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Abstract

The Seidel energy of a graph is the sum of absolute values of the eigenvalues of its Seidel matrix.
In this paper, an explicit expression for the Seidel energy of k-fold graphs and strong k-fold graphs is
obtained. As a consequence, certain Seidel equienergetic graphs are characterized. Moreover, some new
class of Seidel equienergetic graphs are presented.
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1 Introduction

The most elaborated matrix corresponding to a graph G with n vertices is the adjacency matrix A(G) = [aij ],
defined by aij = 1 if a vertex vi is adjacent to a vertex vj and 0 otherwise. Another well known matrix
corresponding to a graph is the Seidel matrix S(G) [20] introduced by van Lint and Seidel in 1966. It is
defined as S(G) = Jn− I − 2A(G), where Jn is the matrix with all its entries equal to 1 and I is an identity
matrix both of same order n × n. The one of important spectral properties of Seidel matrix is that the
multiplicity of least Seidel eigenvalue has a connection with equiangular lines in Euclidean space [3]. The
energy of a graph G is the sum of absolute values of the eigenvalues of G [5]. Haemers introduced the
Seidel energy [6] of a graph G, defined as sum of absolute values of the Seidel eigenvalues of G and shown a
connection with the energy of G. The study on Seidel energy of a graph can be found in [1, 2, 11, 16, 19]. In
the study of Seidel energy of a graph, finding the class of graphs with different Seidel eigenvalues which have
same Seidel energy is an interesting direction. In this paper, we find the Seidel energy of k-fold graph and
strong k-fold graph in terms of Seidel energy of original graph together with some other graph parameters.
As a result we characterize some class of graphs with same Seidel energy.

2 Preliminaries

All the graphs in this paper are simple and undirected. Let the V = {v1, v2, . . . , vn} be the vertex set of a
graph G with n vertices v1, v2, . . . , vn. The degree di of a vertex vi is the number of edges which are incident
with vi. A graph G is said to be r-regular if di = r to each vertex vi ∈ V . The eigenvalues of a graph are
the eigenvalues of its adjacency matrix. The Seidel eigenvalues of a graph are the eigenvalues of its Seidel
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matrix and are denoted by θ1, θ2, . . . , θn. If all the Seidel eigenvalues are integers, then the corresponding

graph is called Seidel integral graph. The Seidel energy of G is defined as ES(G) =
n∑
j=1
|θj |. Two graphs

G1 and G2 with the same number of vertices are said to be Seidel equienergetic if ES(G1) = ES(G2). Let
n−S , n0S and n+S respectively, denote the number of negative, zero and positive Seidel eigenvalues of G. Let
the graphs Kn and Kn1,n2 denote the complete graph with n vertices and the complete bipartite graph
with n1 + n2 vertices respectively. For other notation, terminology and the results related to the spectra of
graphs, we follow [4].

Definition 2.1. [7] The line graph L(G) of a graph G is the graph with vertex set same as the edge set of
G in which two vertices are adjacent if and only if the corresponding edges in G have a vertex in common.
The k-th iterated line graph of G for k = 0, 1, 2, . . . is defined as Lk(G) ≡ L(Lk−1(G)), where L0(G) ≡ G
and L1(G) ≡ L(G).

Definition 2.2. [9] Let the vertex set of a graph G be V (G) = {v1, v2, . . . , vn}. For k ≥ 2, the k-fold graph
Dk[G] of a graph G is obtained by taking k copies of G in which a vertex vi in one copy is adjacent to a
vertex vj in other copies if and only if vi is adjacent vj in G.

It is noted that the adjacency matrix of Dk[G] is A(Dk[G])=Jk ⊗A(G), where ⊗ denotes the Kronecker
product. If k = 2, we get the double graph D(G) [10], that is, D2[G] ≡ D(G).

Definition 2.3. Let the vertex set of a graph G be V (G) = {v1, v2, . . . , vn}. For k ≥ 2, the strong k-fold
graph Sdk[G] of a graph G is obtained by taking k copies of G in which a vertex vi in one copy is adjacent
to a vertex vj in other copies if and only if vi is adjacent vj in G or i = j.

