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 ABSTRACT 

This paper proposes a fast 3-D facial shape recovery algorithm from a single image with general, 

Unknown lighting. To derive the algorithm, we formulate a non-linear least-square problem with two-

parameter vectors which are related to personal identity and light conditions. We then Combine the 

spherical harmonics for the surface normal of a human face with tensor algebra and show that in a certain 

condition, the dimensionality of the least-square problem can be further reduced to one-tenth of the regular 

subspace-based model by using tensor decomposition (N-mode SVD), which speeds up the computations. 

To enhance the shape recovery performance, we have incorporated prior information in updating the 

parameters. The proposed algorithm takes less than 0.4 s to reconstruct a face in the experiment and shows 

a significant performance improvement over other reported scheme. 

 

KEYWORDS: Facial shape recovery, Image processing, Statistical face model, Tensorial 

methods. 
 

1 INTRODUCTION 

Tensors (i.e., multiway arrays) provide an effective and faithful representation of structural 

properties of the data, especially for multidimensional data or data ensembles affected by multiple 

factors [1]. For instance, a video sequence can be represented by a third-order tensor with the 

dimensionality of (height×width× time); an image ensemble measured under multiple conditions 

can be represented by a higher-order tensor with the dimensionality of 

(pixel×person×pose×illumination) [3]. 

The goal of this paper is to provide a practical method, which can be applied to a single 

picture taken by an ordinary camera and which achieves good accuracy in the recovery of facial 

shape in a short time. When taking a picture using an ordinary camera in a general environment, 

control of the pose of a face is easy but control of the light conditions is not. Hence, we assume 

that the face in an input image is in frontal pose under general light conditions, which are unknown 

[4]. We then formulate a non-linear least-square problem of two-parameter vectors by the use of 

the spherical harmonics for the surface normal of a human face to handle the general light 

conditions, based on the Lambertian assumption. In order to speed up the calculation, we introduce 

tensor algebra and show how to reduce the dimensionality of the least-square problem [5]. 
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In this paper, after introducing the tensor completion problem, we state the tensorial face 

shape recovery method for image recovery and implement it on some examples. 
 

2 PRELIMINARIES 

Here, we use tensor algebra and explanation for standard operations such as inner product, F-norm, and 

singular value decomposition (SVD). Therefore, we briefly state some preliminaries for tensor calculus and 

tensor completion. For more details and information, please read [1, 2]. 

Definition 1.2. A tensor is a multidimensional array  
1 ,... mi i

A a , from entries
1 ,... mi i

a F , where 

1
1 ,...

m
i i n   and F is a field, the dimensionality of it is described as its order.  We denote the set of all n-

dimensional tensors of order m by 𝑻𝒎,𝒏. For tensor A, if all of 
1 ,... mi i

a F are invariant under any permutation 

of indices, then A is called a symmetric tensor. We show the set of all real n-dimensional symmetric tensors 

of order m with  𝑺𝒎,𝒏.  

Definition 2.2. A fiber of a tensor is defined as a vector obtained by fixing all indices but one. Fibers 

are generalizations of matrix columns and rows. Mode-n fibers are obtained by fixing all indices 

but n-th.  

 

Definition 3.2. Mode-n matricization (unfolding) of tensor X, denoted as  n
X  , is obtained by 

arranging all mode-n fibers as columns of a matrix. Precise order in which fibers are stacked as 

columns is not important as long as it is consistent. Figure 1 show the fibers of 3-tensor. Folding is 

the inverse operation of matricization/unfolding. 

 

 
Figure 1. Fibers of a tensor from rank 3. 

 

 

Definition 4.2.  Mode-n product of tensor X and matrix A is denoted by nX A . It is defined as  

   n n n
Y X A Y AX           (1) 

 

Mode-n product is commutative (when applied in distinct modes), i.e. 

   m nn mX A B X B A          (2) 

for m n .  

 

Definition 5.2. The inner product of two tensors X and Y of same size is defined as < X, Y >. Unless 

otherwise specified, we treat it as dot product defined as follows [3]: 

(3) 
< 𝑋, 𝑌 >=  𝑥𝑖1… 𝑖𝑚𝑦𝑖1… 𝑖𝑚

𝑛
𝑖1 .….𝑖𝑚=1                                                                     
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Definition 6.2. The F-norm of a tensor X )Generalized from matrix Frobenius norm  ( , is defined as [2]: 

,
F

X X X    (4) 

Definition 7.2. Suppose 𝑿 is a symmetric tensor from 𝑺𝒎,𝒏, r is a positive integer number, and 𝒖(𝒌) ∈
ℝ𝒏for 𝒌 ∈ [𝒓] are exist such that 

𝑿 =  (𝒖(𝒌))𝒎𝒓
𝒌=𝟏                   (5) 

Therefore, 𝑿 is called a completely positive tensor (CP), and (5) is CP-decomposition of 𝑿. In the CP-

decomposition (5), the minimum of r is called CP-rank of 𝑿. 

Definition 8.2. Singular Value Decomposition (SVD): In the general, The SVD is a factorization of a 

real or complex matrix that generalizes the eigen decomposition, which only exists for square normal 

matrices to any 𝒎×𝒏 matrix via an extension or the polar decomposition. In the tensor calculus, similar 

concepts proposed as follows: 

 
Where 𝑈𝑖  (for 𝑖 = 1,2) are orthonormal and can be extended to orthonormal basis, SR is a 

diagonal and positive definite of dimension R, with R as the number of non-zero eigenvalues 

of tensor 𝑋∗𝑋 and 𝑉 = [𝑉1, 𝑉2] is a unitary tensor of rank (𝑋) [1]. The representation of SVD 

shown in figure 2. 

