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Abstract

A tree is called double starlike if it has exactly two vertices of degree greater than two. Let H(p, n, q)
denote the double starlike tree obtained by attaching p pendant vertices to one pendant vertex of the
path Pn and q pendant vertices to the other pendant vertex of Pn. Also let H(p, n) be graph obtained
by attaching p pendant vertices to one pendant vertex of the path Pn. Let G be an undirected tree. We
prove that ∆t (G) is vertex decomposable for all t ≥ 2 if and only if G = H(p, n, q) or G = H(p, n).
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1 Introduction

Let R = K[x1, . . . , xn], where K is a field. Fix an integer n ≥ t ≥ 2 and let G be an undirected graph. A
sequence xi1 , . . . , xit of distinct vertices is called a path of length t if there are t−1 distinct edges e1, . . . , et−1

where ej is a edge from xij to xij+1 or from xij+1 to xij . Then the path ideal of G of length t is the monomial
ideal It(G) = (xi1 . . . xit : xi1 , . . . , xit is a path of length t in G )
in the polynomial ring R = K[x1, . . . , xn]. The distance d(x, y) of two vertices x and y of a graph G is the
length of the shortest path from x to y. Also we define the simplicial complex ∆t(G) to be

∆t(G) = 〈{xi1 , . . . , xit} : xi1 , . . . , xit is a path of length t in G 〉.

Path ideals of graphs were first introduced by Conca and De Negri [5] in the context of monomial ideals
of linear type. In [6] it has been shown that, ∆t(G) is a simplicial tree if G is a rooted tree and t ≥ 2.
Ajdani and Bulnes in [1] proved vertex decomposability path complexes of cycles. In this paper, we focus
on the path complexes of trees. Throughout the paper, we mean by tree, an undirected tree and by a path,
an undirected path. This paper is organized as follows. In next Section we recall several definitions and
terminology which we need later. In Section 3, for all t ≥ 2 we show that ∆t(G) is vertex decomposable if
and only if G = H(p, n, q) or G = H(p, n).
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2 Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 2.1. A simplicial complex ∆ over a set of vertices V = {x1, . . . , xn}, is a collection of subsets
of V , with the property that:

(a) {xi} ∈ ∆, for all i;

(b) if F ∈ ∆, then all subsets of F are also in ∆ (including the empty set).

An element of ∆ is called a face of ∆ and complement of a face F is V \F and it is denoted by F c. Also,
the complement of the simplicial complex ∆ = 〈F1, . . . , Fr〉 is ∆c = 〈F c

1 , . . . , F
c
r 〉. The dimension of a face

F of ∆, dimF , is |F |−1 where, |F | is the number of elements of F . A non-face of ∆ is a subset F of V with
F /∈ ∆. we denote by N (∆), the set of all minimal non-faces of ∆. The maximal faces of ∆ under inclusion
are called facets of ∆. The dimension of the simplicial complex ∆, dim ∆, is the maximum of dimensions
of its facets. If all facets of ∆ have the same dimension, then ∆ is called pure. Let F(∆) = {F1, . . . , Fq}
be the facet set of ∆. It is clear that F(∆) determines ∆ completely and we write ∆ = 〈F1, . . . , Fq〉. A
simplicial complex with only one facet is called a simplex. A simplicial complex Γ is called a subcomplex of
∆, if F(Γ) ⊂ F(∆).

For v ∈ V , the subcomplex of ∆ obtained by removing all faces F ∈ ∆ with v ∈ F is denoted by ∆ \ v.
That is,

∆ \ v = 〈F ∈ ∆: v /∈ F 〉.

The link of a face F ∈ ∆, denoted by link∆(F ), is a simplicial complex on V with the faces, G ∈ ∆ such
that, G ∩ F = ∅ and G ∪ F ∈ ∆. The link of a vertex v ∈ V is simply denoted by link∆(v).

link∆(v) =
{
F ∈ ∆: v /∈ F, F ∪ {v} ∈ ∆

}
.

Definition 2.2. Let ∆ be a simplicial complex over n vertices {x1, . . . , xn}. For F ⊂ {x1, . . . , xn}, we set:

xF =
∏
xi∈F

xi.

We define the facet ideal of ∆, denoted by I(∆), to be the ideal of S generated by {xF : F ∈ F(∆)}. The
non-face ideal or the Stanley-Reisner ideal of ∆, denoted by I∆, is the ideal of S generated by square-free
monomials {xF : F ∈ N (∆)}. Also we call K[∆] := S/I∆ the Stanley-Reisner ring of ∆.