It is noted that the adjacency matrix of Sdk[G] is A(Sdk[G])=Jk ⊗ (A(G) + I)− I ⊗ I. If k = 2, we get
the strong double graph Sd(G) [10, 12], that is, Sd2[G] ≡ Sd(G).

Lemma 2.4. [19] Let the Seidel eigenvalues of a graph G with n vertices be θj, 1 ≤ j ≤ n. Then for k ≥ 2,
the Seidel eigenvalues of Dk[G] are kθj + (k − 1), 1 ≤ j ≤ n and −1 (nk − n times).

Lemma 2.5. [19] Let the Seidel eigenvalues of a graph G with n vertices be θj, 1 ≤ j ≤ n. Then for k ≥ 2,
the Seidel eigenvalues of Sdk[G] are kθj − (k − 1), 1 ≤ j ≤ n and 1 (nk − n times).

Theorem 2.6. [3] Let the eigenvalues of an r-regular graph G with n vertices be r, λi, 2 ≤ i ≤ n. Then the
Seidel eigenvalues of G are n− 2r − 1 and −1− 2λi, 2 ≤ i ≤ n.

Theorem 2.7. [15] Let G be a graph with n0 number of vertices and m0 number of edges such that di+dj ≥ 6
to each edge e = vivj in G. Then the iterated line graphs Lk(G) have all the negative eigenvalues equal to
−2 with the multiplicity mk−1 − nk−1 for k ≥ 2, where nk and mk denote the number of vertices and the
number of edges of Lk(G) respectively.

Theorem 2.8. [16] Let the graphs G1 and G2 be r-regular with the same number of vertices n and r ≥ 3.
Then ES(Lk(G1)) = ES(Lk(G2)) to each k ≥ 2.

3 Main Results

In the following, we give an explicit expression for Seidel energy of k-fold graph Dk[G] in terms of Seidel
energy of G for any graph G.
Let nθ(I) denotes the number of Seidel eigenvalues of G which belongs to the interval I and let ν = 1− 1

k ,
k ≥ 2.

Theorem 3.1. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n. Then for k ≥ 2,

ES(Dk[G]) = k

2nν + ES(G)− 2νn−S + 2
∑

θj∈(−ν, 0)

(θj + ν)

 .
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Proof. Let θ1 ≥ θ2 ≥ · · · ≥ θn be the Seidel eigenvalues of G. By definition of Seidel energy of a graph, we
have

ES(Dk[G]) = nk − n+
n∑
j=1

|kθj + (k − 1)| by Lemma 2.4

= knν + k
n∑
j=1

|ν + θj |

= k
(
nν +

∑
θj≤−ν

(−ν − θj) +
∑
θj>−ν

(ν + θj)
)

= k
(
nν − νnθ([θn,−ν]) +

∑
θj≤−ν

|θj |+ νnθ((−ν, θ1]) +
∑

θj∈(−ν, 0)

θj +
∑
θj≥0

θj

)
,

where nθ([θn,−ν]) = 0 if θn ≥ −ν. The Seidel energy of a graph G can be expressed as

ES(G) =

n∑
j=1

|θj | =
∑
θj≤−ν

|θj |+
∑

θj∈(−ν, 0)

|θj |+
∑
θj≥0

θj , with this we get

ES(Dk[G]) = k
(
nν − νnθ([θn,−ν]) + νnθ((−ν, θ1]) +

∑
θj∈(−ν, 0)

θj + ES(G)

−
∑

θj∈(−ν, 0)

|θj |
)

= k
(
nν − νnθ([θn,−ν]) + νn− νnθ([θn,−ν]) + 2

∑
θj∈(−ν, 0)

θj + ES(G)
)

= k
(

2nν + ES(G)− 2
(
νnθ([θn,−ν])−

∑
θj∈(−ν, 0)

θj
))
. (1)

The total number of Seidel eigenvalues n of a graph G can be expressed as

n = nθ([θn,−ν]) + nθ((−ν, 0)) + n0S + n+S or

nθ([θn,−ν]) = n− n+S − n
0
S − nθ(−ν, 0) = n−S − nθ((−ν, 0)). (2)

Also, we have ∑
θj∈(−ν, 0)

(θj + ν) =
∑

θj∈(−ν,0)

θj + νnθ((−ν, 0)). (3)

Using (2) and (3) in (1), we get

ES(Dk[G]) = k
(
2nν + ES(G)− 2νn−S + 2

∑
θj∈(−ν, 0)

(θj + ν)
)

which completes the proof.

