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Abstract
Consider an m × n table T and latices paths ν1, . . . , νk in T such that each step νi+1 − νi = (1, 1),

(1, 0) or (1,−1). The number of paths from the (1, i)-cell (resp. first column) to the (s, t)-cell is denoted
by Di(s, t) (resp. D(s, t)). Also, the number of all paths form the first column to the last column is
denoted by Im(n). We give explicit formulas for the numbers D1(s, t) and D(s, t). As a result, we prove
a conjecture of Alexander R. Povolotsky involving In(n). Finally, we present some relationships between
the number of lattice paths and Fibonacci and Pell-Lucas numbers, and pose several open problems.
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1 Introduction

A lattice path in Z2 is the drawing in Z2 of a sum of vectors from a fixed finite subset S of Z2, starting
from a given point, say (0, 0) of Z2. A typical problem in lattice paths is the enumeration of all S-lattice
paths (lattice paths with respect to the set S) with a given initial and terminal point satisfying possibly
some further constraints. A nontrivial simple case is the problem of finding the number of lattice paths
starting from the origin (0, 0) and ending at a point (m,n) using only right step (1, 0) and up step (0, 1)
(i.e., S = {(1, 0), (0, 1)}). The number of such paths are known to be the the binomial coefficient

(
m+n
n

)
.

Yet another example, known as the ballot problem, is to find the number of lattice paths from (1, 0) to
(m,n) with m > n, using the same steps as above, that never touch the line y = x. The number of such
paths, known as ballot number, equals m−n

m+n

(
m+n
n

)
. In the special case where m = n+ 1, the ballot number

is indeed the Catalan number Cn.
Let Tm,n denote the m × n table in the plane and (x, y) be the cell in the columns x and row y

(and refer to it as the (x, y)-cell). The set of lattice paths from the (i, j)-cell to the (s, t)-cell, with steps
belonging to a finite set S, is denoted by L((i, j)→ (s, t); S), and the number of those paths is denoted by
L((i, j)→ (s, t); S), where 1 6 i, s 6 m and 1 6 j, t 6 n. We put |L((i, j)→ (s, t); S)| = l((i, j)→ (s, t); S)
which means the number of all lattice paths from the (i, j)-cell to the (s, t)-cell.

Throughout this paper, for the table Tm,n, we set S = {(1, 1), (1, 0), (1,−1)}, and the corresponding
lattice paths starting from the first column and ending at the last column are called perfect lattice paths.
The number of all perfect lattice paths is denoted by Im(n), that is,

Im(n) =
m∑

i,j=1

l((i, j)→ (s, t); S).
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2 IN (N) VS ALEXANDER R. POVOLOTSKY’S CONJECTURE

The values of Im(n) is OEIS sequence A081113 and A296449. Figure 1 shows the number of all lattice paths
for m = 2 and n = 3. Clearly, l((1, i)→ (n, j)) = l((1, i′)→ (n, j′)) when i+ i′ = m+ 1 and j + j′ = m+ 1.

Figure 1: All lattice paths in T2,3.

In this paper, by using ballot numbers, we give explicit formulas for the numbers D1(s, t) and D(s, t)
where are defined in the section 2. We closed this paper by several interesting conjectures and problems.

2 In(n) vs Alexander R. Povolotsky’s conjecture

Let S := {(1, 1), (1, 0), (1,−1)}. For positive integers 1 6 i, t 6 m and 1 6 s 6 n, the number of all
lattice paths from the (1, i)-cell to the (s, t)-cell in the table T = Tm,n is denoted by Di(s, t), that is,
Di(s, t) = l((1, i)→ (s, t); S). We put

Dm,n(s, t) =
m∑
i=1

Di(s, t).

