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Abstract

Orbit codes, as special constant dimension codes, have attracted much attention due to their applica-
tions for error correction in random network coding. They arise as orbits of a subspace of Fn

q under the
action of some subgroup of the finite general linear group GLn(q). In this paper, We introduce the notion
of tensor product operation for subspace codes and determine the parameters of such product codes.
Furthermore, it is shown that the tensor product of two subspace codes, one of them being a partial
spread, is also a partial spread. The properties wreathed tensor products of groups are then employed to
select certain types of subspaces and their stabilizers, thereby providing a systematic way of constructing
orbit codes with optimum parameters. The constructions presented in this paper improve significantly
the constructions already obtained in [8] and [7].
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1 Introduction

Throughput enhancement is one of the major research challenges in wireless communication systems. It
is foreseen that network throughput requirements for wireless networks in the future will be much higher
than nowadays. The frequency band is a limited resource, therefore sophisticated solutions are required to
maximize the delivered data on this limited spectra. Random linear network coding, introduced in [1], is
used to increase the information throughput by allowing the random linear combination of packets within
a network; that is, each internal node of the network transmits random linear combinations of the received
packets to adjacent nodes. Due the encoding method the receivers are able to reconstruct the original
packets that have been injected into the network at its sources. Although this method is very effective
but it is highly sensitive to the error propagation. Trying to solve this problem, Kötter and Kschischang
[10] proposed a mathematical description of random network coding, called subspace codes, by considering
messages as subspaces of some fixed vector space over a finite field. Te subspace codes have been extensively
investigated in the literature, see for instance [4], [6].

An important class of subspace codes are orbit codes which are constant dimension codes that arise as
an orbit of a subspace under the action of a subgroup of the general linear group. Orbit codes in which the
intersection of any two distinct codewords is zero are called partial spreads. Orbit codes were first intro-
duced in the area of network coding in [12], where the authors showed how the Reed-Solomon type codes
introduced in [10] as well as the spread codes described in [11], can be seen as special instances of orbit codes.
Orbit codes can be classified according to the groups used to construct the orbits. the authors in [8] and
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[5] recently considered Abelian non-cyclic orbit codes; that is, orbit codes which are generated by Abelian
non-cyclic subgroups of the general linear group. Indeed, they presented a construction of an Abelian non-
cyclic orbit code of length n over Fq with cardinality q(q − 1) and the minimum subspace distance 2k, see
[8]. Furthermore, they put forward the following open question as one of the main future research directions:

Question. [8] Find constructions of good (Abelian) non-cyclic orbit codes in the sense that increase the
cardinality without decreasing the distance.

In this paper we answer the above question by giving new constructions of non-cyclic orbit codes with
optimum parameters. Meanwhile, we introduce the notion of tensor product operation of subspace codes
and prove the main properties (including the length, dimension, minimum distance etc.) of such product
codes. Among other things, we prove that the tensor product of two subspace codes (resp. orbit codes), one
of them being a partial spread, is always a partial spread. This gives a new way to construct new larger-size
orbit codes from the known ones. We then apply this result to construct non-cyclic orbit codes which are
partial spreads and they have large sizes.

We recall that a subspace code C of length n is simply a collection of subspaces in Fn
q . The code is called

a constant dimension code if all subspaces have the same dimension.

Definition 1.1. The subspace code C is called a partial spread of Fn
q , if U ∩W = 0 for all U,W ∈ C such

that U 6= W.

The minimum distance of a subspace code C is defined as

d(C) = min{d(U,W) : U,W ∈ C,U 6= W},

where

d(U,W) = dim(U) + dim(W)− 2dim(U ∩W)

Consequently, if C is a constant dimension code of dimension k, then

d(C) ≤ min{2k, 2(n− k)}.

A constant dimension code of length n, dimension k and cardinality M will be called an [n,M ; k]-code,
and it is a [n,M, d; k]-code if its minimum distance is d.

Definition 1.2. [12] Let G be a subgroup of GLn(q) and U ∈ Gq(k, n). The orbit of the action of G on U,
which we denoted by C, is called the orbit code generated by G. Indeed, C = {AU : A ∈ G}. Furthermore,
the code C is called a cyclic (resp. Abelian, non-Abelian) orbit code, if the group G is cyclic (resp. Abelian,
non-Abelian).