It is easy to observe that to each negative Seidel eigenvalue θj ∈ (−ν, 0) we have 0 < θj + ν < ν, which
gives νn−S >

∑
θj∈(−ν, 0)

(θj + ν) > 0 for any graph G. Using this fact we get the following.

Corollary 3.2. Let G be a graph with n vertices. Then for k ≥ 2,

2n(k − 1) + kES(G)− 2n−S (k − 1) ≤ ES(Dk[G]) < 2n(k − 1) + kES(G).
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It is noted that (−ν, 0) ⊆ (−1, 0) for k ≥ 2. There are many graphs with no Seidel eigenvalues in the
interval (−1, 0), for instance, all Seidel integral graphs. If a graph G has no Seidel eigenvalue in the interval
(−ν, 0) then we have the following.

Corollary 3.3. Let G be a graph with n vertices. Then for k ≥ 2, G has no Seidel eigenvalue in the interval
(−ν, 0) if and only if

ES(Dk[G]) = 2(k − 1)(n− n−S ) + kES(G).

Proof. Proof follows directly from the fact that
∑

θ∈(−ν,0)
(θ + ν) = 0 if and only if G has no Seidel eigenvalue

θ in the interval (−ν, 0) in the Theorem 3.1.

It is easy to construct Seidel equienergetic graphs by using Theorem 3.1 with the help of Seidel equiener-
getic graphs with no Seidel eigenvalues in the interval (−ν, 0) and having the same number of negative Seidel
eigenvalues.
Let the Seidel eigenvalues of two graphs G1 and G2 be θ

′
1, θ

′
2, . . . , θ

′
n and θ

′′
1 , θ

′′
2 , . . . , θ

′′
n and let the number

of negative Seidel eigenvalues of G1 and G2 be n−S1 and n−S2 respectively.

Corollary 3.4. Let G1 and G2 be Seidel equienergetic graphs with n vertices. Then for k ≥ 2, the graphs
Dk[G1] and Dk[G2] are Seidel equienergetic if and only if νn−S1−

∑
θ
′
j∈(−ν,0)

(θ
′
j + ν) = νn−S2−

∑
θ
′′
j ∈(−ν,0)

(θ
′′
j + ν).

In particular, if G1 and G2 have no Seidel eigenvalues in the interval (−ν, 0) then for k ≥ 2, the graphs
Dk[G1] and Dk[G2] are Seidel equienergetic if and only if n−S1 = n−S2.

Example 3.5. The graphs Lp(Kn, n�Kn−1) and Lp(Kn−1, n−1�Kn) are integral Seidel equienergetic graphs
with the same number of negative Seidel eigenvalues for all n ≥ 5, p ≥ 0 [13], where � denotes the Cartesian
product. Therefore by Corollary 3.4, the graphs Dk[Lp(Kn, n�Kn−1)] and Dk[Lp(Kn−1, n−1�Kn)] are Seidel
equienergetic for all k ≥ 2, n ≥ 5 and p ≥ 0.

There are many non-isomorphic regular graphs with same number of vertices and same degree, see
[8, 13, 14, 17, 18]. Ramane et al. in [16] shown a way to construct a large pairs of Seidel equienergetic
iterated line graphs by using such regular graphs. In the following, we present another large class of Seidel
equienergetic graphs.

Theorem 3.6. Let the graphs G1 and G2 be two r-regular Seidel equienergetic graphs with same number of
vertices n and r ≥ 3. Then the graphs Dk[Lp(G1)] and Dk[Lp(G2)] are Seidel equienergetic for all k ≥ 2
and p ≥ 2.

