

6th International Conference on

Combinatorics, Cryptography, Computer Science and Computing

November. 17-18, 2021

Seidel Energy of k-fold and Strong k-fold Graphs

Harishchandra S. Ramane¹

Department of Mathematics, Karnatak University, Dharwad - 580003, India

B. Parvathalu

Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad - 580001, India

K. Ashoka

Department of Mathematics, Karnatak University Dharwad - 580003, India

Abstract

The Seidel energy of a graph is the sum of absolute values of the eigenvalues of its Seidel matrix. In this paper, an explicit expression for the Seidel energy of k-fold graphs and strong k-fold graphs is obtained. As a consequence, certain Seidel equienergetic graphs are characterized. Moreover, some new class of Seidel equienergetic graphs are presented.

Keywords: Seidel energy, Double graph, *k*-fold graph, Strong double graph, Strong *k*-fold graph **Mathematics Subject Classification [2010]:** 05C50, 05C76

1 Introduction

The most elaborated matrix corresponding to a graph G with n vertices is the *adjacency matrix* $A(G) = [a_{ij}]$, defined by $a_{ij} = 1$ if a vertex v_i is adjacent to a vertex v_j and 0 otherwise. Another well known matrix corresponding to a graph is the *Seidel matrix* S(G) [20] introduced by van Lint and Seidel in 1966. It is defined as $S(G) = J_n - I - 2A(G)$, where J_n is the matrix with all its entries equal to 1 and I is an identity matrix both of same order $n \times n$. The one of important spectral properties of Seidel matrix is that the multiplicity of least Seidel eigenvalue has a connection with equiangular lines in Euclidean space [3]. The *energy* of a graph G is the sum of absolute values of the eigenvalues of G [5]. Haemers introduced the *Seidel energy* [6] of a graph G, defined as sum of absolute values of the Seidel eigenvalues of G and shown a connection with the energy of a graph G, defined as sum of absolute values of the Seidel eigenvalues of G and shown a sconnection with the energy of a graph G, defined as sum of absolute values of the Seidel eigenvalues of G and shown a sconnection with the energy of a graph, finding the class of graphs with different Seidel eigenvalues which have same Seidel energy is an interesting direction. In this paper, we find the Seidel energy of k-fold graph and strong k-fold graph in terms of Seidel energy of original graph together with some other graph parameters. As a result we characterize some class of graphs with same Seidel energy.

2 Preliminaries

All the graphs in this paper are simple and undirected. Let the $V = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of a graph G with n vertices v_1, v_2, \ldots, v_n . The degree d_i of a vertex v_i is the number of edges which are incident with v_i . A graph G is said to be r-regular if $d_i = r$ to each vertex $v_i \in V$. The eigenvalues of a graph are the eigenvalues of its adjacency matrix. The Seidel eigenvalues of a graph are the eigenvalues of its Seidel

¹speaker

matrix and are denoted by $\theta_1, \theta_2, \ldots, \theta_n$. If all the Seidel eigenvalues are integers, then the corresponding graph is called *Seidel integral* graph. The *Seidel energy* of *G* is defined as $\mathcal{E}_S(G) = \sum_{j=1}^n |\theta_j|$. Two graphs G_1 and G_2 with the same number of vertices are said to be Seidel equienergetic if $\mathcal{E}_S(G_1) = \mathcal{E}_S(G_2)$. Let n_S^- , n_S^0 and n_S^+ respectively, denote the number of negative, zero and positive Seidel eigenvalues of *G*. Let the graphs K_n and K_{n_1,n_2} denote the complete graph with *n* vertices and the complete bipartite graph with $n_1 + n_2$ vertices respectively. For other notation, terminology and the results related to the spectra of graphs, we follow [4].

Definition 2.1. [7] The *line graph* $\mathcal{L}(G)$ of a graph G is the graph with vertex set same as the edge set of G in which two vertices are adjacent if and only if the corresponding edges in G have a vertex in common. The *k*-th iterated line graph of G for k = 0, 1, 2, ... is defined as $\mathcal{L}^k(G) \equiv \mathcal{L}(\mathcal{L}^{k-1}(G))$, where $\mathcal{L}^0(G) \equiv G$ and $\mathcal{L}^1(G) \equiv \mathcal{L}(G)$.