For the case n = m, we show these numbers by Dn(s, t) := Dn,n(s, t), that called the n-th Motzkin prefix
number is the number of three-step paths consisting of n steps, starting at the origin, and not running below
the x-axis (with any end point). Clearly, D(s, t) is the number of all lattice paths from first column to the
(s, t)-cell of T . It is easy to see for n > 2

Dn(n, n) = Dn(n− 1, n) +Dn(n− 1, n− 1),

where D1(1, 1) = 1,D2(2, 2) = 2,D3(3, 3) = 5,D4(4, 4) = 13, . . .. The values of Dn(n, n) is OEIS sequence
A005773, where T is a square table. By the way, By the way, notice how the diagram for D4(4, 4) = 13 is

1 2 5 13
1 3 8 21
1 3 8 21
1 2 5 13

where each entry is the sum of two or three entries in the preceding column.

By symmetry of the table T , we have D(s, t) = D(s, t′) when t + t′ = m + 1. Table 1 illustrates the
values of D(6, t), for all 1 6 t 6 6, where the number in (s, t)-cell of T determines the number D(s, t).

It is worth mentioning that the numbers Dn(n, n) coincide with the number of directed animals of size
n starting from a single point (see [24]). The numbers Dn(n, n) appear is various other results, see for
example [9, 11, 12, 15, 19]. Note also that Krattenthaler and Yaqubi [32] compute determinants of some
Hankel matrices involving Dn(x, y), which is of independent interest.

Theorem 2.1. For any positive integer n we have

In(n) = 3In−1(n− 1) + 3n−1 − 2Dn−1(n− 1, n− 1).

https://oeis.org/A081113 
https://oeis.org/A296449
https://oeis.org/A005773


2 IN (N) VS ALEXANDER R. POVOLOTSKY’S CONJECTURE

D(6, t)

1 2 5 13 35 96

1 3 8 22 61 170

1 3 9 26 74 209

1 3 9 26 74 209

1 3 8 22 61 170

1 2 5 13 35 96

Table 1: Values of D(6, t)

Proof. Let T := Tn,n and T ′ := Tn−1,n−1 with T ′ in the left-bottom side of T . Clearly, the number of lattice
paths of T which never meet the nth row of T is

In−1(n) = 3In−1(n− 1)− 2Dn−1(n− 1, n− 1).

To obtain the number of all lattice paths we must count those who meet the nth-row of T , that is equal to
3n−1. Thus In(n)− In−1(n) = 3n−1, from which the result follows.

Michael Somos in OEIS sequence A005773 gives the following recurrence relation for Dn(n, n).

Theorem 2.2. Inside the square n× n table we have

nDn(n, n) = 2nDn(n− 1, n− 1) + 3(n− 2)Dn(n− 2, n− 2).

Utilizing Theorems 2.1 and 2.2 for Dn(n, n), we can prove a conjecture of Alexander R. Povolotsky posed
in OEIS sequence A081113 as follows. This identity has appeared first in [6]

Theorem 2.3 (Alexander R. Povolotsky Conjecture). The following identity holds for the numbers In(n).

(n+ 3)In+4(n+ 4) = 27nIn(n) + 27In+1(n+ 1)

− 9(2n+ 5)In+2(n+ 2) + (8n+ 21)In+3(n+ 3).

Proof. Put

A = (n+ 3)In+4(n+ 4),

B = (8n+ 21)In+3(n+ 3),

C = 9(2n+ 5)In+2(n+ 2),

D = 27In+1(n+ 1),

E = 27nIn(n).

Using Theorem 2.1, we can write

A =(3n+ 9)In+3(n+ 3) + (n+ 3)3n+3 − (2n+ 6)Dn(n+ 3, n+ 3)

=(8n+ 21)In+3(n+ 3)− (5n+ 12)In+3(n+ 3) + (n+ 3)3n+3

− (2n+ 6)Dn(n+ 3, n+ 3)

=B + (n+ 3)3n+3 − (5n+ 12)In+3(n+ 3)

− (2n+ 6)Dn(n+ 3, n+ 3). (1)

Utilizing Theorem 2.1 once more for In+3(n+ 3) and In+2(n+ 2) yields

A =B + (n+ 3)3n+3 − (5n+ 12)3n+2

− (18n+ 45)In+2(n+ 2)− (2n+ 6)Dn(n+ 3, n+ 3)