Definition 2.3. A simplicial complex ∆ is recursively defined to be vertex decomposable, if it is either a
simplex, or else has some vertex v so that,

(a) Both ∆ \ v and link∆(v) are vertex decomposable, and

(b) No face of link∆(v) is a facet of ∆ \ v.

A vertex v which satisfies in condition (b) is called a shedding vertex.

Definition 2.4. A simplicial complex ∆ is shellable, if the facets of ∆ can be ordered F1, . . . , Fs such that,
for all 1 ≤ i < j ≤ s, there exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}.

Definition 2.5. A graded S-module M is called sequentially Cohen-Macaulay (over K), if there exists a
finite filtration of graded S-modules,

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).
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A simplicial complex ∆ is called (sequentially) Cohen-Macaulay over K, if the ring K[∆] = S/I∆ is
(sequentially) Cohen-Macaulay. A simplicial complex ∆ is called disconnected, if the vertex set V of ∆ is a
disjoint union V = V1∪V2 such that no face of ∆ has vertices in both V1 and V2. Otherwise ∆ is connected.

Remark 2.6. All Cohen-Macaulay simplicial complexes of positive dimension are connected.

Lemma 2.7. Let ∆t(Pn) be a simplicial complex on the vertices {x1, . . . , xn} and Pn = x1, . . . , xn . Then
∆t(Pn) is vertex decomposable for all t ≥ 2.

Proof. If t = n, then ∆n(Pn) is a simplex which is vertex decomposable. Let 2 ≤ t < n then one has

∆t(Pn) = 〈{x1, . . . , xt}, {x2, . . . , xt+1}, . . . , {xn−t+1, . . . , xn}〉.

So ∆t(Pn) \xn = 〈{x1, . . . , xt}, {x2, . . . , xt+1}, . . . , {xn−t, . . . , xn−1}〉. Now we use induction on the number
of vertices of Pn and by induction hypothesis ∆t(Pn) \ xn is vertex decomposable. On the other hand, it
is clear that link∆t(Pn){xn} = 〈{xn−t+1, . . . , xn−1}〉. Thus link∆t(Pn){xn} is a simplex which is not a facet
of ∆t(Pn) \ xn. Therefore ∆t(Pn) is vertex decomposable.

3 Characterization of path complexes of trees

As the main result of this section, for all t ≥ 2, we characterize all such trees whose ∆t(G) is vertex
decomposable. Let H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to
one pendant vertex of the path Pn and q pendant vertices to the other pendant vertex of Pn. Also let
H(p, n) be graph obtained by attaching p pendant vertices to one pendant vertex of the path Pn.

Remark 3.1. Let Pn = x1, . . . , xn be a path on vertices {x1, . . . , xn} and H(2, n) be a graph obtained
by attaching two pendant vertices to pendant vertex xn. Then ∆t(H(2, n)) is vertex decomposable for all
t ≥ 2.

Proof. By lemma 2.7 proof is trivial.

Proposition 3.2. Let Pn = x1, . . . , xn be a path on vertices {x1, . . . , xn} and H(p, n) be a graph obtained
by attaching p pendant vertices to pendant vertex xn. Then ∆t(H(p, n)) is vertex decomposable for all t ≥ 2.

Proof. We prove the proposition by induction on p the number of pendant vertices to pendant vertex xn of
Pn. If p = 0 or 1 then H(p, n) is a path and by lemma 2.7 ∆t(H(p, n)) is vertex decomposable. If p = 2 then
by remark 3.1 ∆t(H(p, n)) is vertex decomposable. Now let p > 2 and {y1, . . . , yp} be p pendant vertices to
pendant vertex xn of Pn then one has

H(p, n) \ {y1} = H(p− 1, n)

and
∆t(H(p, n)) \ {y1} = ∆t(H(p− 1, n)).

Therefore by induction hypothesis ∆t(H(p− 1, n)) is vertex decomposable. So ∆t(H(p, n)) \ {y1} is vertex
decomposable. If t = 3 then we have

link∆3(H(p,n)){y1} = 〈{xn−1, xn}, {y2, xn}, . . . , {yp, xn}〉.

It is easy to see that link∆3(H(p,n)){y1} is vertex decomposable and y1 is a shedding vertex. If t = 2 or t > 3,
one has

link∆t(H(p,n)){y1} = 〈{xn−t+2, . . . , xn}〉.

Thus link∆t(H(p,n)){y1} is a simplex, which is not a facet of ∆t(H(p, n)) \ {y1}, therefore ∆t(H(p, n)) is
vertex decomposable.