Definition 2.2. [9] Let the vertex set of a graph G be $V(G) = \{v_1, v_2, \ldots, v_n\}$. For $k \ge 2$, the k-fold graph $D_k[G]$ of a graph G is obtained by taking k copies of G in which a vertex v_i in one copy is adjacent to a vertex v_j in other copies if and only if v_i is adjacent v_j in G.

It is noted that the adjacency matrix of $D_k[G]$ is $A(D_k[G])=J_k\otimes A(G)$, where \otimes denotes the Kronecker product. If k=2, we get the *double graph* D(G) [10], that is, $D_2[G] \equiv D(G)$.

Definition 2.3. Let the vertex set of a graph G be $V(G) = \{v_1, v_2, \ldots, v_n\}$. For $k \ge 2$, the strong k-fold graph $Sd_k[G]$ of a graph G is obtained by taking k copies of G in which a vertex v_i in one copy is adjacent to a vertex v_j in other copies if and only if v_i is adjacent v_j in G or i = j.

It is noted that the adjacency matrix of $Sd_k[G]$ is $A(Sd_k[G])=J_k\otimes (A(G)+I)-I\otimes I$. If k=2, we get the strong double graph Sd(G) [10, 12], that is, $Sd_2[G] \equiv Sd(G)$.

Lemma 2.4. [19] Let the Seidel eigenvalues of a graph G with n vertices be θ_j , $1 \le j \le n$. Then for $k \ge 2$, the Seidel eigenvalues of $D_k[G]$ are $k\theta_j + (k-1)$, $1 \le j \le n$ and -1(nk - n times).

Lemma 2.5. [19] Let the Seidel eigenvalues of a graph G with n vertices be θ_j , $1 \le j \le n$. Then for $k \ge 2$, the Seidel eigenvalues of $Sd_k[G]$ are $k\theta_j - (k-1)$, $1 \le j \le n$ and 1(nk - n times).

Theorem 2.6. [3] Let the eigenvalues of an r-regular graph G with n vertices be $r, \lambda_i, 2 \leq i \leq n$. Then the Seidel eigenvalues of G are n - 2r - 1 and $-1 - 2\lambda_i, 2 \leq i \leq n$.

Theorem 2.7. [15] Let G be a graph with n_0 number of vertices and m_0 number of edges such that $d_i+d_j \ge 6$ to each edge $e = v_i v_j$ in G. Then the iterated line graphs $\mathcal{L}^k(G)$ have all the negative eigenvalues equal to -2 with the multiplicity $m_{k-1} - n_{k-1}$ for $k \ge 2$, where n_k and m_k denote the number of vertices and the number of edges of $\mathcal{L}^k(G)$ respectively.

Theorem 2.8. [16] Let the graphs G_1 and G_2 be r-regular with the same number of vertices n and $r \ge 3$. Then $\mathcal{E}_S(\mathcal{L}^k(G_1)) = \mathcal{E}_S(\mathcal{L}^k(G_2))$ to each $k \ge 2$.

3 Main Results

In the following, we give an explicit expression for Seidel energy of k-fold graph $D_k[G]$ in terms of Seidel energy of G for any graph G.

Let $n_{\theta}(\mathbf{I})$ denotes the number of Seidel eigenvalues of G which belongs to the interval \mathbf{I} and let $\nu = 1 - \frac{1}{k}$, $k \ge 2$.

Theorem 3.1. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$. Then for $k \ge 2$,

$$\mathcal{E}_S(D_k[G]) = k \left(2n\nu + \mathcal{E}_S(G) - 2\nu n_S^- + 2\sum_{\theta_j \in (-\nu, 0)} (\theta_j + \nu) \right).$$

