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Abstract

Let p and q be distinct primes. The semiprime divisor function graph denoted by GD(pq), is the graph
with vertex set V (GD(pq)) = {1, p, q, pq} and edge set E(GD(pq)) = {{1, p}, {1, q}, {1, pq}, {p, pq}, {q, pq}}.
The semiprime divisor function graph is a special type of divisor function graph GD(n) in which n = pq.
Recently, the energy and some indices of semiprime divisor function graph have been determined. In
this paper, we introduce a natural extension to the semiprime divisor function graph which we call the
k-dprime divisor function graph. Moreover, we present results on some distance-based and degree-based
topological indices of k-dprime divisor function graph. We end the paper by giving some open problems.
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1 Introduction

One of the developing areas in Graph theory is the notion of using Number theory concepts to define graphs.
The said graphs are called number theoretic based graphs. One of the most studied number theoretic based
graph is the divisor graph. Let S be a non-empty subset of Z, a graph G(V,E) is a divisor graph if
V (G) = S and E(G) = {ij : either i | j or j | i for i, j ∈ V (G) with i 6= j}. The concept of divisor graph
was introduced by Singh and Santhosh [1] in 2000. Since then, various research studies about divisor graph
have been conducted (see [2, 3, 4, 5]).

Motivated by the concept of divisor graph, Kannan et al. [6] introduced the concept of divisor function
graph in 2015. Let n ≥ 1 be an integer, and suppose that n has r divisors d1, d2, . . . , dr, the divisor
function graph of n denoted by GD(n)(V,E) is the graph with V (GD(n)) = {d1, d2, . . . , dr} and

E(GD(n)) = {didj : either di | dj or dj | di for di, dj ∈ V (G)D(n) with i 6= j}.

If in the definition of the divisor function graph we have n = pq, for distinct primes p and q, then
GD(n) is called a semiprime divisor function graph. The concept of semiprime divisor function graph
was introduced recently by Shanmugavelan et al. in [7]. Also in [7], Shanmugavelan et al. determined the
energy and some indices of the semiprime divisor function graph.

Inspired by the work of Shanmugavelan et al., we introduce a natural extension to the semiprime divisor
function graph which we call the k-dprime divisor function graph in this paper. We then determine some
distance-based and degree-based topological indices of the k-dprime divisor function graph. We also give
some problems that the reader might consider as a research study.
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2 The k-dprime Divisor Function Graph

Unless otherwise stated, we follow the graph theory notations of Bondy and Murty [8] and the number
theory notations of Burton [9]. We now formally define the k-dprime divisor function graph.

Definition 2.1. Let n ≥ 1 be an integer such that n = p1p2 . . . pk, where each pi are distinct primes for
i = 1, 2, . . . , k. The graph GD(n)(V,E) with V (GD(n)) = {u : u | n} and

E(GD(n)) = {uv : either u | v or v | u for u, v ∈ V (GD(n)) with u 6= v}

is called a k-dprime divisor function graph.

Example 2.2. The graph of 3-drpime and 4-dprime divisor function graph is given in Figure 1. On the
other hand, the graph of 5-dprime divisor function graph is given in Figure 2.

Figure 1: The 3-dprime and 4-dprime divisor function graph.

Figure 2: The 5-dprime divisor function graph.

Observe that the number of vertices in 3-dprime, 4-dprime, and 5-dprime divisor function graph are 8, 16,
and 32, respectively. Moreover, the degree sequence of the vertices in 3-dprime, 4-dprime, and 5-dprime di-
visor function graph are (7, 4, 4, 4, 4, 4, 4, 7), (15, 8, 8, 8, 8, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 15), and (31, 16, 16, 16, 16, 16,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 31), respectively. Finally,
the number of edges in 3-dprime, 4-dprime, and 5-dprime divisor function graph are 19, 65, and 211, re-
spectively.
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For simplicity, we just denote by Γk the k- dprime divisor function graph GD(n=p1p2...pk). Some of the
basic properties of Γk is given in the next series of results.

Theorem 2.3. The number of vertices in Γk is 2k, that is, the order of Γk is 2k.

Proof. The result follows from the composition of vertices in Γk and the fact that an integer with canonical
representation pe11 p

e2
2 . . . perr has (e1 + 1) · (e2 + 1) · . . . · (er + 1) divisors.

Remark 2.4. The number of vertices in 3-dprime, 4-dprime, and 5-dprime divisor function graph that were
obtained in Example 2.2 agrees with Theorem 2.3.

Theorem 2.5. If v ∈ V (Γk), then

degΓk
(v) =

{
2k − 1 if v = 1, n

2ω(v) + 2k−ω(v) − 2 otherwise

where ω(v) is the number of distinct prime divisors of v.

Proof. To prove the theorem, we will consider 3 cases.
Case 1: If v = 1. If v = 1, then there are 2k integers in V (Γk) (including v) that are divisible by v.