+ (10n+ 24)Dn(n+ 2, n+ 2) + (3n+ 9)In+2(n+ 2) + (n+ 3)3n+3

=B − C − (5n+ 12)3n+2 − (2n+ 6)Dn(n+ 3, n+ 3)

+ (10n+ 24)Dn(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ 27In+1(n+ 1) + (3n+ 9)3n+1 − (6n+ 18)Dn(n+ 1, n+ 1).

https://oeis.org/A005773
https://oeis.org/A081113


3 TABLES WITH FEW ROWS

It can be easily shown that

A =B − C +D

+ (n+ 3)3n+3 − (2n+ 6)Dn(n+ 3, n+ 3)− (5n+ 12)3n+2

+ (10n+ 24)Dn(n+ 2, n+ 2) + 9nIn+1(n+ 1)

+ (3n+ 9)3n+1 − (6n+ 18)Dn(n+ 1, n+ 1). (2)

Replacing 9nIn+1(n+ 1) by 27nIn(n) + n3n+2 − 18nIn(n) in 2 gives

A = B − C +D + E

− (2n+ 6)Dn(n+ 3, n+ 3) + (10n+ 24)Dn(n+ 2, n+ 2)

− 18nDn(n, n)− (6n+ 18)Dn(n+ 1, n+ 1).

Since the coefficient of Dn(n+ 3, n+ 3) is 2(n+ 3), it follow from Theorem 2.2 that

A =B − C +D + E − (4n+ 12)Dn(n+ 2, n+ 2)− 18nDn(n, n)

+ (10n+ 24)Dn(n+ 2, n+ 2)− (6n+ 6)Dn(n+ 1, n+ 1)

− (6n+ 18)Dn(n+ 1, n+ 1)

=B − C +D + E − (4n+ 12)Dn(n+ 2, n+ 2)

− (6n+ 6)Dn(n+ 1, n+ 1) + 18nDn(n, n)− 18nDn(n, n)

− (12n+ 24)Dn(n+ 1, n+ 1) + (6n+ 18)Dn(n+ 1, n+ 1)

=B − C +D + E,

as required.

3 Tables with few rows

In this section, we shall compute Im(n) for m = 1, 2, 3, 4 and arbitrary positive integers n. Also, we obtain
some properties of Im(n) for m = 5. Some values of the I3(n) and I4(n) are already given in A001333 and
A055819, respectively.

Lemma 3.1. I1(n) = 1 and I2(n) = 2n for all n > 1.

Let x and y be arbitrary real numbers. By the binomial theorem, we have the following identity,

xn + yn = (x+ y)n +

bn
2
c∑

k=1

(−1)k
[(
n− k
k

)
+

(
n− k − 1

k − 1

)]
(xy)k(x+ y)n−2k,

where n > 1. This identity also can rewritten as

xn + yn =

bn
2
c∑

k=0

(−1)k
[(
n− k
k

)
+

(
n− k − 1

k − 1

)]
(xy)k(x+ y)n−2k, (3)

where
(
r
−1
)

= 0. Pell-Lucas sequence [29] is defined as Q1 = 1, Q2 = 3, and Qn = 2Qn−1 + Qn−2 for all

n > 3. It can also be defined by the so called Binet formula as Qn = (αn + βn)/2, where α = 1 +
√

2 and
β = 1−

√
2 are solutions of the quadratic equation x2 = 2x+ 1.

Lemma 3.2. For all n > 1 we have I3(n) = Qn+1.

Proof. The number of lattice paths to cells in columns n− 2, n− 1, and n of T3,n looks like

https://oeis.org/A0011333
https://oeis.org/A055819
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n− 2 n− 1 n

x x+ y 3x+ 2y

y 2x+ y 4x+ 3y

x x+ y 3x+ 2y

which imply that I3(n− 2) = 2x+ y, I3(n− 1) = 4x+ 3y, and I3(n) = 10x+ 7y. Thus the following linear
recurrence exists for I3.

I3(n) = 2I3(n− 1) + I3(n− 2). (4)

Since I3(1) = Q2 = 3 and I3(2) = Q3 = 7, it follows that I3(n) = Qn+1 for all n > 1, as required.

