_t(G)$  is vertex decomposable for all  $t \ge 2$  if and only if G = H(p, n, q) or G = H(p, n).

*Proof.* ( $\Longrightarrow$ )We prove by contradiction. Suppose  $G \neq H(p, n, q)$  and  $G \neq H(p, n)$ . So there exists two paths of maximum length k in G which contain L common vertices such that one of these vertices is a leaf. Therefore by proposition 3.4  $\Delta_k(G)$  is not vertex decomposable which is a contradiction. ( $\Leftarrow$ ) By proposition 3.2 and proposition 3.5 the proof is completed.

#### References

- S. M. Ajdani, F. Bulnes, Algebraic Properties of the Path Complexes of Cycles, Adv. Math. 5, 1-8, (2019).
- [2] A. Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, 1819-1872, Elsevier, Amsterdam, (1995).
- [3] J. Herzog and T. Hibi, Monomial Ideals, in: GTM 260, Springer, London, (2010).

- [4] J. Herzog, A. Soleyman Jahan and S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Alger. Comb. 27(2008), 113-125
- [5] A. Conca and E. De Negri, *M-sequences, graph ideals and ladder ideals of linear type*, J. Algebra 211 (1999), no. 2, 599-624.
- [6] J. He and A. Van Tuyl, Algebraic properties of the path ideal of a tree, Comm. Algebra. 38 (2010), 1725-1742.
- [7] M. Hachimori, Decompositions of two dimensional simplicial complexes. Discrete math, 308(11); 2308-2312, 2008
- [8] R. P. Stanley, Linear Diophantine equations and local cohomology. Invent. Math. 68(1982), no 2, 175-193.
- [9] R. P. Stanley, Combinatorics and commutative algebra. Second edition. Progress in Mathematics 41, Birkhauser Boston 1996.
- [10] R. p. Stanley, Positivity problems and conjectures in algebraic combinatorics. In Mathematics: frontiers and perspectives, 295-319, Amer. Math. Soc., Providence, RI 2000.

Email: majdani2@yahoo.com Email: kamal.ahmadi.math@gmai.com