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Abstract

In this paper, we study on the weight distribution of generalized Reed-Muller codes. We will charac-
terize the fourth weight of generalized Reed-Muller code Rq(b,m) for 3 ≤ b < q+4
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1 Introduction

Let Fq be the finite field with q elements and m ≥ 1 an integer. Let r be an integer such that 1 ≤ r < m(q−1).

The generalized Reed-Muller code of order r is the following subspace of the space F q
m

q

Rq(r,m) =
{

(f(x))x∈Fm
q
|f ∈ Fq[X1, · · · , Xm] and deg(f) ≤ r

}
Two most important problems in generalized Reed-Muller code problems are determination of the weight
distribution of generalized Reed-Muller codes and obtaining first minimum weights and corresponding code-
words.

The minimum weight was given by Kasami et al. in [5]. It has been proved that the minimal weight
of the generalized Reed-Muller code Rq(r,m) is (q − b)qm−a−1 where r = a(q − 1) + b and 0 ≤ b < q − 1.
The codewords reaching this bound were discribed by Delsarte et al. in [2] (see also [9]). The second weight
problem of generalized Reed-Muller codes was studied by Geil using Gröbner basis in [3] for r < q and
r > (m− 1)(q − 1) and it was almost completely solved by Rolland in [12]. Second weight codewords have
been studied in [1, 13] and finally completely described in [7]. Leducq in [8] got a full description of the
third weight and the third weight codewords of generalized Reed-Muller codes of order r = a(q − 1) + b for
3 ≤ b < q+4

3 .
The weight distribution of Rq(2,m) was given by McEliece in [11] for any q and due to some mistakes in

the computation, Li in [10] provided a precise account for the weight distribution of second order generalized
Reed-Muller codes. For q = 2, for all m and all r, the weight distribution is known in the range [W1, 2.5W1]
by a result of Kasami et al [6]. In this paper, we want to determine the fourth weight of generalized
Reed-Muller codes. The main result of this article is characerization the fourth weight of Rq(b,m), for
3 ≤ b < q+4

3
Throughout this article, we write r = a(q − 1) + b, 0 ≤ a ≤ m− 1, 1 ≤ b ≤ q − 1 and by Wi we denote

the ith minimum weight of Rq(r,m).

1speaker
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2 Preliminaries

2.1 Notation and preliminary remark

Let f ∈ F qm , λ ∈ Fq. We define fλ ∈ F qm−1 by

∀x = (x2, ..., xm) ∈ Fm−1q , fλ(x) = f(λ, x2..., xm)

. Let 0 ≤ r ≤ (m − 1)(q − 1) and f ∈ Rq(r,m). We denote by S the support of f . Consider H an affine
hyperplane in Fmq , by an affine transformation, we can assume x1 = 0 is an equation of H. Then S ∩H is

the support of f0 ∈ Rq(r,m− 1) or the support of (1− xq−11 )f ∈ Rq(r + (q − 1),m).

2.2 Useful lemmas

The following lemmas are proved in [4]

Lemma 2.1. Let m ≥ 1, q ≥ 2, f ∈ Bq
m and w ∈ Fq. If for all (x2, · · · , xm) in Fm−1q , f(w, x2, · · · , xm) = 0,

then for all (x1, x2, · · · , xm) ∈ Fmq ,

f(x1, · · · , xm) = (x1 − w)g(x1, · · · , xm)

with degx1(g) ≤ degx1(f)− 1 and deg(g) ≤ deg(f)− 1.

Lemma 2.2. Let m ≥ 2, q ≥ 3, 0 ≤ r ≤ m(q−1). If f ∈ Rq(r,m), f 6= 0 and there exists y ∈ Rq(1,m) and
(λi)1≤i≤n n elements in Fq such that the hyperplanes of equation y = λi do not meet the support of f , then

|f | ≥ (q − b)qm−a−1 +

{
n(b− n)qm−a−2 ifn < b,
(n− b)(q − 1− n)qm−a−1 ifn ≥ b.

where r = a(q − 1) + b, 1 ≤ b ≤ q − 1.

Lemma 2.3. If f ∈ Rq(r,m) with r ≤ q − 1 and |f | < (1 + 1
q )dmr , then f is the product of r linear factors.