By noting that in E(Γk) we must have u 6= v, we conclude that there are 2k − 1 vertices that are incident
to v, by considering the number of integers in V (Γk) that are divisible by v. Next, we consider the number
of integers in V (Γk) that divides v. The only integer in V (Γk) that divides v is v itself. By noting that in
E(Γk) we must have u 6= v, we conclude that there is no vertex incident to v, by considering the number of
integers in V (Γk) that divides v. All in all, we have 2k − 1 edges incident to v. Hence, degΓk

(v) = 2k − 1.
Case 2: If v = n. If v = n, then there is one integer in V (Γk) that is divisible by v, v itself. By noting

that in E(Γk) we must have u 6= v, we conclude that there is no vertex incident to v, by considering the
number of integers in V (Γk) that are divisible by v. Next, we consider the number of integers in V (Γk) that
divides v. There are 2k integers in V (Γk) (including v) that divides v. By noting that in E(Γk) we must
have u 6= v, we conclude that there are 2k − 1 vertices incident to v, by considering the number of integers
in V (Γk) that divides v. All in all, we have 2k − 1 edges incident to v. Hence, degΓk

(v) = 2k − 1.
Case 3: If v ∈ V (Γk) − {1, n}. Let v ∈ V (Γk) − {1, n} and denote by ω(v) the number of its distinct

prime divisors. Note that since v | n, and n = p1p2 . . . pk, we know that v is a product of ω(v) distinct
primes.

Now, let us first count the number of integers in V (Γk) that divides v. Since v is a product of ω(v)
distinct primes, if we use the fact that an integer with canonical representation pe11 p

e2
2 . . . perr has (e1 + 1) ·

(e2 +1) · . . . ·(er +1) divisors, we conclude that there are 2ω(v) integers in V (Γk) that divides v. But in E(Γk)
we must have u 6= v, so if we consider the number of integers in V (Γk) that divides v, we have 2ω(v) − 1
edges that are incident to v. Before we proceed, we note that the vertices u that are incident to v in this
case satisfies the inequality ω(u) < ω(v). This is because (i) u ≤ v and (ii) if u ∈ V (Γk) such that u 6= v,
and ω(u) = ω(v) then u - v.

Next, we count the number of integers in V (Γk) that are divisible by v. Note that if u ∈ V (Γk) such
that u 6= v, and ω(u) = ω(v) then v - u. So we start the counting for integers u with ω(u) > ω(v). By

counting, there are
(
k−ω(v)

1

)
integers u in V (Γk) with ω(u) = ω(v) + 1. Similarly, by counting, we know

that there are
(
k−ω(v)

2

)
integers u in V (Γk) with ω(u) = ω(v) + 2. In general, for j = 1, 2, . . . , k − ω(v), a

counting technique asserts that there are
(
k−ω(v)

j

)
integers u in V (Γk) with ω(u) = ω(v) + j. All in all we

have

k−ω(v)∑
j=1

(
k − ω(v)

j

)
number of integers in V (Γk) that are divisible by v that are not equal to v.

Hence, there are 2ω(v) − 1 +

k−ω(v)∑
j=1

(
k − ω(v)

j

)
number of vertices that are incident to v. If we use the

identity

n∑
j=0

(
n

j

)
= 2n, we conclude that there are 2ω(v) + 2k−ω(v)− 2 incident edges to v. Hence, the degree

of v is given by 2ω(v) + 2k−ω(v) − 2.
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Remark 2.6. The degree of a vertex in 3-dprime, 4-dprime, and 5-dprime divisor function graph that were
obtained in Example 2.2 agrees with Theorem 2.5.

Remark 2.7. Let j = 0, 1, . . . , k. In Γk, there are
(
k
j

)
vertices with j distinct prime divisors.

The next result gives a recursive formula in determining the size of Γk. The formula is dependent on the
size of Γk−1 and the degree of vertices in Γk−1.

Lemma 2.8. Let Γk and Γk−1 denote the k-dprime and k− 1-dprime divisor function graph respectively. If
Γk−1 has degree sequence (deg(v1), deg(v2), . . . , deg(v2k−1)) arranged in increasing order of number of distinct
divisors, then

|E(Γk)| = |E(Γk−1)|+
2k−1∑
i=1

(deg(vi) + 1).

Proof. First, note that Γk−1 is a subgraph of Γk. So, all the edges in Γk−1 also belong to Γk. Also, observe
that V (Γk) = V (Γk−1) ∪ {vpk : v ∈ V (Γk−1)}. This means that in order to determine the number of edges
of Γk, it is enough to consider the number of edges contributed by the vertices in {vpk : v ∈ V (Γk−1)} and
add it to |E(Γk−1)|.

We claim that if u ∈ {vpk : v ∈ V (Γk−1)} then u = vpk contributes deg(v) + 1 edges in the graph Γk. To
prove our claim, we proceed by counting the number of edges contributed by u in Γk avoiding duplication,
which is equal to the number of integers in V (Γk−1) that divides u added by the number of integers in
{vpk : v ∈ V (Γk−1)} that are divisible by u.