 

 

Figure 2. The representation of SVD. 

Definition 9.2. Given a low-rank (either CP rank or other ranks) tensor T with missing entries, the goal 

of completing it can be formulated as the following optimization problem: 

         MinimizeX rank∗(X) 

subject to XΩ = TΩ 
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where rank∗(X) denotes a specific type of tensor rank based on the rank assumption of given tensor 

T, X represents the completed low rank tensor of T and Ω is an index set of observations. For this 

paper, the specific rank is completed positive (CP) rank [3]. 

 
Definition 10.2. The generalized of SVD or N-mode SVD (also named Higher-order SVD1) is defined as 

[3]: 

𝐷 = 𝐺 ×1 𝑈1 ×2 𝑈2 ×3 ⋯×𝑁 𝑈𝑁 
 

Where G is the core tensor and Uk is derived from SVD of  

𝐷(𝑘) = 𝑈𝑘∑𝑉𝑘
𝑇

𝑘

 

and G is defined as  

𝐺 = 𝐷 ×1 𝑈1
𝑇 ×2 𝑈2

𝑇 ×3 ⋯×𝑁 𝑈𝑁
𝑇 

 

HoSVD of 3-tensor shown in figure 3. 

 

Figure 3. HoSVD decomposition of 3-tensor. 

 

3 ALGORITHM  IMPLEMENTATION 

An image of a human face depends on various parameters, such as its 3D structure, head 

pose, light and exposure, surface reflection property, etc. This picture can be approximated as 

linear equation i.e., 

 

𝐼(𝑥, 𝑦) ≈ 𝑓(𝑥, 𝑦)𝑇𝑠 
 

Where 𝐼(𝑥, 𝑦) is the brightness of the pixel (𝑥, 𝑦),𝑠 ∈ ℝ𝑛𝑙  is the light condition vector and 

𝑓(𝑥, 𝑦) is a 𝑛𝑙-dimensional vector which is related to the surface characteristics and is either the 

scaled normal (𝑛𝑙 = 3) or the spherical harmonic representation (𝑛𝑙 = 4 or 9) at the pixel (𝑥, 𝑦). 
Figure 4 show the main process of the algorithm. 

 
Figure 4. The schematic view of algorithm. 

                                                 
1 HoSVD 



 

33 

Figure 5 shows a 3D face reconstruction. The coordinate plane part of the face is cut in 3D 

and represented by the tensor representation methods (with various tensor analysis). 

 

Figure 5. The samples of 3D face reconstructions by tensorial representation methods. 

 

The overall procedure for the proposed method has two steps: modeling and Reconstruction.  In 

the first step, we apply the affine transform to the harmonic images of each training sample, so 

that the centers of the eyes and mouth of all samples are located at the same positions. After that, 

calculate the mean tensor of the flat face (F) and apply N-mode SVD to it (Q). Now, the train 

image is stored by the HoSVD version of the mean tensor. In the second step, apply the affine 

transform to a test image, the resultant image is denoted as I’. Now, calculate in the reduced 

dimensional space and denote its tensorized version as L.  After that, if the norm distance between 

Q and L is minimized, the best result is obtained, otherwise, search the best Q for this purpose. In 

fact, the main problem is minimizing the problem of norm distance between L, Q.  

For our experiments, we run MATLAB R2020a on the laptop system (Asus A53sv) with 

configuration as shown in table 1. 

 
Table 1. The configuration of experiment system. 

CPU Ci7-2670QM (6MB Smart Cache) 

No of Cores 4 Physical/8 Thread 

Frequency 2.2-3.1 GHz 

RAM 16 GB (DDR3/1600 MHz) 

H.D.D. 750 GB (7200 rpm) 

GPU GeForce Gt 630m (2GB/96 Cuda Cores) 

Tflops 367 G 

O.S. Win 10 Pro 64 bit 

 

After importing the original picture and running the algorithm, the results in figure 6 are obtained. 
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Figure 6. The implementation of Facial Shape Recovery by Tensorial 
methods. (a): original photo, (b): RR-tensor representation output 

and (c): SIFR-tensor representation output. 

 

For another example, we apply the algorithm on the other images by the different poses of 

head, background, and exposure. The result is shown in figure 7. 

 

 
(a) 

  
(c) (b) 

Figure 7. The implementation of Facial Shape Recovery by Tensorial 
methods. (a): original photo, (b): RR-tensor representation output and (c): 

SIFR-tensor representation output. 
 

4 CONCLUSION  

Practical experiments show that the proposed algorithm takes only a few hundredths to a few 

tenths of a second to reconstruct a face, and this improves performance dramatically. Studies show 

that the efficiency, accuracy, and speed of this method in recovering the shape of the face in 

different exposure conditions is very high. The image space is created by selecting a suitable 
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nonlinear function and approximating a set of multiplicative transformed samples. The final image 

is the result of minimizing the sum of all errors at multiple vertices. We use various tensor analyses 

such as CP and Tucker to reduce unwanted changes and improve efficiency.  

The experimental results show that the proposed algorithm has high reconstruction accuracy 

even in the presence of shadows in different exposure conditions and the processing speed is high 

enough for instantaneous (real-time) applications. Rapid reconstruction of face shapes from 

different angles and with different expressions can be a future research field. 
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