Lemma 2.4. Let m ≥ 2, q ≥ 3, 1 ≤ b ≤ q− 1. Assume f ∈ Rq(b,m) is such that f depends only on x1 and
g ∈ Rq(b− k,m), 1 ≤ k ≤ b. Then either f + g depends only on x1 or |f + g| ≥ (q − b+ k)qm−1.

Lemma 2.5. Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m− 1, 1 ≤ b ≤ q− 2. Assume f ∈ Rq(a(q− 1) + b,m) is such that
∀x = (x1, · · · , xm) ∈ Fmq ,

f(x) = (1− xq−11 )f̃(x2, · · · , xm)

and g ∈ Rq(a(q − 1) + b − k,m), 1 ≤ k ≤ q − 1, is such that (1 − xq−11 ) does not divide g. Then either
|f + g| ≥ (q − b+ k)qm−a−1 or k = 1.

Lemma 2.6. Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m− 2, 1 ≤ b ≤ q− 2 and f ∈ Rq(a(q− 1) + b,m). We set an order
on the elements of Fq such that |fλ1 | ≤ · · · ≤ |fλq |.
If f has no linear factor and there exists k ≥ 1 such that (1−xq−12 ) divides fλi for i ≤ k but (1−xq−12 ) does
not divide fλk+1

then,

|f | ≥ (q − b)qm−a−1 + k(q − k)qm−a−2

Lemma 2.7. Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m and f ∈ Rq(a(q − 1),m) such that |f | = qm−a and g ∈
Rq(a(q− 1)− k,m), 1 ≤ k ≤ q− 1, such that g 6= 0. Then, either |f + g| = kqm−a or |f + g| ≥ (k+ 1)qm−a.

Lemma 2.8. Let m ≥ 2, q ≥ 3, 1 ≤ a ≤ m − 1 and f ∈ Rq(a(q − 1),m). If for some u, v ∈ Fq,
|fu| = |fv| = qm−a−1, then there exists T an affine transformation fixing x1 such that

(f ◦ T )u = (f ◦ T )v
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The following results can be found in [8].

Theorem 2.9. Let m ≥ 2, q ≥ 9, 0 ≤ a ≤ m− 2 and 4 ≤ b < q+4
3 . The third weight of Rq(a(q − 1) + b,m)

is W3 = (q − 2)(q − b+ 2)qm−a−2.

Theorem 2.10. Let m ≥ 3, q ≥ 7 and 0 ≤ a ≤ m − 3. The third weight of Rq(a(q − 1) + 3,m) is
W3 = (q − 1)3qm−a−3.

Theorem 2.11. For q ≥ 7, m ≥ 2, 0 ≤ a ≤ m − 2, 4 ≤ b < q+4
3 , up to affine transformation, the third

weight codewords of Rq(a(q − 1) + b,m) are of the form:

f(x) =

a∏
i=1

(1− xq−1i )g(xa+1, xa+2) ∀x = (x1, · · · , xm) ∈ Fmq

where g ∈ Rq(b, 2) is such that |g| = (q − 2)(q − b+ 2).

Theorem 2.12. For q ≥ 7, m ≥ 3, 0 ≤ a ≤ m− 3, up to affine transformation, the third weight codewords
of Rq(a(q − 1) + 3,m) are of the form:

f(x) =

a∏
i=1

(1− xq−1i )xa+1xa+2xa+3 ∀x = (x1, · · · , xm) ∈ Fmq .

3 Main results

Lemma 3.1. Let f ∈ Rq(b,m) be the product of b linear factors. By an affine transformation suppose that
x1 − λi for i = 1, · · · , k are of the linear factors. If for some j0 /∈ {1, · · · , k}, |fλj0 | = (q − b+ k)qm−2 then,

for all j /∈ {1, · · · , k}, there is an integer t where 0 ≤ t ≤ b− k − 1 such that |fλj | = (q − b+ k + t)qm−2.