Proof. Let $\theta_1 \ge \theta_2 \ge \cdots \ge \theta_n$ be the Seidel eigenvalues of G. By definition of Seidel energy of a graph, we have

$$\begin{aligned} \mathcal{E}_{S}(D_{k}[G]) &= nk - n + \sum_{j=1}^{n} |k\theta_{j} + (k-1)| \quad \text{by Lemma 2.4} \\ &= kn\nu + k \sum_{j=1}^{n} |\nu + \theta_{j}| \\ &= k \left(n\nu + \sum_{\theta_{j} \leq -\nu} (-\nu - \theta_{j}) + \sum_{\theta_{j} > -\nu} (\nu + \theta_{j}) \right) \\ &= k \left(n\nu - \nu n_{\theta}([\theta_{n}, -\nu]) + \sum_{\theta_{j} \leq -\nu} |\theta_{j}| + \nu n_{\theta}((-\nu, \theta_{1}]) + \sum_{\theta_{j} \in (-\nu, 0)} \theta_{j} + \sum_{\theta_{j} \geq 0} \theta_{j} \right), \end{aligned}$$

where $n_{\theta}([\theta_n, -\nu]) = 0$ if $\theta_n \ge -\nu$. The Seidel energy of a graph G can be expressed as

$$\mathcal{E}_{S}(G) = \sum_{j=1}^{n} |\theta_{j}| = \sum_{\theta_{j} \leq -\nu} |\theta_{j}| + \sum_{\theta_{j} \in (-\nu, 0)} |\theta_{j}| + \sum_{\theta_{j} \geq 0} \theta_{j}, \text{ with this we get}$$

$$\mathcal{E}_{S}(D_{k}[G]) = k \left(n\nu - \nu n_{\theta}([\theta_{n}, -\nu]]) + \nu n_{\theta}((-\nu, \theta_{1}]) + \sum_{\theta_{j} \in (-\nu, 0)} \theta_{j} + \mathcal{E}_{S}(G) - \sum_{\theta_{j} \in (-\nu, 0)} |\theta_{j}| \right)$$

$$= k \left(n\nu - \nu n_{\theta}([\theta_{n}, -\nu]]) + \nu n - \nu n_{\theta}([\theta_{n}, -\nu]]) + 2 \sum_{\theta_{j} \in (-\nu, 0)} \theta_{j} + \mathcal{E}_{S}(G) \right)$$

$$= k \left(2n\nu + \mathcal{E}_{S}(G) - 2 \left(\nu n_{\theta}([\theta_{n}, -\nu]]) - \sum_{\theta_{j} \in (-\nu, 0)} \theta_{j} \right) \right). \tag{1}$$

The total number of Seidel eigenvalues n of a graph G can be expressed as

$$n = n_{\theta}([\theta_n, -\nu]) + n_{\theta}((-\nu, 0)) + n_S^0 + n_S^+ \text{ or}$$

$$n_{\theta}([\theta_n, -\nu]) = n - n_S^+ - n_S^0 - n_{\theta}(-\nu, 0) = n_S^- - n_{\theta}((-\nu, 0)).$$
(2)

Also, we have

$$\sum_{\theta_j \in (-\nu,0)} (\theta_j + \nu) = \sum_{\theta_j \in (-\nu,0)} \theta_j + \nu n_\theta((-\nu,0)).$$
(3)

Using (2) and (3) in (1), we get

$$\mathcal{E}_S(D_k[G]) = k \left(2n\nu + \mathcal{E}_S(G) - 2\nu n_S^- + 2\sum_{\theta_j \in (-\nu, 0)} (\theta_j + \nu) \right)$$

which completes the proof.

It is easy to observe that to each negative Seidel eigenvalue $\theta_j \in (-\nu, 0)$ we have $0 < \theta_j + \nu < \nu$, which gives $\nu n_S^- > \sum_{\theta_j \in (-\nu, 0)} (\theta_j + \nu) > 0$ for any graph G. Using this fact we get the following.

Corollary 3.2. Let G be a graph with n vertices. Then for $k \ge 2$,

$$2n(k-1) + k\mathcal{E}_S(G) - 2n_S^-(k-1) \le \mathcal{E}_S(D_k[G]) < 2n(k-1) + k\mathcal{E}_S(G).$$

It is noted that $(-\nu, 0) \subseteq (-1, 0)$ for $k \ge 2$. There are many graphs with no Seidel eigenvalues in the interval (-1,0), for instance, all Seidel integral graphs. If a graph G has no Seidel eigenvalue in the interval $(-\nu, 0)$ then we have the following.

Corollary 3.3. Let G be a graph with n vertices. Then for $k \ge 2$, G has no Seidel eigenvalue in the interval $(-\nu, 0)$ if and only if

$$\mathcal{E}_S(D_k[G]) = 2(k-1)(n-n_S^-) + k\mathcal{E}_S(G).$$

Proof. Proof follows directly from the fact that $\sum_{\theta \in (-\nu,0)} (\theta + \nu) = 0$ if and only if G has no Seidel eigenvalue

 θ in the interval $(-\nu, 0)$ in the Theorem 3.1.