The number of integers in V (Γk−1) dividing u is equal to the number of integers in V (Γk−1) that divides
v plus one (since v | u). So, we have 2ω(v) integers dividing u in V (Γk−1). On the other hand, the number
of integers in {vpk : v ∈ V (Γk−1)} that are divisible by u is equal to the number of integers divisible by v in
V (Γk−1) which is 2(k−1)−ω(v) − 1. All in all, u contributes a total of 2ω(v) + 2(k−1)−ω(v) − 1 = deg(v) + 1.

Using the just proved claim, we conclude that there are a total of

2k−1∑
i=1

(deg(vi) + 1) edges contributed

by the vertices in the set {vpk : v ∈ V (Γk−1)} in the graph Γk. If we add that sum to |E(Γk−1)| we have
|E(Γk)|.

A formula on how to compute for |E(Γk)| using only the variable k is given in the next theorem.

Theorem 2.9. The graph Γk has 3k − 2k number of edges. That is, the size of Γk is 3k − 2k.

Proof. If we combine Lemma 2.8 with Theorem 2.5 and Remark 2.7 we get

|E(Γk)| = |E(Γk−1)|+
k−1∑
j=0

(
k − 1

j

)
(2k−j−1 + 2j − 1).

Now, we wish to simplify the expression

k−1∑
j=0

(
k − 1

j

)
(2k−j−1 + 2j − 1) in the above equation by using

the identities
n∑

j=0

(
n

j

)
= 2n and

n∑
j=0

(
n

j

)
2j = 3n. By simplifying, we have

k−1∑
j=0

(
k − 1

j

)
(2k−j−1 + 2j − 1) =

k−1∑
j=0

(
k − 1

j

)
(2k−1−j) +

k−1∑
j=0

(
k − 1

j

)
(2j)−

k−1∑
j=0

(
k − 1

j

)
= 3k−1 + 3k−1 − 2k−1

= 2(3k−1)− 2k−1.
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Thus, we now have

|E(Γk)| = |E(Γk−1)|+ 2(3k−1)− 2k−1. (1)

We note that the 0-dprime divisor function graph has |E(Γ0)| = 0. So, solving the recurrence relation
in Equation (1) with the initial condition |E(Γ0)| = 0 gives

|E(Γk)| = |E(Γ0)|+ 2
k−1∑
j=0

3j −
k−1∑
j=0

2j

= |E(Γ0)|+ 2

(
3k − 1

2

)
− (2k − 1)

= 0 + 3k − 1− 2k + 1

= 3k − 2k.

Remark 2.10. Using Theorem 2.9, one can verify that Γ3 has 33 − 23 = 19 number of edges. Also, Γ4 has
34 − 24 = 65 number of edges. Finally, Γ5 has 35 − 25 = 211 number of edges. The results agree with the
results stated in Example 2.2.

We now end the section by presenting some results about distance between vertices in k-dprime divisor
function graph.

Lemma 2.11. Let Γk denote the k-dprime divisor function graph. If u, v ∈ V (Γk) then

dΓk
(u, v) =


0 if u = v

1 if u is adjacent to v

2 otherwise.

Proof. Clearly, dΓk
(u, v) = 0 if u = v and dΓk

(u, v) = 1 if u is adjacent to v. Now, if u is not adjacent to
v, then the path u → 1 → v is a shortest path from u to v. Another shortest path from u to v is the path
u→ n→ v. Hence, dΓk

(u, v) = 2, if u is not adjacent to v.

Corollary 2.12. Let Γk denote the k-dprime divisor function graph. The diameter of Γk denoted by
diam(Γk) is 2.

3 Some Indices of the k-dprime Divisor Function Graph

Given a family of graphs G, a topological index is a function Top : G → R such that if Γ1,Γ2 ∈ G,
and Γ1

∼= Γ2 then Top(Γ1) = Top(Γ2). In this section, we give some general results about the following
distance-based and degree-based topological indices of the k-dprime divisor function graph Γk

Wiener Index: W (Γk) =
∑

{u,v}⊆V (Γk)

dΓk
(u, v)

Hyper-Wiener Index: WW (Γk) =
1

2

∑
{u,v}⊆V (Γk)

[dΓk
(u, v) + (dΓk

(u, v))2]

Harary Index: H(Γk) =
∑

{u,v}⊆V (Γk)

1

dΓk
(u, v)
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First Zagreb Index: M1(Γk) = M1(Γk) =
∑

u∈V (Γk)

(degΓk
(u))2.

To effectively calculate the first three indices, we need to recall the concept of graph’s distance matrix as
well as its variants, the square distance matrix and the reciprocal distance matrix. The distance matrix of
a graph G of order |V (G)|, denoted by D(G) is the |V (G)|× |V (G)| matrix D with entries [dij ] = dG(vi, vj).
On the other hand, the square distance matrix of a graph G, denoted by D2(G) is the matrix with
ij-entry equal to (dG(vi, vj))

2. Lastly, the reciprocal distance matrix of a graph G, denoted by D−1(G)
is the matrix with ij-entry equal to 1

dG(vi,vj) . Once the distance matrix of a graph and its variants have been

determined, the Wiener, hyper-Wiener, and Harary index of the gaph can be easily calculated as shown in
the next example.