Proof. If r ≥ 3 for an r-regular graph G, then the iterated line graphs Lp(G) are also regular. By Theorem
2.7, the graphs Lp(G), p ≥ 2 have all negative eigenvalues equal to −2. Now using the Theorem 2.6, it is
evident that all the negative Seidel eigenvalues of Lp(G), p ≥ 2 are less than or equal to −1. Therefore, if
the graphs G1 and G2 are two r-regular graphs with same number of vertices n and r ≥ 3 then the graphs
Lp(G1) and Lp(G2) have no Seidel eigenvalues in the interval (−1, 0) to each p ≥ 2. Also the graphs Lp(G1)
and Lp(G2) are Seidel equienergetic by Theorem 2.8. Hence by Corollary 3.4 the graphs Dk[Lp(G1)] and
Dk[Lp(G2)] are Seidel equienergetic for all k ≥ 2 and p ≥ 2.

It is interesting to see the Seidel eigenvalues of Dk[G] of a graph G in the interval (−1, 0).

Proposition 3.7. If a graph G has no Seidel eigenvalues in the interval (−1, 0), then for k ≥ 2, Dk[G] also
have no Seidel eigenvalues in the interval (−1, 0).

Proof. Proof follows directly from the Seidel eigenvalues of Dk[G] in the Lemma 2.4 if G has no Seidel
eigenvalues in the interval (−1, 0).

In the following, we give an explicit expression for Seidel energy of strong k-fold graph Sdk[G], k ≥ 2 in
terms of Seidel energy of G for any graph G.
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Theorem 3.8. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n. If θj /∈ (−ν, ν) then for k ≥ 2,

ES(Sdk[G]) = 2(k − 1)(n− n+S ) + kES(G).

Proof. Let θ1 ≥ θ2 ≥ · · · ≥ θn be the Seidel eigenvalues of G. If θj /∈ (−ν, ν), then we have

|kθj − (k − 1)| =

{
k|θj | − (k − 1) if θj ≥ ν
k|θj |+ (k − 1) if θj ≤ −ν .

By definition of Seidel energy of a graph, we have

ES(Sdk[G]) = nk − n+
n∑
j=1

|kθj − (k − 1)| by Lemma 2.5

= n(k − 1) +
∑
θj≤−ν

(k|θj |+ (k − 1)) +
∑
θj≥ν

(k|θj | − (k − 1))

= n(k − 1) + k
∑
θj≤−ν

|θj |+ (k − 1)nθ([θn,−ν]) + k
∑
θj≥ν
|θj |

− (k − 1)nθ([ν, θ1])

= n(k − 1) + kES(G) + (k − 1)(nθ([θn,−ν])− nθ([ν, θ1])).

If If θj /∈ (−ν, ν), then total number of Seidel eigenvalues n of a graph G can be expressed as n =
nθ([θn,−ν]) + nθ([ν, θ1]), with this fact we have

ES(Sdk[G]) = n(k − 1) + kES(G) + (k − 1)(n− nθ([ν, θ1])− nθ([ν, θ1]))
= 2n(k − 1) + kES(G)− 2(k − 1)(nθ([ν, θ1])).

= 2n(k − 1) + kES(G)− 2(k − 1)n+S , since ν > 0 and θj /∈ (−ν, ν)

= 2(k − 1)(n− n+S ) + kES(G).

which completes the proof.

In the following, another class of Seidel equienergetic graphs are characterized. Let the number of
positive Seidel eigenvalues of the graphs G1 and G2 be n+S1 and n+S2 respectively.

Corollary 3.9. Let G1 and G2 be Seidel equienergetic graphs with no Seidel eigenvalues in the interval
(−ν, ν) and both with n vertices. Then for k ≥ 2, the graphs Sdk[G1] and Sdk[G2] are Seidel equienergetic
if and only if n+S1 = n+S2.

Example 3.10. The graphs Kn, n�Kn−1 and Kn−1, n−1�Kn are integral Seidel equienergetic graphs with
the same number of positive Seidel eigenvalues for all n ≥ 3 [13], where � denotes the strong product.
Therefore by Corollary 3.9, the graphs Sdk[Kn, n �Kn−1] and Sdk[Kn−1, n−1 �Kn] are Seidel equienergetic
for all n ≥ 3 and k ≥ 2.