Proof. We denote by Hλi the hyperplane with the equation x1 = λi for i = 1, · · · , q. Assume that S denotes
the support of f . By the assumption of the lemma, S does not meet the hyperplanes Hλi for i = 1, · · · , k.
Denote by H(i) i = 1, · · · , b− k the other hyperplanes which do not meet S. Since for some j0 /∈ {1, · · · , k},
|fλj0 | = (q− b+k)qm−2 then, fλj0 is a minimum weight codeword of Rq(b−k,m− 1). So Hλj0

∩H(i) = P (i)

is an affine subspace of codimension 2 where P (i)∩P (i′) = ∅ for i 6= i′. We get that for each two hyperplanes
H(s) and H(s′), H(s) ∩H(s′) is either empty or an affine subspace of codimension 2 which is included in one
of the hyperplanes Hλi for i = 1, · · · , q. Denote by P ij the affine subspace of codimension 2 Hλi ∩ H(j)

for k + 1 ≤ i ≤ q and 1 ≤ j ≤ b − k in which for j 6= j′, P ij ∩ P ij′ = ∅ or P ij = P ij
′
. So we get that

|fλi | = qm−1 − (b− k − t)qm−2 in which b− k − t is the number of distinct subspaces P ij which is included
in Hλi .

Lemma 3.2. Let m ≥ 3, q ≥ 9, 4 ≤ b < q+4
3 and f ∈ Rq(b,m). If |f | > (q − 2)(q − b + 2)qm−2, then

|f | ≥ (q − 1)2(q − b+ 2)qm−3.

Proof. Let f ∈ Rq(b,m) such that |f | > (q− 2)(q− b+ 2)qm−2. Assume |f | < (q− 1)2(q− b+ 2)qm−3. Since

(q − 1)2(q − b+ 2)qm−3 ≤ (1 +
1

q
)dmb = (1 +

1

q
)(q − b)qm−1 (1)

for b < q+4
3 , by Lemma 2.3 f is the product of b linear factors. For y ∈ Rq(1,m), denote by n the number

of distinct λ ∈ Fq such that y − λ divides f . Since n ≤ b by Lemma 2.2

(q − b)qm−1 + n(b− n)qm−2 < (q − 1)2(q − b+ 2)qm−3

we get that n ∈ {1, 2, b− 2, b− 1, b}.
By applying an affine transformation we can assume that x1 = λ1, λ1 ∈ Fq is one of the linear factors.
If n = b, then for all x = (x1, · · · , xm) ∈ Fmq , we have

f(x) = α

b∏
i=1

(x1 − λi)
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with λi ∈ Fq, λi 6= λj for i 6= j. In this case f is a minimum weight codeword of Rq(b,m) which is absurd.
If n = b− 1, then for all x = (x1, · · · , xm) ∈ Fmq , we have

f(x) =
b−1∏
i=1

(x1 − λi)g(x)

with λi ∈ Fq, λi 6= λj for i 6= j and g ∈ Rq(1,m). If deg(g) = 0, then f is a minimum weight codeword of
Rq(b − 1,m). If deg(g) = 1, then f is a second minimum weight codeword of Rq(b,m). Both cases give us
a contradiction, since (q − 2)(q − b+ 2)qm−2 < |f | < (q − 1)2(q − b+ 2)qm−3.
If n = b− 2, then for all x = (x1, · · · , xm) ∈ Fmq , we have

f(x) =
b−2∏
i=1

(x1 − λi)g(x)

with λi ∈ Fq, λi 6= λj for i 6= j and g ∈ Rq(2,m). If deg(g) = 0, then f is a minimum weight codeword of
Rq(b− 2,m). If deg(g) = 1, then f is a second minimum weight codeword of Rq(b− 1,m). Both cases give
a contradiction. So deg(g) = 2. For all i ≥ b− 1, fλi ∈ Rq(2,m− 1) and |fλi | = |gλi | ≥ (q− 2)qm−2. Denote
by N := #{i ≥ b − 1; |fλi | = (q − 2)qm−2}. For λ ∈ Fq, if |fλ| > (q − 2)qm−2, then |fλ| ≥ (q − 1)2qm−3.
Since |f | < (q− 1)2(q− b+ 2)qm−3, we get that N ≥ 1. So by Lemma 3.1 we conclude that for all i ≥ b− 1,
|fλi | = (q − 2)qm−2 or |fλi | = (q − 1)qm−2. From