Lemma 3.3. Let p = 2 and q ≥ 2, Then ∆t(H(2, n, q)) is vertex decomposable for all 2 ≤ t ≤ n + 2
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Proof. Let H(2, n, q) denote the double starlike tree obtained by attaching two pendant vertices {y1, y2}
to pendant vertex x1 of path Pn and {y′1, . . . , y′q} be pendant vertices to pendant vertex xn of Pn. So
by proposition 3.2 ∆t(H(2, n, q)) \ {y1} is vertex decomposable. Now we prove that link∆t(H(2,n,q)){y1} is
vertex decomposable. If t = 3 then link∆3(H(2,n,q)){y1} = 〈{x1, x2}, {x1, y2}〉 which is vertex decomposable.
If t = n + 2 then

link∆n+2(H(2,n,q)){y1} = 〈{x1, . . . , xn, y
′
1}, {x1, . . . , xn, y

′
2}, . . . , {x1, . . . , xn, y

′
q}〉.

It is easy to see that link∆n+2(H(2,n,q)){y1} is vertex decomposable. If t = 2 or 4 ≤ t ≤ n + 1 then we have
link∆t(H(2,n,q)){y1} = 〈{x1, . . . , xt−1}〉. Thus link∆t(H(2,n,q)){y1} is a simplex which is vertex decomposable.
It is clear that y1 is a shedding vertex.

Proposition 3.4. Let Q1, Q2 be two paths of maximum length k in tree G and y be a leaf of G such that
y ∈ Q1 ∩Q2, |Q1 ∩Q2| = L. Then ∆k(G) is not vertex decomposable.

Proof. Suppose Q1 = y1, y2, . . . , yk−L, x1, x2, . . . , xL−1, y and
Q2 = y′1, y

′
2, . . . , y

′
k−L, x1, x2, . . . , xL−1, y be two paths of length k in G such that Q1∩Q2 = {x1, x2, . . . , xL−1, y}

and deg(y) = 1. Since link∆k(G){x1, . . . , xL−1, y} is disconnected and pure of positive dimension. By remark
2.6 ∆k(G) is not Cohen-Macaulay and hence ∆k(G) is not vertex decomposable.

Proposition 3.5. Let G be a double starlike tree such that G = H(p, n, q) . Then ∆t(G) is vertex decom-
posable for all 2 ≤ t ≤ n + 2.

Proof. Let G = H(p, n, q) denote the double starlike tree obtained by attaching p pendant vertices to one
pendant vertex of the path Pn and q pendant vertices to the other pendant vertex of Pn. We prove the
theorem by induction on p the number of pendant vertices to pendant vertex x1 of Pn. If p = 0 or p = 1 then
by proposition 3.2 ∆t(G) is vertex decomposable. If p = 2 then by lemma 3.3 ∆t(G) is vertex decomposable.
Now let p > 2 and {y1, . . . , yp} be p pendant vertices to pendant vertex x1 of Pn. Since G \ {y1} is again
double starlike tree on p − 1 pendant vertices. Therefore by induction hypothesis ∆t(G \ {y1}) is vertex
decomposable. So ∆t(G\{y1}) = ∆t(G)\{y1} is vertex decomposable. Let t = 2 then link∆2(G){y1} = 〈{x1}〉
is simplex and vertex decomposable. Let t = 3 then link∆3(G){y1} = 〈{x2, x1}, {y2, x1}, . . . , {yp, x1}〉 is
vertex decomposable. Let 3 < t ≤ n + 1 then link∆t(G){y1} = 〈{x1, x2, . . . , xt−1}〉 is simplex and vertex
decomposable. Let t = n + 2 then link∆t(G){y1} = 〈{x1, . . . , xn, y1}, {x1, . . . , xn, y2}, . . . , {x1, . . . , xn, yp}〉 is
a path complex of a starlike tree which is vertex decomposable. It is easy to see that no face of link∆t(G){y1}
is a facet of ∆t(G) \ {y1}. So ∆t(G) is vertex decomposable.

Now, we are ready that prove the main result of this paper.

Theorem 3.6. Let G be a tree such that is not a path. Then ∆t(G) is vertex decomposable for all t ≥ 2 if
and only if G = H(p, n, q) or G = H(p, n).

Proof. (=⇒)We prove by contradiction. Suppose G 6= H(p, n, q) and G 6= H(p, n). So there exists two
paths of maximum length k in G which contain L common vertices such that one of these vertices is a
leaf. Therefore by proposition 3.4 ∆k(G) is not vertex decomposable which is a contradiction. (⇐=) By
proposition 3.2 and proposition 3.5 the proof is completed.
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