The following is Theorem 2.4 of [19] which is the consequence of Corollary 3.3 and Theorem 3.8.

Theorem 3.11. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n and θj /∈ (−ν, ν). Then for k ≥ 2 the
graphs Dk[G] and Sdk[G] are Seidel equienergetic if and only if n−S = n+S .

In the following, we present the Seidel energy of Sdk[Dk[G]], k ≥ 2 for any graph G.

Theorem 3.12. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n. Then for k ≥ 2,

ES(Sdk[Dk[G]]) = 2n(k − 1)(2k − 1) + k2
(
ES(G)− 2ν2n−S + 2

∑
θj∈(−ν2, 0)

(θj + ν2)
)
.
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Proof. If θ1, θ2, . . . , θn are the Seidel eigenvalues of G, then by Lemma 2.4 and Lemma 2.5, the Seidel
eigenvalues of Sdk[Dk[G]] are k2θj + (k− 1)2, 1 ≤ j ≤ n, 1− 2k (nk− n times) and 1 (nk2− nk times) [19].
By definition of Seidel energy of a graph, we have

ES(Sdk[Dk[G]]) = nk2 − nk + (2k − 1)(nk − n) +
n∑
j=1

|k2θj + (k − 1)2|

= 3nk2 − 4kn+ n+
n∑
j=1

|k2θj + (k − 1)2|

Now proceeding similar to that of proof of Theorem 3.1, we get

ES(Sdk[Dk[G]]) = 2n(k − 1)(2k − 1) + k2
(
ES(G)− 2ν2n−S + 2

∑
θj∈(−ν2, 0)

(θj + ν2)
)
,

which completes the proof.

Again, it can be seen that to each negative Seidel eigenvalue θj ∈ (−ν2, 0) we have 0 < θj + ν2 < ν2,
which gives ν2n−S >

∑
θj∈(−ν2, 0)

(θj + ν2) > 0 for any graph G. Using this fact we get the following.

Corollary 3.13. Let G be a graph with n vertices. Then for k ≥ 2,

2n(k − 1)(2k − 1) + k2ES(G)− 2(k − 1)2n−S ≤ ES(Sdk[Dk[G]]) < 2n(k − 1)(2k − 1) + k2ES(G).

Again, it is noted that (−ν2, 0) ⊆ (−1, 0) for k ≥ 2. If a graph G has no Seidel eigenvalue in the interval
(−ν2, 0) then we have the following.

Corollary 3.14. Let G be a graph with n vertices. Then for k ≥ 2, G has no Seidel eigenvalue in the
interval (−ν2, 0) if and only if

ES(Sdk[Dk[G]]) = 2n(k − 1)(2k − 1) + k2ES(G)− 2(k − 1)2n−S .

Proof. Proof follows directly from the fact that
∑

θ∈(−ν2,0)
(θ+ν2) = 0 if and only if G has no Seidel eigenvalue

θ in the interval (−ν2, 0) in the Theorem 3.12.

The following provides a way to construct Seidel equienergetic graphs. Let the Seidel eigenvalues of two
graphs G1 and G2 be θ

′
1, θ

′
2, . . . , θ

′
n and θ

′′
1 , θ

′′
2 , . . . , θ

′′
n and let the number of negative Seidel eigenvalues of

G1 and G2 be n−S1 and n−S2 respectively.

Corollary 3.15. Let G1 and G2 be Seidel equienergetic graphs with n vertices. Then for k ≥ 2, the
graphs Sdk[Dk[G1]] and Sdk[Dk[G2]] are Seidel equienergetic if and only if ν2n−S1 −

∑
θ
′
j∈(−ν2,0)

(θ
′
j + ν2) =

ν2n−S2 −
∑

θ
′′
j ∈(−ν2,0)

(θ
′′
j + ν2). In particular, if G1 and G2 have no Seidel eigenvalues in the interval (−ν2, 0)

then for k ≥ 2, the graphs Sdk[Dk[G1]] and Sdk[Dk[G2]] are Seidel equienergetic if and only if n−S1 = n−S2.