N(q − 2)qm−2 + (q − b+ 2−N)(q − 1)qm−2 < (q − 1)2(q − b+ 2)qm−3

we get that N = q − b+ 2 that gives a third minimum weight codeword of Rq(b,m) which is absurd.
If n = 2, then for all x = (x1, · · · , xm) ∈ Fmq , we have

f(x) = (x1 − λ1)(x1 − λ2)g(x)

with λ1, λ2 ∈ Fq, λ1 6= λ2 and g ∈ Rq(b− 2,m). Then for all i ≥ 3, fλi ∈ Rq(b− 2,m− 1) and |fλi | = |gλi | ≥
(q − b+ 2)qm−2. Denote by N := #{i ≥ 3; |fλi | = (q − b+ 2)qm−2}. For λ ∈ Fq, if |fλ| > (q − b+ 2)qm−2,
then |fλ| ≥ (q − 1)(q − b+ 3)qm−3. Since

(q − 2)(q − 1)(q − b+ 3)qm−3 > (q − 1)2(q − b+ 2)qm−3

we get that N ≥ 1. So by Lemma 3.1 for all i ≥ 3, |fλi | = (q − b + t)qm−2 where 2 ≤ t ≤ b− 1. Therefore
we have

|f | ≥ N(q − b+ 2)qm−2 + (q − 2−N)(q − b+ 3)qm−2

=
(
q(q − 2)(q − b+ 3)−Nq

)
qm−3.

By considering |f | < (q − 1)2(q − b + 2)qm−3, we get that N = q − 2 that gives a third minimum weight
codeword of Rq(b,m) which is absurd.
From now, assume n = 1. Then for all x = (x1, · · · , xm) ∈ Fmq , we have

f(x) = (x1 − λ1)g(x)

with λ1 ∈ Fq and g ∈ Rq(b − 1,m). Then for all i ≥ 2, fλi ∈ Rq(b − 1,m − 1) and |fλi | = |gλi | ≥
(q − b+ 1)qm−2. Denote by N := #{i ≥ 2; |fλi | = (q − b+ 1)qm−2}. For λ ∈ Fq, if |fλ| > (q − b+ 1)qm−2,
then |fλ| ≥ (q − 1)(q − b+ 2)qm−3. Since

(q − 1)(q − 1)(q − b+ 2)qm−3 ≥ (q − 1)2(q − b+ 2)qm−3

we get that N ≥ 1. Assume H0 is the hyperplane with the equation x1 = λ1. Let H = {H1, · · · , Hb−1} be
the set of (b− 1) other hyperplanes which do not meet S. Denote by A the affine subspace of codimension



On the weight distribution of generalized Reed-Muller codes 393

2 which is included in both of H0 and H1. Let A = {Hi; i ≥ 1, Hi ∩H0 = A}. Since n = 1 and N ≥ 1, for
each pair (H,H ′) ∈ A× (H−A), H ∩H ′ is an affine subspace of codimension 2 which is included in one of
H(i) (the hyperplane with the equation x1 = λi) for 2 ≤ i ≤ q. Then we have

|f | ≥ (q − 1)(q − b+ 1)qm−2 + #A(b− 1−#A)qm−2.

By considering |f | < (q − 1)2(q − b+ 2)qm−3, we get that |A| = b− 1 that gives a second minimum weight
codeword of Rq(b,m) which is absurd.

Lemma 3.3. Let q ≥ 4, m ≥ 3. If f ∈ Rq(3,m) and |f | > (q − 1)3qm−3 then, |f | ≥ ((q − 1)3 + 1)qm−3.

Proof. We prove this lemma by induction on m. The case where m = 3 is an immediate result. Suppose
that for some m ≥ 4, if f ∈ Rq(3,m− 1) is such that |f | > (q − 1)3qm−4 then |f | ≥ ((q − 1)3 + 1)qm−4.
Let f ∈ Rq(3,m) such that |f | > (q − 1)3qm−3. Assume |f | < ((q − 1)3 + 1)qm−3. Denote by S the support
of f .
Assume S meets all affine hyperplanes. Then for all H hyperplanes #(S ∩H) ≥ (q− 3)qm−2. Suppose that
there exists H1 such that #(S ∩H1) = (q − 3)qm−2. By applying an affine transformation, we can assume
x1 = α is an equation of H1. Set an order on the elements of Fq such that |fλ1 | ≤ · · · ≤ |fλq |. Then fλ1
is a minimum weight codeword of Rq(3,m − 1). By applying an affine transformation, we can assume fλ1
depends only on x2. Let k ≥ 1 be such that fλi depends only on x2 for all i ≤ k but fλk+1