Example 3.1. It follows from the graph of the 3-dprime divisor function graph Γ3 in Example 2.2 that

D(Γ3) =



0 1 1 1 1 1 1 1
1 0 2 2 1 1 2 1
1 2 0 2 1 2 1 1
1 2 2 0 2 1 1 1
1 1 1 2 0 2 2 1
1 1 2 1 2 0 2 1
1 2 1 1 2 2 0 1
1 1 1 1 1 1 1 0


where the matrix is indexed by the ordered set {1, p1, p2, p3, p1p2, p1p3, p2p3, p1p2p3}. If we use the definition
of the Wiener index, we have

W (Γ3) =
∑

{u,v}⊆V (Γ3)

dΓ3(u, v)

=
∑

v∈V (Γ3)

dΓ3(1, v) +
∑

v∈V (Γ3)−{1}

dΓ3(p1, v) + . . .+
∑

v∈V (Γ3)−{1,p1,p2,...,p2p3}

dΓ3(p1p2p3, v)

=
1

2

∑
1≤i,j≤|V (Γ3)|

[dij ]

=
74

2
= 37.

In a similar manner, one can show that

∑
{u,v}⊆V (Γ3)

(dΓ3(u, v))2 =
1

2

∑
1≤i,j≤|V (Γ3)|

[dij ]
2

and

∑
{u,v}⊆V (Γ3)

1

dΓ3(u, v)
=

1

2

∑
1≤i,j≤|V (Γ3)|

1

[dij ]
.

So, by knowing the matrices
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D2(Γ3) =



0 1 1 1 1 1 1 1
1 0 4 4 1 1 4 1
1 4 0 4 1 4 1 1
1 4 4 0 4 1 1 1
1 1 1 4 0 4 4 1
1 1 4 1 4 0 4 1
1 4 1 1 4 4 0 1
1 1 1 1 1 1 1 0


and

D−1(Γ3) =



0 1 1 1 1 1 1 1
1 0 1/2 1/2 1 1 1/2 1
1 1/2 0 1/2 1 1/2 1 1
1 1/2 1/2 0 1/2 1 1 1
1 1 1 1/2 0 1/2 1/2 1
1 1 1/2 1 1/2 0 1/2 1
1 1/2 1 1 1/2 1/2 0 1
1 1 1 1 1 1 1 0


,

we can easily compute the hyper-Wiener index and the Harary index of the 3-dprime divisor function
graph as shown in the next page.

WW (Γ3) =
1

2

∑
{u,v}⊆V (Γ3)

[dΓ3(u, v) + (dΓ3(u, v))2]

=
1

2

 ∑
{u,v}⊆V (Γ3)

dΓ3(u, v) +
∑

{u,v}⊆V (Γ3)

(dΓ3(u, v))2


=

1

2

W (Γ3) +
1

2

∑
1≤i,j≤|V (Γ3)|

[dij ]
2


=

1

2
(37 + 55)

= 46.

H(Γ3) =
∑

{u,v}⊆V (Γ3)

1

dΓ3(u, v)

=
1

2

∑
1≤i,j≤|V (Γ3)|

1

[dij ]

=
1

2
(47)

= 23.5.

Remark 3.2. In general, given a connected graph G, the value of W (G) can be computed by adding all
the entries in D(G) and then dividing the result by 2. For the Harary index, it can be computed by adding
all the entries in D−1(G) and then dividing the result by 2. Finally, for the hyper-Wiener index, it can be
calculated by adding half of W (G) to quarter of the sum of all the entries in D2(G).
Before we present the general results, we emphasize that the sum of all the vertex degrees in a graph G is
equal to 2|E(G)|. Now, we present the general results.
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Theorem 3.3. Let Γk denote the k-dprime divisor function graph. The Wiener index of Γk, denoted by
W (Γk) is given by

W (Γk) = 22k − 3k.

Proof. Let us denote by S(D(Γk)), the sum of all the entries in D(Γk). Note that the entries in D(Γk) are
either 0, 1, and 2 as stated in Lemma 2.11, and that all in all we have 2k × 2k = 22k entries. Clearly, there
are 2k 0’s in D(Γk). On the other hand, there are 2(3k − 2k) entries in D(Γk) whose value is 1. This is
because dΓk

(u, v) = 1 implies u and v are adjacent, which contributes one count in the vertex degree of u
and v respectively. Hence, the total number of 1’s in D(Γk) corresponds to the sum of all vertex degrees in
Γk which is equal to 2|E(Γk)|. If we apply Theorem 2.9 we get the result that there are 2(3k − 2k) entries
in D(Γk) whose value is 1. Finally, there are 22k − 2k − 2(3k − 2k) entries in D(Γk) with value 2.

Now, by Remark 3.2 we have

W (Γk) =
S(D(Γk))

2

=
2k(0) + 2(3k − 2k)(1) + [22k − 2k − 2(3k − 2k)](2)

2

= (3k − 2k) + 22k − 2k − 2(3k − 2k)

= 22k − 2k − (3k − 2k)

= 22k − 3k.