It is easy to construct Seidel equienergetic graphs by using Theorem 3.1 with the help of Seidel equienergetic graphs with no Seidel eigenvalues in the interval $(-\nu, 0)$ and having the same number of negative Seidel eigenvalues.

Let the Seidel eigenvalues of two graphs G_1 and G_2 be $\theta'_1, \theta'_2, \ldots, \theta'_n$ and $\theta''_1, \theta''_2, \ldots, \theta''_n$ and let the number of negative Seidel eigenvalues of G_1 and G_2 be n_{S1}^- and n_{S2}^- respectively.

Corollary 3.4. Let G_1 and G_2 be Seidel equienergetic graphs with n vertices. Then for $k \ge 2$, the graphs $D_k[G_1]$ and $D_k[G_2]$ are Seidel equienergetic if and only if $\nu n_{S1}^- - \sum_{\substack{\theta'_j \in (-\nu,0) \\ \theta'_j \in (-\nu,0)}} (\theta'_j + \nu) = \nu n_{S2}^- - \sum_{\substack{\theta''_j \in (-\nu,0) \\ \theta''_j \in (-\nu,0)}} (\theta''_j + \nu)$. In particular, if G_1 and G_2 have no Seidel eigenvalues in the interval $(-\nu, 0)$ then for $k \ge 2$, the graphs

 $D_k[G_1]$ and $D_k[G_2]$ are Seidel equienergetic if and only if $n_{S_1}^- = n_{S_2}^-$.

Example 3.5. The graphs $\mathcal{L}^p(K_{n,n} \Box K_{n-1})$ and $\mathcal{L}^p(K_{n-1,n-1} \Box K_n)$ are integral Seidel equienergetic graphs with the same number of negative Seidel eigenvalues for all $n \ge 5, p \ge 0$ [13], where \Box denotes the Cartesian product. Therefore by Corollary 3.4, the graphs $D_k[\mathcal{L}^p(K_{n,n} \Box K_{n-1})]$ and $D_k[\mathcal{L}^p(K_{n-1,n-1} \Box K_n)]$ are Seidel equienergetic for all $k \ge 2, n \ge 5$ and $p \ge 0$.

There are many non-isomorphic regular graphs with same number of vertices and same degree, see [8, 13, 14, 17, 18]. Ramane et al. in [16] shown a way to construct a large pairs of Seidel equienergetic iterated line graphs by using such regular graphs. In the following, we present another large class of Seidel equienergetic graphs.

Theorem 3.6. Let the graphs G_1 and G_2 be two r-regular Seidel equienergetic graphs with same number of vertices n and $r \geq 3$. Then the graphs $D_k[\mathcal{L}^p(G_1)]$ and $D_k[\mathcal{L}^p(G_2)]$ are Seidel equienergetic for all $k \geq 2$ and $p \geq 2$.

Proof. If $r \geq 3$ for an r-regular graph G, then the iterated line graphs $\mathcal{L}^p(G)$ are also regular. By Theorem 2.7, the graphs $\mathcal{L}^p(G)$, $p \geq 2$ have all negative eigenvalues equal to -2. Now using the Theorem 2.6, it is evident that all the negative Seidel eigenvalues of $\mathcal{L}^p(G)$, $p \geq 2$ are less than or equal to -1. Therefore, if the graphs G_1 and G_2 are two r-regular graphs with same number of vertices n and $r \ge 3$ then the graphs $\mathcal{L}^p(G_1)$ and $\mathcal{L}^p(G_2)$ have no Seidel eigenvalues in the interval (-1,0) to each $p \geq 2$. Also the graphs $\mathcal{L}^p(G_1)$ and $\mathcal{L}^p(G_2)$ are Seidel equienergetic by Theorem 2.8. Hence by Corollary 3.4 the graphs $D_k[\mathcal{L}^p(G_1)]$ and $D_k[\mathcal{L}^p(G_2)]$ are Seidel equienergetic for all $k \geq 2$ and $p \geq 2$.