does not depend
only on x2. If k > 3, we can write for all x = (x1, · · · , xm) ∈ Fmq

f(x) =
3∑
i=0

f
(i)
λi+1

(x2, · · · , xm)
∏

1≤j≤i
(x1 − λj)

Since for i ≤ 4, fλi depends only on x2, then f depends only on x1, x2, Then |f | ≡ 0 (mod qm−2). Since
|f | > (q − 1)3qm−3, then |f | ≥ ((q − 1)3 + 1)qm−3 which is absurd. So k ≤ 3. Since fλ1 , · · · , fλk depend
only on x2, we can write for all x1, x2 ∈ Fq and x̂ ∈ Fm−2q

f(x1, x2, x̂) = g(x1, x2) +

k∏
i=1

(x1 − λi)h(x1, x2, x̂)

where deg(h) ≤ 3− k. Then

fλk+1
(x2, x̂) = gλk+1

(x2) + αhλk+1
(x2, x̂)

where α ∈ F ∗q . So by Lemma 2.4 since fλk+1
does not depend only on x2, |fλk+1

| ≥ (q − 3 + k)qm−2. So

|f | ≥ k(q − 3)qm−2 + (q − k)(q − 3 + k)qm−2 = (q − 3)qm−1 + k(q − k)qm−2.

By considering |f | < ((q − 1)3 + 1)qm−3, we get a contradiction.

So for all H hyperplane, #(S ∩H) ≥ (q− 1)(q− 2)qm−3. By induction hypothesis, considering q parallel
hyperplanes there esists a hyperplane H0 such that #(S ∩ H0) = (q − 1)(q − 2)qm−3 or #(S ∩ H0) =
(q − 1)3qm−4. In both cases, we get that there exists A an affine subspace of codimension 2 included in H0

which does not meet S. Considering all hyperplanes through A, since for all H hyperplanes, #(S ∩H) ≥
(q − 1)(q − 2)qm−3, we get

(q + 1)(q − 1)(q − 2)qm−3 < ((q − 1)3 + 1)qm−3.

and this is absurd. So there exists an affine hyperplane H1 which does not meet S. Denote by n the number
of hyperplanes parallel to H1 which do not meet S.

By applying an affine transformation, we can assume x1 = λ1 is an equation of H1. We have n ≤ 3.
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If n = 3, then for all x = (x1, · · · , xm) ∈ Fmq we can write

f(x) = (x1 − λ1)(x1 − λ2)(x1 − λ3)g(x)

where λi ∈ Fq, λi 6= λj for all i 6= j, deg(g) = 0. So |f | = (q−3)qm−1 that gives a minimum weight codeword
of Rq(3,m) which is absurd.

If n = 2, then for all x = (x1, · · · , xm) ∈ Fmq we can write

f(x) = (x1 − λ1)(x1 − λ2)g(x)

where λi ∈ Fq, λ1 6= λ2, deg(g) ≤ 1. If deg(g) = 0, |f | = (q−2)qm−1. If deg(g) = 1, |f | = (q−2)(q−1)qm−2.
We get a contradiction in both cases.

From now, assume n = 1. Then for all x = (x1, · · · , xm) ∈ Fmq we have

f(x) = (x1 − λ1)g(x)

where deg(g) ≤ 2. Then for i ≥ 2, deg(fλi) ≤ 2 and so either |fλi | = (q − 2)qm−2 or |fλi | = (q − 1)2qm−3 or
|fλi | ≥ (q2 − q − 1)qm−3. Since