Theorem 3.4. Let Γk denote the k-dprime divisor function graph. The hyper-Wiener index of Γk, denoted
by WW (Γk) is given by

WW (Γk) = 2k−1(2k+1 + 2k + 1)− 2(3k).

Proof. If we use proof tecnique similar to the proof of Theorem 3.3 we have

WW (Γk) =
1

2
W (Γk) +

S(D2(Γk))

4

=
1

2
W (Γk) +

[
2k(0) + 2(3k − 2k)(1) + [22k − 2k − 2(3k − 2k)](4)

4

]
=

1

2
(22k − 3k) +

[
2(3k − 2k) + 22k+2 − 2k+2 − 8(3k − 2k)

4

]
=

22k+1 − 2(3k) + 22k+2 − 2k+2 − 6(3k − 2k)

4

=
2k(2k+2 + 2k+1 + 2)− 8(3k)

4

=
2k+1(2k+1 + 2k + 1)− 8(3k)

4

= 2k−1(2k+1 + 2k + 1)− 2(3k).

Theorem 3.5. Let Γk denote the k-dprime divisor function graph. The Harary index of Γk, denoted by
H(Γk) is given by

H(Γk) =
2k−1(2k − 3) + 3k

2
.
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Proof. If we use proof tecnique similar to the proof of Theorem 3.3 we have

H(Γk) =
S(D−1(Γk))

2

=
2k(0) + 2(3k − 2k)(1) + [22k − 2k − 2(3k − 2k)]

(
1
2

)
2

=
2(3k − 2k) + 22k−1 − 2k−1 − (3k − 2k)

2

=
22k−1 − 2k−1 + 3k − 2k

2

=
2k−1(2k − 3) + 3k

2
.

Remark 3.6. If we use the results in Theorems 3.3, 3.4, and 3.5 to determine the Wiener, hyper-Wiener,
and Harary index of Γ3, we get W (Γ3) = 37, WW (Γ3) = 46, and H(Γ3) = 23.5. The computed values agree
with those presented in Example 3.1.

We now end the section by giving the general formula in determining the first Zagreb index of the
k-dprime divisor function graph.

Theorem 3.7. Let Γk denote the k-dprime divisor function graph. The first Zagreb Index of Γk, denoted
by M1(Γk) is given by

M1(Γk) = 2(2k − 1)2 +

k−1∑
j=1

(
k

j

)
(2j + 2k−j − 2)2.

Proof. The result follows by combining Theorem 2.5 and Remark 2.7 with the definition of the first Zagreb
Index.

4 Other Indices of k-dprime Divisor Function Graph

The second to the last section of this paper, is dedicated in determining the following topological indices of
k-dprime divisor function graph for k = 3, 4, and 5 using their graph representation given in Example 2.2

Second Zagreb Index: M2(G) =
∑

uv∈E(G)

deg(u)deg(v)

Degree-Distance: DD(G) =
∑

{u,v}⊆V (G)

[
[deg(u) + deg(v)][d(u, v)]

]

Balaban: J(G) =
m

µ+ 1

∑
{u,v}⊆E(G)

(
DuDv

)− 1
2

Gutman: Gut(G) =
∑

{u,v}⊆V (G)

deg(u)deg(v)d(u, v)

Harmonic: Hm(G) =
∑

{uv}⊆E(G)

2

deg(u) + deg(v)
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Randic: R(G) =
∑

{uv}⊆E(G)

1√
deg(u)deg(v)

First R-index: R1(G) =
∑

v∈V (G)

(
r(v)

)2
Second R-index: R2(G) =

∑
uv∈E(G)

(
r(u)r(v)

)
Third R-index: R3(G) =

∑
uv∈E(G)

(
r(u) + r(v)

)
Mostar index: Mo(G) =

∑
uv∈E(G)

∣∣nu − nv∣∣.
Theorem 4.1. If Γ3 denote the graph of 3-dprime divisor function graph, then

J(Γ3) =
19

26

[
52 + 12

√
70

35

]
DD(Γ3) = 338

Gut(Γ3) = 769

Hm(Γ3) =
589

154

R1(Γ3) = 2s2 + 6t2

R2(Γ3) = s2 + 12st+ 15t2

R3(Γ3) = 14s+ 42t

where s = 7 · 46 + 31 and t = 72 · 45 + 34

R(Γ3) =

[
23 + 12

√
7

14

]
M2(Γ3) = 481

Mo(Γ3) = 36.

Before we present the proof, let us first consider some definitions.

Definition 4.2. For any simple connected graph G and a vertex v ∈ V (G), the expressions

Sv =
[ ∑
u∈V (G)

deg(u)
]
− deg(v)

and

Mv =

∏
u∈V (G) deg(u)

deg(v)
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are the sum and multiplication degree of v, respectively, whereas the R degree of v is defined as r(v) =

Sv + Mv. Meanwhile, the first R index of G is R1(G) =
∑

v∈V (G)

(
r(v)

)2
. Then the second R index of G is

R2(G) =
∑

uv∈E(G)

[r(u)r(v)]. Finally, the third R index of G is R3(G) =
∑

uv∈E(G)

[r(u) + r(v)].