Corollary 3.3. Let n be a positive integer. Then

I3(n) =

bn+1
2
c∑

k=0

[(
n− k + 1

k

)
+

(
n− k
k − 1

)]
2n−2k.

Proof. It is sufficient to put x = α and y = β in (3).

The Fibonacci sequence A000045 starts with the integers 0 and 1, and every other term is the sum of
the two preceding ones, that is, F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n > 2. This recursion gives

the Binet’s formula Fn = ϕn−ψn

ϕ−ψ , where ϕ = 1+
√
5

2 and ψ = 1−
√
5

2 .

Lemma 3.4. For all n > 1 we have I4(n) = 2F2n+1.

Proof. The number of lattice paths to cells in columns n− 2, n− 1, and n of T4,n looks like

n− 2 n− 1 n

x x+ y 2x+ 3y

y x+ 2y 3x+ 5y

y x+ 2y 3x+ 5y

x x+ y 2x+ 3y

which imply that I4(n − 2) = 2x + 2y, I4(n − 1) = 4x + 6y, and I4(n) = 10x + 16y. Hence we get the
following linear recurrence for I4.

I4(n) = 3I4(n− 1)− I4(n− 2). (5)

On the other hand,

F2n+1 = F2n + F2n−1

= 2F2n−1 + F2n−2

= 3F2n−1 −F2n−3

= 3F2(n−1)+1 −F2(n−2)+1.

Now since I4(1) = 2F3 and I4(2) = 2F5, it follows that I4(n) = 2F2n+1 for all n > 1. The proof is
complete.

Corollary 3.5. For all n > 1 we have

I4(n) =

n∑
k=0

(−1)k
[

2n+ 1

k

(
2n− k
k − 1

)]
5n−k. (6)

Proof. It is sufficient to put x = ϕ and y = ψ in (3).

In the sequel, we obtain some properties of Cm,n(s, t) and Im(n), when m = 5.

https://oeis.org/A000045


4 FURTHER RESULTS ABOUT LATTICE PATHS BY USING FIBONACCI AND PELL-LUCAS
NUMBERS

Proposition 3.6. Inside the 5× n table we have

D(s+ 2, 1) = I5(s) and D(s+ 2, 3) = 2I5(s)− 1

for all 1 6 s 6 n.

Proof. From the table in Example 5.1, it follows simply that I5(s) = D(s + 2, 1) for all s > 1. Also, from
the table, it follows that

2D(s+ 1, 1)−D(s+ 1, 3) = 2D(s, 1)−D(s, 3)

for all s > 1, that is, 2D(s, 1)−D(s, 3) is constant. Since 2D(1, 1)−D(1, 3) = 1, we get 2D(s+ 2, 1)−D(s+
2, 3) = 1, from which the result follows.

Proposition 3.7. Inside the 5× n table we have

D(s, 1)×D(s+ t, 3)−D(s, 3)×D(s+ t, 1) =
s+t−1∑
i=s

D(i, 2)

for all 1 6 s, t 6 n.

Proof. From Proposition 3.6, we know that D(s, 3) = 2D(s, 1)− 1 for all 1 6 s 6 n. Then

D(s, 1)D(s+ t, 3)−D(s, 3)D(s+ t, 1)

=D(s, 1)(2D(s+ t, 1)− 1)− (2D(s, 1)− 1)D(s+ t, 1)

=2D(s, 1)D(s+ t, 1)−D(s, 1)− 2D(s, 1)D(s+ t, 1) +D(s+ t, 1)

=D(s+ t, 1)−D(s, 1).

On the other hand,

D(s+ t, 1)−D(s, 1) = D(s+ t− 1, 1) +D(s+ t− 1, 2)−D(s, 1)

= D(s+ t− 2, 1) +D(s+ t− 2, 2) +D(s+ t− 1, 2)−D(s, 1)

...

=

s+t−1∑
i=s

D(i, 2) +D(s, 1)−D(s, 1)

=
s+t−1∑
i=s

D(i, 2),

from which the result follows.

4 Further results about lattice paths by using Fibonacci and Pell-Lucas
numbers

In this section, we obtain some relations and properties about lattice paths by the aid of Fibonacci and
Pell-Lucas sequences.