Definition 1.3. For C being an orbit code generated by G and U ∈ C, the stabilizer StabG(U) of U in G
is defined as

StabG(U) = {A ∈ G : AU = U}.

Lemma 1.4. [9] Let U ∈ Gq(k, n) and G ≤ GLn(q) and C = G.U. Then

1. the code C has the size |C| = |G|
|StabG(U)| .

2. the minimum distance of the code C may obtain by the following formula:

d(C) = min{dim(U, A.U) : A ∈ G is a coset representative of StabG(U) in G}.
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2 Main Results

In this section we introduce the notion of tensor product of subspace codes and prove some of the main
properties of tensor products of subspace codes. We then apply this to introduce some new ways to construct
new orbit codes from the known orbit codes. Moreover, the proposed orbit codes obtain in this way are
shown to be partial spreads.

Definition 2.1. [2, Definition 4.2] Let C1 ⊆ Gq(k1, n1) and C2 ⊆ Gq(k2, n2) be two subspace codes. The
tensor product of C1 and C2, denoted by C1 ⊗ C2, is defined as

C1 ⊗ C2 = {(U⊗W) : U ∈ C1,W ∈ C2}.

Theorem 2.2. [2, Theorem 4.3] For i = 1, 2, let Ci ⊆ Gq(ki, ni) is a [ni,Mi, di; ki]-subspace code. Then
C = C1 ⊗ C2 is also a subspace code with parameters [n1n2,M1M2, d; k1k2] where d = 2(k1k2 − dmax

1 dmax
2 ) in

which dmax
i = max{dim(U ∩W) : U,W ∈ Ci}.

In [7], the authors introduced the sum operation of subspace codes as

C1 + C2 := {U + W : U ∈ C1,W ∈ C2}.

However, it is rarely that the sum of two partial spreads be a partial spread again. The following example
illustrates this fact.

Example 2.3. Let C1 and C2 be two subspace codes which are partial spreads. Moreover, let U1 ∈ C1 and
W1,W2 ∈ C2. We then have

U1 + W1 ∈ C1 + C2,

and
U1 + W2 ∈ C1 + C2,

with U1 ⊆ (U1 + W1) ∩ (U1 + W2). So the two codewords have non-trivial intersection. This in turn
implies that C1 + C2 is not a partial spread.

In contrast to the sum operation of codes introduced in [7], we show that the tensor product operation
of two subspace codes, with one of them being a partial spread, is always a partial spread.

Theorem 2.4. [2, Theorem 4.5] For i = 1, 2, let Ci ∈ G(ki, ni) be two subspace codes one of them being a
partial spread. Then C1 ⊗ C2 is also a partial spread with size |C1| × |C2|.

Given a partial spread orbit code of dimension k, the tensor operation allow us to construct further partial
spreads of dimension k with larger sizes. It is deduced from the Aschbacher theorem that if V = U⊗· · ·⊗U
is a tensor product decomposition of a n-dimensional vector space V into m copies of a k-dimensional
subspace U, then the stabilizer of V is of the form GLk(q) oSm where n = km. In the sequel we give another
method to construct large orbit codes from the smaller known ones. The special feature of this method is
that it increases the code size without changing the minimum distance and hence provides a new approach
to construct large partial spreads. This answers the question posed in [8].

Theorem 2.5. [3, Theorem 4.8] Let V = U⊗· · ·⊗U be a tensor decomposition into m spaces U of dimension
k, where km = n, k ≥ m and let W1 ≤ U be of dimension k1 ≤ k such that the orbit code C = G.W1 has
parameters [k, r, d; k1] for some subgroup G ≤ GLk(q). Assume furthermore that v′is, with 2 ≤ i ≤ m, are
pairwise linearly independent vectors of U such that the corresponding orbit codes Ci = GLk(q).〈vi〉 have
parameters [k, (qk − 1)/(q − 1), 2; 1] for 2 ≤ i ≤ m. Then the action of the wreathed tensor product group
G ◦ (GLk(q) o Sm−1) on the tensor subspace W1 ⊗ 〈v2〉 ⊗ · · · ⊗ 〈vm〉 induces a non-Abelian orbit code D with

parameters [n, r( q
k−1
q−1 )m−1, d; k1].

Note that for any composite number n = km, the code of length n constructed via the above methods is
larger than the construction obtained in [8] which was of length n and of size q(q − 1).
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