Proof. We will only show the proof for the Randic index, and first, second, and third R indices of 3-dprime
divisor function graph. The other result can be proved similarly.

Based on the definition of the Randic index we have

R(Γ3) =
∑

{uv}⊆E(Γ3)

1√
deg(u)deg(v)

=
1

2

[ ∑
{1v}⊆E(Γ3)

1√
deg(1)deg(v)

+
∑

{n1v}⊆E(Γ3)

1√
deg(n1)deg(v)

+
∑

{n2v}⊆E(Γ3)

1√
deg(n2)deg(v)

+
∑

{n3v}⊆E(Γ3)

1√
deg(n3)deg(v)

]

=
1

2

[ ∑
{1v}⊆E(Γ3)

1√
7deg(v)

+ 3
[ ∑
{n1v}⊆E(Γ3)

1√
4deg(v)

]
+ 3
[ ∑
{n2v}⊆E(Γ3)

1√
4deg(v)

]
+

∑
{n3v}⊆E(Γ3)

1√
7deg(v)

]

=
1

2

[
1√
7

(
1√
7

+
6√
4

)
+

3√
4

(
2√
7

+
2√
4

)
+

3√
4

(
2√
7

+
2√
4

)
+

1√
7

(
1√
7

+
6√
4

)]
.

Simplifying the above equation gives the desired result.
Next, we prove the result on the R indices of Γ3. Using the definition presented earlier for the R indices

of a graph, the sum and multiplication degree of each vertex in Γ3 are

S1 = Sn3 = 38− 7 =31

Sn1 = Sn2 = 38− 4 =34

M1 = Mn3 =
72 · 46

7
=7 · 46

Mn1 = Mn2 =
72 · 46

4
=72 · 45,

respectively. Letting s = r(1) = r(n3) = 7 · 46 + 31 and t = r(n1) = r(n2) = 72 · 45 + 34, then, by the
definition of the first R index, we get

R1(Γ3) =
(
r(1)

)2
+ 3

[ ∑
v∈V (Γ3)

(
r(n1)

)2]
+ 3

[ ∑
v∈V (Γ3)

(
r(n2)

)2]
+
(
r(n3)

)2
R1(Γ3) = s2 + 3(t2) + 3(t2) + s2

R1(Γ3) = 2s2 + 6t2.

Using the formula for the second R index,we obtain the following results:

R2(Γ3) =
1

2

[[ ∑
1v∈E(Γ3)

r(1)r(v)
]

+ 3
[ ∑
n1v∈E(Γ3)

r(n1)r(v)
]

+ 3
[ ∑
n2v∈E(Γ3)

r(n2)r(v)
]

+
[ ∑
n3v∈E(Γ3)

r(n3)r(v)
]]

R2(Γ3) =
1

2

[
s(s+ 6t) + 3t(2s+ 5t) + 3t(2s+ 5t) + s(s+ 6t)

]
R2(Γ3) = s2 + 12st+ 15t2.
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Lastly, for the third R index, we have

R3(Γ3) =
1

2

[[ ∑
1v∈E(Γ3)

r(1) + r(v)
]

+ 3
[ ∑
n1v∈E(Γ3)

r(n1) + r(v)
]

+ 3
[ ∑
n2v∈E(Γ3)

r(n2) + r(v)
]

+
[ ∑
n3v∈E(Γ3)

r(n3) + r(v)
]]

R3(Γ3) =
1

2

[
[(s+ s) + 6(s+ t)] + 3[2(t+ s) + 5(t+ t)] + 3[2(t+ s) + 5(t+ t)] + [(s+ s) + 6(s+ t)]

]
R3(Γ3) = 14s+ 42t.

Theorem 4.3. If Γ4 denote the graph of 4-dprime divisor function graph, then

J(Γ4) =
65

102

[
202 + 16

√
330 + 66

√
10 + 60

√
33

165

]
DD(Γ4) = 3712

Gut(Γ4) = 10557

Hm(Γ4) =
36367

4830

R1(Γ4) = 2s2 + 8t2 + 6w2

R2(Γ4) = s2 + 16st+ 6sw + 15t2 + 24tw

R3(Γ4) = 24s+ 70t+ 30w

where s = 15 · 88 · 66 + 115, t = 152 · 87 · 66 + 122, w = 152 · 88 · 65 + 124

R(Γ4) =

[
47 + 60

√
3 + 12

√
10 + 8

√
30

30

]
M2(Γ4) = 3993

Mo(Γ4) = 268.

Proof. We will only show the proof for the Gutman index and Harmonic index. The other results can be
proved similarly.