Proposition 4.1. Inside the 4× n table we have

D(s, 1) = F2s−1 and D(s, 2) = F2s

for all s > 1. As a result,

D(s, 1)×D(s+ t, 2)−D(s, 2)×D(s+ t, 1) = D(s, 2).

for all s, t > 1.



4 FURTHER RESULTS ABOUT LATTICE PATHS BY USING FIBONACCI AND PELL-LUCAS
NUMBERS

Proof. Clearly D(1, 1) = D(1, 2) = F1 = F2 = 1. Now since

D(s, 1) = D(s− 1, 1) +D(s− 1, 2),

D(s, 2) = 2D(s− 1, 2) +D(s− 1, 1).

we may prove, by using induction that, D(s, 1) = F2s−1 and D(s, 2) = F2s for all s > 1. The second claim
follows from the fact that

F2s−1F2s+2t −F2sF2s+2t−1 = F2s.

The proof is complete.

Proposition 4.2. Inside the 4× n table we have

I4(2s+ 1) =
1

4
I4(s+ 1)2 +D(s, 2)2

for all 1 6 s 6 n.

Proof. Following Lemma 3.4 and Proposition 4.1, it is enough to show that

2F4s+3 = F2
2s+3 + F2

2s.

First observe that the equation F2n−1 = F2
n+F2

n−1 yields F4s+1 = F2
2s+1+F2

2s+2 and F4s+5 = F2
2s+3+F2

2s+2.
Now, by combining these two formulas, we obtain

F2
2s+3 + F2

2s = F4s+5 + F4s+1 − (F2
2s+1 + F2

2s+2)

= F4s+4 + F4s+3 + F4s+1 −F4s+3

= F4s+3 + F4s+2 + F4s+1

= 2F4s+3,

as required.

Pell numbers Pn are defined recursively as P1 = 1, P2 = 2, and Pn = 2Pn−1 + Pn−2 for all n > 3. The
Binet’s formula corresponding to Pn is Pn = αn−βn

α−β , where α = 1 +
√

2 and β = 1−
√

2.

Proposition 4.3. Inside the 3× n table we have

D(s, 1) = Ps and D(s, 2) = Qs

for all s > 1. As a result,

D(s, 1)×D(s+ t, 2)−D(s, 2)×D(s+ t, 1) = (−1)s+1D(t, 1).

for all s, t > 1.

Proof. From the table in Lemma 3.2, we observe that

D(s, 1) = 2D(s− 1, 1) +D(s− 2, 1),

D(s, 2) = 2D(s− 1, 2) +D(s− 2, 2)

for all s > 3. Now since D(1, 1) = P1 = 1, D(2, 1) = P2 = 2, D(1, 2) = Q1 = 1, and D(2, 2) = Q2 = 3 one
can show, by using induction, that D(s, 1) = Ps and D(s, 2) = Qs for all s. To prove the second claim, we
use the following formula

PsQs+t −QsPs+t = (−1)s+1Pt

that can be proved simply by using Binet’s formulas.
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5 Further work

We end our paper with posing few open problems on determinant of matrices arising from lattice paths.
First consider the m×n table T with 2n > m. For positive integers `1, `2, . . . , `dm

2
e, we can write Im(n)

as
Im(n) = `1Im(n− 1) + `2Im(n− 2) + · · ·+ `dm

2
eIm(n− dm

2
e).

Also, for positive integers 0 6 s 6 dm2 e and k1,s, k2,s, . . . , kdm
2
e,s, we put

Im(n− s) = k1,sx1 + k2,sx2 + · · ·+ kdm
2
e,sxdm

2
e,

where xt = D(n− dm2 e, t) =
∑m

i=1Di(n− d
m
2 e, t) is the number of all lattice paths from the first column to

the (n − dm2 e, t)-cell of T , for each 1 6 i 6 m and 1 6 t 6 dm2 e. Utilizing the above notation, we can can
write

Im(n) =k1,0x1 + k2,0x2 + · · ·+ kdm
2
e,0xdm

2
e

=`1In−1 + `2In−2 + · · ·+ `dm
2
eIn−dm

2
e

=`1(k1,1x1 + k2,1x2 + · · ·+ kdm
2
e,1xdm

2
e)

+ `2(k1,2x1 + k2,2x2 + · · ·+ kdm
2
e,2xdm

2
e)

...