It is interesting to see the Seidel eigenvalues of $D_k[G]$ of a graph G in the interval (-1, 0).

Proposition 3.7. If a graph G has no Seidel eigenvalues in the interval (-1,0), then for $k \geq 2$, $D_k[G]$ also have no Seidel eigenvalues in the interval (-1, 0).

Proof. Proof follows directly from the Seidel eigenvalues of $D_k[G]$ in the Lemma 2.4 if G has no Seidel eigenvalues in the interval (-1, 0).

In the following, we give an explicit expression for Seidel energy of strong k-fold graph $Sd_k[G], k \geq 2$ in terms of Seidel energy of G for any graph G.

Theorem 3.8. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$. If $\theta_j \notin (-\nu, \nu)$ then for $k \ge 2$,

$$\mathcal{E}_S(Sd_k[G]) = 2(k-1)(n-n_S^+) + k\mathcal{E}_S(G).$$

Proof. Let $\theta_1 \ge \theta_2 \ge \cdots \ge \theta_n$ be the Seidel eigenvalues of G. If $\theta_j \notin (-\nu, \nu)$, then we have

$$|k\theta_j - (k-1)| = \begin{cases} k|\theta_j| - (k-1) & \text{if } \theta_j \ge \nu\\ k|\theta_j| + (k-1) & \text{if } \theta_j \le -\nu \end{cases}.$$

By definition of Seidel energy of a graph, we have

$$\begin{aligned} \mathcal{E}_{S}(Sd_{k}[G]) &= nk - n + \sum_{j=1}^{n} |k\theta_{j} - (k-1)| \quad \text{by Lemma 2.5} \\ &= n(k-1) + \sum_{\theta_{j} \leq -\nu} (k|\theta_{j}| + (k-1)) + \sum_{\theta_{j} \geq \nu} (k|\theta_{j}| - (k-1)) \\ &= n(k-1) + k \sum_{\theta_{j} \leq -\nu} |\theta_{j}| + (k-1)n_{\theta}([\theta_{n}, -\nu]) + k \sum_{\theta_{j} \geq \nu} |\theta_{j}| \\ &- (k-1)n_{\theta}([\nu, \theta_{1}]) \\ &= n(k-1) + k \mathcal{E}_{S}(G) + (k-1)(n_{\theta}([\theta_{n}, -\nu]) - n_{\theta}([\nu, \theta_{1}])). \end{aligned}$$

If If $\theta_j \notin (-\nu, \nu)$, then total number of Seidel eigenvalues n of a graph G can be expressed as $n = n_{\theta}([\theta_n, -\nu]) + n_{\theta}([\nu, \theta_1])$, with this fact we have

$$\mathcal{E}_{S}(Sd_{k}[G]) = n(k-1) + k\mathcal{E}_{S}(G) + (k-1)(n - n_{\theta}([\nu, \theta_{1}]) - n_{\theta}([\nu, \theta_{1}]))$$

= $2n(k-1) + k\mathcal{E}_{S}(G) - 2(k-1)(n_{\theta}([\nu, \theta_{1}])).$
= $2n(k-1) + k\mathcal{E}_{S}(G) - 2(k-1)n_{S}^{+}$, since $\nu > 0$ and $\theta_{j} \notin (-\nu, \nu)$
= $2(k-1)(n - n_{S}^{+}) + k\mathcal{E}_{S}(G).$

which completes the proof.

In the following, another class of Seidel equienergetic graphs are characterized. Let the number of positive Seidel eigenvalues of the graphs G_1 and G_2 be n_{S1}^+ and n_{S2}^+ respectively.

Corollary 3.9. Let G_1 and G_2 be Seidel equienergetic graphs with no Seidel eigenvalues in the interval $(-\nu, \nu)$ and both with n vertices. Then for $k \ge 2$, the graphs $Sd_k[G_1]$ and $Sd_k[G_2]$ are Seidel equienergetic if and only if $n_{S1}^+ = n_{S2}^+$.

Example 3.10. The graphs $K_{n,n} \boxtimes K_{n-1}$ and $K_{n-1,n-1} \boxtimes K_n$ are integral Seidel equienergetic graphs with the same number of positive Seidel eigenvalues for all $n \ge 3$ [13], where \boxtimes denotes the strong product. Therefore by Corollary 3.9, the graphs $Sd_k[K_{n,n} \boxtimes K_{n-1}]$ and $Sd_k[K_{n-1,n-1} \boxtimes K_n]$ are Seidel equienergetic for all $n \ge 3$ and $k \ge 2$.