Example 3.16. Consider the graphs Lp(Kn, n�Kn−1) and Lp(Kn−1, n−1�Kn) in the example 3.5. By using
Corollary 3.15, the graphs Sdk[Dk[Lp(Kn, n�Kn−1)]] and Sdk[Dk[Lp(Kn−1, n−1�Kn)]] are Seidel equiener-
getic for all k ≥ 2, n ≥ 5 and p ≥ 0.

In the following, we present another large class of Seidel equienergetic graphs.

Theorem 3.17. Let the graphs G1 and G2 be two r-regular Seidel equienergetic graphs with same number
of vertices n and r ≥ 3. Then the graphs Sdk[Dk[Lp(G1)]] and Sdk[Dk[Lp(G2)]] are Seidel equienergetic for
all k ≥ 2 and p ≥ 2.



Seidel Energy of k-fold and Strong k-fold Graphs 501

Proof. Proof follows similar to that of proof of Theorem 3.6 with the help of Corollary 3.15.

In the following, we present the Seidel energy of Dk[Sdk[G]], k ≥ 2 for any graph G.

Theorem 3.18. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n. If θj /∈ (−ν2, ν2) then for k ≥ 2,

ES(Dk[Sdk[G]]) = 2n(k − 1)(2k − 1) + k2ES(G)− 2(k − 1)2n+S .

Proof. If θ1, θ2, . . . , θn are the Seidel eigenvalues of G, then by Lemma 2.4 and Lemma 2.5, the Seidel
eigenvalues of Dk[Sdk[G]] are k2θj − (k − 1)2, 1 ≤ j ≤ n, 2k − 1 (nk − n times) and −1 (nk2 − nk times)
[19]. By definition of Seidel energy of a graph, we have

ES(Dk[Sdk[G]]) = nk2 − nk + (2k − 1)(nk − n) +

n∑
j=1

|k2θj − (k − 1)2|

= 3nk2 − 4kn+ n+

n∑
j=1

|k2θj − (k − 1)2|

Now proceeding similar to that of proof of Theorem 3.8, we get

ES(Dk[Sdk[G]]) = 2n(k − 1)(2k − 1) + k2ES(G)− 2(k − 1)2n+S ,

which completes the proof.

In the following, we present another class of Seidel equienergetic graphs. Let the number of positive
Seidel eigenvalues of the graphs G1 and G2 be n+S1 and n+S2 respectively.

Corollary 3.19. Let G1 and G2 be Seidel equienergetic graphs with no Seidel eigenvalues in the interval
(−ν2, ν2) and both with n vertices. Then for k ≥ 2, the graphs Dk[Sdk[G1]] and Dk[Sdk[G2]] are Seidel
equienergetic if and only if n+S1 = n+S2.

Example 3.20. Consider the graphs Kn, n �Kn−1 and Kn−1, n−1 �Kn in the example 3.10. Now by using
the Corollary 3.19, the graphs Dk[Sdk[Kn, n �Kn−1]] and Dk[Sdk[Kn−1, n−1 �Kn]] are Seidel equienergetic
for all n ≥ 3 and k ≥ 2.

The following is Theorem 2.5 of [19] which is the consequence of Corollary 3.14 and Theorem 3.18.

Theorem 3.21. Let the Seidel eigenvalues of G be θj, 1 ≤ j ≤ n and θj /∈ (−ν2, ν2). Then for k ≥ 2 the
graphs Sdk[Dk[G]] and Dk[Sdk[G]] are Seidel equienergetic if and only if n−S = n+S .

4 Conclusion

Vaidya and Popat in [19] constructed Seidel equienergetic graphs by using the graphs Dk[G] and Sdk[G] for
any graph G, where k ≥ 2. In this paper, we have given the explicit expressions for the Seidel energy of
the graphs Dk[G] and Sdk[G] and provided a general way to construct certain class of Seidel equienergetic
graphs.
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