+ `dm
2
e(k1,dm

2
ex1 + k2,dm

2
cx2 + · · ·+ kdm

2
e,dm

2
exdm

2
e).

(7)

From (7), we obtain the following system of linear equations
k1,1`1 + · · · + k1,dm

2
e`dm

2
e = k1,0,

k2,1`1 + · · · + k2,dm
2
e`dm

2
e = k2,0,

...
...

. . .
...

...
...

...
kdm

2
e,1`1 + · · · + kdm

2
e,dm

2
e`dm

2
e = kdm

2
e,0.

(8)

Now consider the following coefficient matrix A of the system (8)

A =


k1,1 k1,2 · · · k1,dm

2
e

k2,1 k2,2 · · · k2,dm
2
e

...
...

. . .
...

kdm
2
e,1 kdm

2
e,2 · · · kdm

2
e,dm

2
e

 ,
which we call the coefficient matrix of the table T and denote it by D(T ).

Conjecture 1. For a given m× n table T (2n > m), we have det(D(T )) = −2b
m
2
c.

Example 5.1. Let T be a 5× n table. The columns n− 3, n− 2, n− 1, and n of T are given by

n− 3 n− 2 n− 1 n

x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x3 2x2 + x3 2x1 + 4x2 + 3x3 6x1 + 12x2 + 7x3
x2 x1 + x2 + x3 2x1 + 4x2 + 2x3 6x1 + 10x2 + 6x3
x1 x1 + x2 2x1 + 2x2 + x3 4x1 + 6x2 + 3x3

from which it follows that

I5(n− 3) = 2x1 + 2x2 + x3,

I5(n− 2) = 4x1 + 6x2 + 3x3,

I5(n− 1) = 10x1 + 16x2 + 9x3,

I5(n) = 28x1 + 44x2 + 25x3
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Clearly,

I5(n) = `1I5(n− 1) + `2I5(n− 2) + `3I5(n− 3)

for some `1, `2, `3, and that the coefficient matrix of the table T is D(T ) =

10 4 2
16 6 2
9 3 1

. It is obvious that

det(D(T )) = −2b
5
2
c = −4.

Our second problem is to compute the determinant of special Hankel matrices. Recall that a Hankel
matrix (or catalecticant matrix) of a numerical sequence D = {ci}, named after Hermann Hankel, is a matrix
defined as

Ht
n(D) =


ct ct+1 ct+2 . . . ct+n−1
ct+1 ct+2 ct+3 . . . ct+n

...
...

...
. . .

...
ct+n−1 ct+n ct+n+1 . . . ct+2n−2

 .
In [32, Theorems 3 and 4], the authors use a sequence of ideas to reduce the problem to a previous work
of Cigler and Krattenthaler [4] (the first paper of this series), which describes the Hankel determinants
detH1

n(D) and detH2
n(D) of some similar sequences D. Now, consider the sequence D with elements

1, 1, 2, 5, 13, 35, 96, . . . (see A005773). In the following, we suggest the values of the determinant of the
Hankel matrix H0

n(D)

Conjecture 2. For positive integers n, consider the Hankel matrix

H0
n(D) =


1 1 2 5 . . . cn
1 2 5 13 . . . cn+1
...

...
...

. . .
...

cn cn+1 cn+2 cn+3 . . . c2n

 .
Then

detH0
n(D) =


0, n ≡ 3 (mod 6),

−1, n ≡ 4, 5 (mod 6),

1, n ≡ 2, 3 (mod 6).

Problem 1. How can we compute det(Ht
n)?

Conjecture 3. We say that a matrix D is totally positive if all its minors are non-negative. The Riordan
array matrix of D(n, n) is totally positive.

Problem 2. Find combinatorial bijection for Somos identity in 2.2.
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