From the definition of the Harmonic index, and the properties of Γ4 we get

Hm(Γ4) =
∑

{uv}⊆E(Γ4)

2

deg(u) + deg(v)

=
1

2

[(
4

0

)[ ∑
{1v}⊆E(Γ4)

2

deg(1) + deg(v)

]
+

(
4

1

)[ ∑
{n1v}⊆E(Γ4)

2

deg(n1) + deg(v)

]

+

(
4

2

)[ ∑
{n2v}⊆E(Γ4)

2

deg(n2) + deg(v)

]
+

(
4

3

)[ ∑
{n3v}⊆E(Γ4)

2

deg(n3) + deg(v)

]

+

(
4

4

)[ ∑
{n4v}⊆E(Γ4)

2

deg(n4) + deg(v)

]]
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=
1

2

[[ ∑
{1v}⊆E(Γ4)

2

15 + deg(v)

]
+ 4

[ ∑
{n1v}⊆E(Γ4)

2

8 + deg(v)

]
+ 6

[ ∑
{n2v}⊆E(Γ4)

2

6 + deg(v)

]

+ 4

[ ∑
{n3v}⊆E(Γ4)

2

8 + deg(v)

]
+

[ ∑
{n4v}⊆E(Γ4)

2

15 + deg(v)

]]

=
1

2

[[(
2

15 + 15

)
(1) +

(
2

15 + 8

)
(8) +

(
2

15 + 6

)
(6)

]
+

[(
2

8 + 15

)
(2) +

(
2

8 + 8

)
(3) +

(
2

8 + 6

)
(3)

]
+

[(
2

6 + 15

)
(2) +

(
2

6 + 8

)
(4)

]
+

[(
2

8 + 15

)
(2) +

(
2

8 + 8

)
(3) +

(
2

8 + 6

)
(3)

]
+

[(
2

15 + 15

)
(1) +

(
2

15 + 8

)
(8) +

(
2

15 + 6

)
(6)

]]
=

36367

4830

Similarly, for the Gutman index, we obtain the following

Gut(Γ4) =
∑

{u,v}⊆V (G)

deg(u)deg(v)d(u, v)

=
1

2

[(
4

0

)[ ∑
{1,v}⊆V (Γ4)

deg(1)deg(v)d(1, v)

]
+

(
4

1

)[ ∑
{n1,v}⊆V (Γ4)

deg(n1)deg(v)d(n1, v)

]

+

(
4

2

)[ ∑
{n2,v}⊆V (Γ4)

deg(n2)deg(v)d(n2, v)

]
+

(
4

3

)[ ∑
{n3,v}⊆V (Γ4)

deg(n3)deg(v)d(n3, v)

]

+

(
4

4

)[ ∑
{n4,v}⊆V (Γ4)

deg(n4)deg(v)d(n4, v)

]]

=
1

2

[[ ∑
{1,v}⊆V (Γ4)

15deg(v)(1)

]
+ 4

[ ∑
{n1,v}⊆V (Γ4)

8deg(v)d(n1, v)

]

+ 6

[ ∑
{n2,v}⊆V (Γ4)

6deg(v)d(n2, v)

]
+ 4

[ ∑
{n3,v}⊆V (Γ4)

8deg(v)d(n3, v)

]

+

[ ∑
{n4,v}⊆V (Γ4)

15deg(v)(1)

]]

=
1

2

[
15
[ ∑
{1,v}⊆V (Γ4)

deg(v)
]

+ 4(8)
[ ∑
{n1,v}⊆V (Γ4)

deg(v)d(n1, v)
]

+ 6(6)
[ ∑
{n2,v}⊆V (Γ4)

deg(v)d(n2, v)
]

+ 4(8)
[ ∑
{n3,v}⊆V (Γ4)

deg(v)d(n3, v)
]

+ 15
[ ∑
{1,v}⊆V (Γ4)

deg(v)
]]
.

Since the distance between any two distinct vertices in Γ4 is just 1 or 2, then

Gut(Γ4) =
1

2

[
15
[
1(15)(1) + 8(8)(1) + 6(6)(1)

]
+ 32

[
2(15)(1) + 3(8)(1) + 4(8)(2) + 3(6)(1) + 3(6)(2)

]
+ 36

[
2(15)(1) + 4(8)(1) + 4(8)(2) + 5(6)(2)

]]
+ 32

[
2(15)(1) + 3(8)(1) + 4(8)(2) + 3(6)(1) + 3(6)(2)

]
+ 15

[
1(15)(1) + 8(8)(1) + 6(6)(1)

]
=3712.
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Theorem 4.4. If Γ5 denote the graph of 5-dprime divisor function graph, then

J(Γ5) =
211

362

[
19353 + 260

√
1426 + 920

√
403 + 1550

√
598

9269

]

DD(Γ5) = 19682

Gut(Γ5) = 124201

Hm(Γ5) =
45901681

3106324

R1(Γ5) = 2s2 + 10t2 + 20w2

R2(Γ5) = s2 + 20st+ 30sw + 20t2 + 100tw + 30w2

R3(Γ5) = 52s+ 160t+ 190w

where s = 31 · 1610 · 1020 + 391, t = 312 · 169 · 1020 + 406 and w = 312 · 1610 · 1019 + 412

R(Γ5) =

[
531 + 20

√
31 + 16

√
310 + 310

√
10

124

]

M2(Γ4) = 47401

Mo(Γ5) = 1720.