The following is Theorem 2.4 of [19] which is the consequence of Corollary 3.3 and Theorem 3.8.

Theorem 3.11. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$ and $\theta_j \notin (-\nu, \nu)$. Then for $k \ge 2$ the graphs $D_k[G]$ and $Sd_k[G]$ are Seidel equienergetic if and only if $n_S^- = n_S^+$.

In the following, we present the Seidel energy of $Sd_k[D_k[G]], k \geq 2$ for any graph G.

Theorem 3.12. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$. Then for $k \ge 2$,

$$\mathcal{E}_{S}(Sd_{k}[D_{k}[G]]) = 2n(k-1)(2k-1) + k^{2} \big(\mathcal{E}_{S}(G) - 2\nu^{2}n_{S}^{-} + 2\sum_{\theta_{j} \in (-\nu^{2}, 0)} (\theta_{j} + \nu^{2}) \big).$$

Proof. If $\theta_1, \theta_2, \ldots, \theta_n$ are the Seidel eigenvalues of G, then by Lemma 2.4 and Lemma 2.5, the Seidel eigenvalues of $Sd_k[D_k[G]]$ are $k^2\theta_j + (k-1)^2$, $1 \le j \le n$, 1-2k (nk-n times) and 1 $(nk^2-nk \text{ times})$ [19]. By definition of Seidel energy of a graph, we have

$$\mathcal{E}_{S}(Sd_{k}[D_{k}[G]]) = nk^{2} - nk + (2k - 1)(nk - n) + \sum_{j=1}^{n} |k^{2}\theta_{j} + (k - 1)^{2}|$$
$$= 3nk^{2} - 4kn + n + \sum_{j=1}^{n} |k^{2}\theta_{j} + (k - 1)^{2}|$$

Now proceeding similar to that of proof of Theorem 3.1, we get

$$\mathcal{E}_{S}(Sd_{k}[D_{k}[G]]) = 2n(k-1)(2k-1) + k^{2} \big(\mathcal{E}_{S}(G) - 2\nu^{2}n_{S}^{-} + 2\sum_{\theta_{j} \in (-\nu^{2}, 0)} (\theta_{j} + \nu^{2}) \big),$$

which completes the proof.

Again, it can be seen that to each negative Seidel eigenvalue $\theta_j \in (-\nu^2, 0)$ we have $0 < \theta_j + \nu^2 < \nu^2$, which gives $\nu^2 n_S^- > \sum_{\theta_j \in (-\nu^2, 0)} (\theta_j + \nu^2) > 0$ for any graph G. Using this fact we get the following.

Corollary 3.13. Let G be a graph with n vertices. Then for $k \ge 2$,

$$2n(k-1)(2k-1) + k^2 \mathcal{E}_S(G) - 2(k-1)^2 n_S^- \le \mathcal{E}_S(Sd_k[D_k[G]]) < 2n(k-1)(2k-1) + k^2 \mathcal{E}_S(G).$$

Again, it is noted that $(-\nu^2, 0) \subseteq (-1, 0)$ for $k \ge 2$. If a graph G has no Seidel eigenvalue in the interval $(-\nu^2, 0)$ then we have the following.

Corollary 3.14. Let G be a graph with n vertices. Then for $k \geq 2$, G has no Seidel eigenvalue in the interval $(-\nu^2, 0)$ if and only if

$$\mathcal{E}_S(Sd_k[D_k[G]]) = 2n(k-1)(2k-1) + k^2 \mathcal{E}_S(G) - 2(k-1)^2 n_S^-.$$

Proof. Proof follows directly from the fact that $\sum_{\theta \in (-\nu^2, 0)} (\theta + \nu^2) = 0$ if and only if G has no Seidel eigenvalue

 θ in the interval $(-\nu^2, 0)$ in the Theorem 3.12.

The following provides a way to construct Seidel equienergetic graphs. Let the Seidel eigenvalues of two graphs G_1 and G_2 be $\theta'_1, \theta'_2, \ldots, \theta'_n$ and $\theta''_1, \theta''_2, \ldots, \theta''_n$ and let the number of negative Seidel eigenvalues of G_1 and G_2 be $n_{S_1}^-$ and $n_{S_2}^-$ respectively.