(q − 1)(q2 − q − 1)qm−3 ≥ ((q − 1)3 + 1)qm−3,

is a contradiction, there exists i ≥ 2 such that |fλi | = (q − 2)qm−2 or |fλi | = (q − 1)2qm−3. Denote by H ′ a
hyperplane such that #(S ∩H ′) = (q − 2)qm−2 (#(S ∩H ′) = (q − 1)2qm−3). Then there exist P1 and P2

two parallel affine subspaces of codimension 2 (two affine subspaces of codimension 2 intersect in an affine
subspace of codimension 3) included in H ′ not in S. Consider P an affine subspace of codimension 2 included
in H ′ which intersect P1 and P2 (in two different subspace of codimension 3). Then #(S∩P ) = (q−2)qm−3.
Then for all H hyperplane through P , #(S ∩H) ≥ (q− 1)(q− 2)qm−3. We can apply the same argument to
all affine subspaces of codimension 2 included in H ′ parallel to P . Now, consider a hyperplane through P
and the q−1 parallel hyperplanes to this hyperplane. Since |f | < ((q−1)3+1)qm−3, by induction hypothesis
one of these hyperplanes say H ′′ meets S either in (q − 2)(q − 1)qm−3 or (q − 1)3qm−4 points.

Denote by (Ai)1≤i≤3 the 3 affine subspaces of codimension 2 included in H ′′ which do not meet S.
Suppose that S meets all hyperplanes through Ai and consider H one of them. If all hyperplanes parallel to
H meet S then as in the beginning of the proof of this lemma, we get that #(S ∩H) ≥ (q− 1)(q− 2)qm−3.
If there exists a hyperplane parallel to H which does not meet S then #(S ∩H) ≥ (q− 2)qm−2. In all cases
we get a contradiction since (q + 1)(q − 1)(q − 2)qm−3 ≥ ((q − 1)3 + 1)qm−3.

Then there exist three hyperplanes H1 (with the equation x1 = λ1), H2 and H3 which do not meet S.
Since n = 1, the intersection of H2 and H3 is an affine subspace of codimension 2 say A2,3. There are three
following cases:
If A2,3 is contained in the hyperplane H1, then for all i ≥ 2 |fλi | = (q− 2)qm−2. So |f | = (q− 1)(q− 2)qm−2

which is absurd.
If A2,3 is contained in one of the hyperplanes x1 = λj for j ≥ 2, then |fλj | = (q − 1)qm−2 and |fλi | =
(q − 2)qm−2 for i ≥ 2 and i 6= j. So

|f | = (q − 2)(q − 2)qm−2 + (q − 1)qm−2

= (q2 − 3q + 3)qm−2

= ((q − 1)3 + 1)qm−3,

we get a contradiction, since |f | < ((q − 1)3 + 1)qm−3.
If A2,3 meets the hyperplane x1 = λi in an affine subspace Pi of codimension 3 for all i, then |fλi | =
(q − 1)2qm−3. So |f | = (q − 1)(q − 1)2qm−3 = (q − 1)3qm−3 which is absurd.

Theorem 3.4. Let m ≥ 3, q ≥ 9 and 4 ≤ b < q+4
3 . The fourth weight of Rq(b,m) is W4 = (q − 1)2(q − b+

2)qm−3.
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Proof. By Lemma 3.2 we have W4 ≥ (q − 1)2(q − b+ 2)qm−3. Define

g(x1, x2, x3) =
b−2∏
i=1

(x1 − λi)(x2 − α)(x3 − β)

Then g ∈ Rq(b, 3) and |g| = (q − 1)2(q − b+ 2). For x = (x1, · · · , xm) ∈ Fmq , we define

f(x) = g(x1, x2, x3).

Then f ∈ Rq(b,m) and |f | = |g|qm−3 which completes the proof.

Theorem 3.5. Let m ≥ 3, q ≥ 7. The fourth weight of Rq(3,m) is W4 = ((q − 1)3 + 1)qm−3.

Proof. By Lemmas 3.3 we have

W4 ≥ ((q − 1)3 + 1)qm−3

For x = (x1, · · · , xm) ∈ Fmq , we define

f(x) = (x1 − c)(x2 − d)(αx1 + βx2 − e)

with c, d, e ∈ Fq, α, β ∈ F ∗q and e 6= αc+ βd. Then, f ∈ Rq(3,m) and |f | = ((q− 1)3 + 1)qm−3 which proves
W4 = ((q − 1)3 + 1)qm−3.
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