Proof. We will only show the proof for the Degree-distance Index and second Zagreb Index of Γ5. The other
indices can be proved similarly.

From the definition of the second Zagreb index, we have

M2(Γ5) =
1

2

[(
5

0

)[ ∑
1v∈E(Γ5)

deg(1)deg(v)

]
+

(
5

1

)[ ∑
n1v∈E(Γ5)

deg(n1)deg(v)

]

+

(
5

2

)[ ∑
n2v∈E(Γ5)

deg(n2)deg(v)

]
+

(
5

3

)[ ∑
n3v∈E(Γ5)

deg(n3)deg(v)

]

+

(
5

4

)[ ∑
n4v∈E(Γ5)

deg(n4)deg(v)

]
+

(
5

5

)[ ∑
n5v∈E(Γ5)

deg(n5)deg(v)

]]]

=
1

2

[[ ∑
1v∈E(Γ5)

31deg(v)

]
+ 5

[ ∑
n1v∈E(Γ5)

16deg(v)

]
+ 10

[ ∑
n2v∈E(Γ5)

10deg(v)

]

+ 10

[ ∑
n3v∈E(Γ5)

10deg(v)

]
+ 5

[ ∑
n3v∈E(Γ5)

16deg(v)

]
+

[ ∑
n5v∈E(Γ5)

31deg(v)

]]

=
1

2

[[
31 + 5(16) + 10(10)

]
+ 5(16)

[
2(31) + 4(16) + 10(10)

]
+ 10(10)

[
2(31) + 5(16) + 3(10)

]
+ 10(10)

[
2(31) + 5(16) + 3(10)

]
+ 5(16)

[
2(31) + 4(16) + 10(10)

]
+
[
31 + 5(16) + 10(10)

]]
= 47401.
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For the Degree-distance index ofΓ5, we have

DD(Γ5) =
1

2

[(
5

0

)[ ∑
{1,v}⊆V (Γ5)

[deg(1) + deg(v)]d(1, v)

]
+

(
5

1

)[ ∑
{n1,v}⊆V (Γ5)

[deg(n1) + deg(v)]d(n1, v)

]

+

(
5

2

)[ ∑
{n2,v}⊆V (Γ5)

[deg(n2) + deg(v)]d(n2, v)

]
+

(
5

3

)[ ∑
{n3,v}⊆V (Γ5)

[deg(n3) + deg(v)]d(n3, v)

]

+

(
5

4

)[ ∑
{n4,v}⊆V (Γ5)

[deg(n4) + deg(v)]d(n4, v)

]
+

(
5

5

)[ ∑
{n5,v}⊆V (Γ5)

[deg(n5) + deg(v)]d(n5, v)

]]

=
1

2

[[ ∑
{1,v}⊆V (Γ5)

[31 + deg(v)](1)

]
+ 5

[ ∑
{n1,v}⊆V (Γ5)

[16 + deg(v)]d(n1, v)

]

+ 10

[ ∑
{n2,v}⊆V (Γ5)

[10 + deg(v)]d(n2, v)

]
+ 10

[ ∑
{n3,v}⊆V (Γ5)

[10 + deg(v)]d(n3, v)

]

+ 5

[ ∑
{n4,v}⊆V (Γ5)

[16 + deg(v)]d(n4, v)

]
+

[ ∑
{n5,v}⊆V (Γ5)

[31 + deg(v)](1)

]]

=
1

2

[[
(31 + 31)(1) + 10(31 + 16)(1) + 20(31 + 10)(1)

]
+ 5
[
2(16 + 31)(1) + 4(16 + 16)(1) + 5(16 + 16)(2) + 10(16 + 10)(1) + 10(16 + 10)

]
+ 10

[
2(10 + 31)(1) + 5(10 + 16)(1) + 5(10 + 16)(2) + 3(10 + 10)(1) + 16(10 + 10)

]
+ 10

[
2(10 + 31)(1) + 5(10 + 16)(1) + 5(10 + 16)(2) + 3(10 + 10)(1) + 16(10 + 10)

]
+ 5
[
2(16 + 31)(1) + 4(16 + 16)(1) + 5(16 + 16)(2) + 10(16 + 10)(1) + 10(16 + 10)

]
+
[
(31 + 31)(1) + 10(31 + 16)(1) + 20(31 + 10)(1)

]]
= 62(31) + 460(16) + 1040(10) = 19682

5 Conclusion and Some Problems

In this paper, we introduced the concept of k-dprime divisor function graph and determined some of its basic
properties. The general formula for its Wiener, hyper-Wiener, Harary, and First Zagreb index were also
presented. We then computed other topological indices of the k-dprime divisor function graph for k = 3, 4, 5.

Since this is an introductory paper about k-dprime divisor function graph, there are so many possible
problems that the reader might consider. Some possible problems are (1) finding a general closed formula
in determining the indices of k-dprime divisor function graph that were presented in Section 4, and (2)
studying the energy and distance-eigenvalues of the k-dprime divisor function graph.
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