Corollary 3.15. Let G_1 and G_2 be Seidel equienergetic graphs with n vertices. Then for $k \geq 2$, the graphs $Sd_k[D_k[G_1]]$ and $Sd_k[D_k[G_2]]$ are Seidel equienergetic if and only if $\nu^2 n_{S1}^- - \sum_{\substack{\theta'_j \in (-\nu^2, 0)}} (\theta'_j + \nu^2) = \theta'_j \in (-\nu^2, 0)$

 $\nu^2 n_{S2}^- - \sum_{\theta_j'' \in (-\nu^2, 0)} (\theta_j'' + \nu^2)$. In particular, if G_1 and G_2 have no Seidel eigenvalues in the interval $(-\nu^2, 0)$

then for
$$k \geq 2$$
, the graphs $Sd_k[D_k[G_1]]$ and $Sd_k[D_k[G_2]]$ are Seidel equienergetic if and only if $n_{S1}^- = n_{S2}^-$. \Box

Example 3.16. Consider the graphs $\mathcal{L}^p(K_{n,n} \Box K_{n-1})$ and $\mathcal{L}^p(K_{n-1,n-1} \Box K_n)$ in the example 3.5. By using Corollary 3.15, the graphs $Sd_k[D_k[\mathcal{L}^p(K_{n,n}\Box K_{n-1})]]$ and $Sd_k[D_k[\mathcal{L}^p(K_{n-1,n-1}\Box K_n)]]$ are Seidel equienergetic for all $k \ge 2, n \ge 5$ and $p \ge 0$.

In the following, we present another large class of Seidel equienergetic graphs.

Theorem 3.17. Let the graphs G_1 and G_2 be two r-regular Seidel equienergetic graphs with same number of vertices n and $r \geq 3$. Then the graphs $Sd_k[D_k[\mathcal{L}^p(G_1)]]$ and $Sd_k[D_k[\mathcal{L}^p(G_2)]]$ are Seidel equienergetic for all $k \geq 2$ and $p \geq 2$.

Proof. Proof follows similar to that of proof of Theorem 3.6 with the help of Corollary 3.15.

In the following, we present the Seidel energy of $D_k[Sd_k[G]], k \ge 2$ for any graph G.

Theorem 3.18. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$. If $\theta_j \notin (-\nu^2, \nu^2)$ then for $k \ge 2$,

$$\mathcal{E}_S(D_k[Sd_k[G]]) = 2n(k-1)(2k-1) + k^2 \mathcal{E}_S(G) - 2(k-1)^2 n_S^+.$$

Proof. If $\theta_1, \theta_2, \ldots, \theta_n$ are the Seidel eigenvalues of G, then by Lemma 2.4 and Lemma 2.5, the Seidel eigenvalues of $D_k[Sd_k[G]]$ are $k^2\theta_j - (k-1)^2$, $1 \leq j \leq n$, 2k-1 (nk-n times) and -1 $(nk^2 - nk \text{ times})$ [19]. By definition of Seidel energy of a graph, we have

$$\mathcal{E}_{S}(D_{k}[Sd_{k}[G]]) = nk^{2} - nk + (2k - 1)(nk - n) + \sum_{j=1}^{n} |k^{2}\theta_{j} - (k - 1)^{2}|$$
$$= 3nk^{2} - 4kn + n + \sum_{j=1}^{n} |k^{2}\theta_{j} - (k - 1)^{2}|$$

Now proceeding similar to that of proof of Theorem 3.8, we get

$$\mathcal{E}_S(D_k[Sd_k[G]]) = 2n(k-1)(2k-1) + k^2 \mathcal{E}_S(G) - 2(k-1)^2 n_S^+,$$

which completes the proof.

In the following, we present another class of Seidel equienergetic graphs. Let the number of positive Seidel eigenvalues of the graphs G_1 and G_2 be n_{S1}^+ and n_{S2}^+ respectively.

Corollary 3.19. Let G_1 and G_2 be Seidel equienergetic graphs with no Seidel eigenvalues in the interval $(-\nu^2, \nu^2)$ and both with n vertices. Then for $k \ge 2$, the graphs $D_k[Sd_k[G_1]]$ and $D_k[Sd_k[G_2]]$ are Seidel equienergetic if and only if $n_{S1}^+ = n_{S2}^+$.

Example 3.20. Consider the graphs $K_{n,n} \boxtimes K_{n-1}$ and $K_{n-1,n-1} \boxtimes K_n$ in the example 3.10. Now by using the Corollary 3.19, the graphs $D_k[Sd_k[K_{n,n} \boxtimes K_{n-1}]]$ and $D_k[Sd_k[K_{n-1,n-1} \boxtimes K_n]]$ are Seidel equienergetic for all $n \ge 3$ and $k \ge 2$.

The following is Theorem 2.5 of [19] which is the consequence of Corollary 3.14 and Theorem 3.18.

Theorem 3.21. Let the Seidel eigenvalues of G be θ_j , $1 \le j \le n$ and $\theta_j \notin (-\nu^2, \nu^2)$. Then for $k \ge 2$ the graphs $Sd_k[D_k[G]]$ and $D_k[Sd_k[G]]$ are Seidel equienergetic if and only if $n_S^- = n_S^+$.

4 Conclusion

Vaidya and Popat in [19] constructed Seidel equienergetic graphs by using the graphs $D_k[G]$ and $Sd_k[G]$ for any graph G, where $k \ge 2$. In this paper, we have given the explicit expressions for the Seidel energy of the graphs $D_k[G]$ and $Sd_k[G]$ and provided a general way to construct certain class of Seidel equienergetic graphs.

References

- S. Akbari, J. Askari and K. C. Das, Some properties of eigenvalues of the Seidel matrix, Linear Multilinear Algebra, 0 (2020), 1–12.
- [2] S. Akbari, M. Einollahzadeh, M. M. Karkhaneei and M. A. Nematollahi, Proof of a conjecture on the Seidel energy of graphs, European J. Combin., 86 (2020), 103078, 8 p.
- [3] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.

_				
	-	_	_	

- [4] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2009.
- [5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz, 103 (1978), 1–22.
- [6] W. H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem., 68 (2012), 653–659.
- [7] F. Harary, Graph Theory, Addison–Wesley, Reading, 1969.
- [8] Y. Hou and L. Xu, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 363–370.
- [9] M. C. Marino and N. Z. Salvi, *Generalizing double graphs*, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 85(2) (2007), 1–9.
- [10] E. Munarini, C. P. Cippo, A. Scagliola and N. Z. Salvi, *Double graphs*, Discrete Math., 308(2-3) (2008), 242–254.
- [11] M. R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75 (2016), 291–303.
- [12] S. Pirzada and H. A. Ganie, Spectra, energy and Laplacian energy of strong double graphs, in: D. Mugnolo (Eds.), Mathematical Technology of Networks, Springer, Cham, 2015, pp. 175-189.
- [13] H. S. Ramane, K. Ashoka, B. Parvathalu and D. Patil, On A-energy and S-energy of certain class of graphs, Acta Univ. Sapientiae Informatica, (2021), In press.
- [14] H. S. Ramane, D. Patil, K. Ashoka and B. Parvathalu, Equienergetic graphs using Cartesian product and generalized composition, Sarajevo J. Math., 17 (2021), 7–21.
- [15] H. S. Ramane, B. Parvathalu, D. Patil and K. Ashoka, *Iterated line graphs with only negative eigenvalues* -2, *their complements and energy*, (2021), Manuscript communicated for publication.
- [16] H. S. Ramane, I. Gutman and M. M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac J. Math., 39(1) (2015), 7–12.
- [17] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog and I. Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett., 18(6) (2005), 679–682.
- [18] H. S. Ramane, I. Gutman, H. B. Walikar and S. B. Halkarni, Equienergetic complement graphs, Kragujevac J. Sci., 27 (2005), 67–74.
- [19] S. K. Vaidya and K. M. Popat, Some new results on Seidel equienergetic graphs, Kyungpook Math. J., 59(2) (2019), 335–340.
- [20] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Nederl. Akad. Wetensch. Proc. Ser. A, 69 & Indag. Math., 28(3) (1966), 335–348.

Email: hsramane@yahoo.com Email: bparvathalu@gmail.com

Email: ashokagonal@gmail.com