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 ABSTRACT 

The energy of a graph 𝐺, ℰ(𝐺), is the sum of absolute values of the eigenvalues of its adjacency 

matrix. This concept was extended by Nikiforov to arbitrary complex matrices. The Nikiforov energy of a 

digraph 𝐷 is defined as, 𝒩(𝐷) = ∑𝑛
𝑖=1 𝜎𝑖, where 𝜎1 ≥ ⋯ ≥ 𝜎𝑛 are the singular values of the adjacency 

matrix of 𝐷. In this paper, we  show that for any digraph 𝐷, 𝒩(𝐷) ≥ rank(𝐷) and the equality holds if and 

only if 𝐷 is a disjoint union of directed cycles and directed paths. We prove that for a directed cycle  𝐶𝑛  

𝒩(𝐶𝑛)≤ 𝑛. Finally, we characterize all digraphs with only one singular value. 
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1 INTRODUCTION 

   Let 𝐺 = (𝑉, 𝐸) be a simple graph with vertex set 𝑉(𝐺) = {𝑣1, … , 𝑣𝑛} and edge set 𝐸(𝐺). By order and 

size of 𝐺, we mean the number of vertices and the number of edges of 𝐺, respectively. The adjacency matrix 

of 𝐺, 𝐴(𝐺) = [𝑎𝑖𝑗], is an 𝑛 × 𝑛 matrix, where 𝑎𝑖𝑗 = 1 if 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺), and 𝑎𝑖𝑗 = 0, otherwise. Thus 𝐴(𝐺) 

is a symmetric matrix and all eigenvalues of 𝐴(𝐺) are real. The energy of a graph 𝐺, ℰ(𝐺), is defined as 

the sum of absolute values of eigenvalues of 𝐴(𝐺), see [5]. For a graph 𝐺, let r𝑎𝑛𝑘(𝐺) denote the rank of 

the adjacency matrix of 𝐺.   

 
    For any matrix 𝐴, 𝐴∗ is the conjugate transpose of 𝐴.  The singular values of a matrix 𝐴, 𝜎1 ≥ ⋯ ≥ 𝜎𝑛, 

are defined as the square roots of the eigenvalues of 𝐴∗𝐴. One can see that,  

 

 𝑡𝑟(𝐴∗𝐴) = ∑𝑛
𝑖=1 𝜎𝑖

2 = ∑1≤𝑖,𝑗≤𝑛 |𝑎𝑖𝑗|
2. 

 

    Let 𝐷 = (𝑉, 𝒜) be a digraph without loops and multiple edges. Assume that the set of vertices of 𝐷 is 

given by {1, … , 𝑛}. The adjacency matrix of 𝐷 is defined as an 𝑛 × 𝑛 matrix 𝐴 whose element 𝑎𝑖𝑗 is  

 

 𝑎𝑖𝑗 = {
1 if (i, j)   is   an  arc    in  𝒜  
0 otherwise.

 

 

    Note that the singular values of 𝐷 are the singular values of 𝐴. For any vertex 𝑣 ∈ 𝑉(𝐷), let 𝑁+(𝑣) =
{𝑤: (𝑣, 𝑤) ∈ 𝒜} and 𝑑+(𝑣) = |𝑁+(𝑣)| (the outdegree of 𝑣). Similarly, for any vertex 𝑣 ∈ 𝑉(𝐷), let 

𝑁−(𝑣) = {𝑤: (𝑤, 𝑣) ∈ 𝒜} and 𝑑−(𝑣) = |𝑁−(𝑣)| (the indegree of 𝑣).  Let 𝐶𝑛
 ⃖    and 𝐶𝑛

      denote the orientation 

of 𝐶𝑛 whose directions are clockwise and counterclockwise, respectively. An acyclic digraph is a digraph 

having no directed cycle. Let 𝐴 be the adjacency matrix of 𝐷, then 𝐴 is nilpotent if and only if the directed 

graph 𝐷 is acyclic. 
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    Let 𝐴 ∈ 𝑀𝑚×𝑛(ℂ). The trace norm of 𝐴, 𝒩(𝐴) is defined as the sum of singular values of 𝐴. The concept 

of energy has been extended to digraphs as the trace norm of a digraph 𝐷, denoted by 𝒩(𝐷), is the sum of 

singular values of 𝐷, [4]. Let 𝐷 be a digraph of order 𝑛, size 𝑚, and with adjacency matrix 𝐴. Let 𝜎1 ≥
⋯ ≥ 𝜎𝑛, be the singular values of 𝐴 . Since 𝑡𝑟(𝐴∗𝐴) = ∑𝑣∈𝑉(𝐺) 𝑑−(𝑣) = 𝑚, we have ∑𝑛

𝑖=1 𝜎𝑖
2 = 𝑚. This 

implies that 𝜎𝑛 ≤ √
𝑚

𝑛
≤ 𝜎1.  

 

   The singular values of a directed cycle of order 𝑛, 𝐶𝑛
 ⃖   , are 𝜎1 = ⋯ = 𝜎𝑛 = 1 and so 𝒩(𝐶𝑛

 ⃖   ) = 𝑛, see [2, 

Example 2.3.]. The singular values of the directed path of order 𝑛, 𝑃𝑛
 ⃖  , are 𝜎1 = ⋯ = 𝜎𝑛−1 = 1 and 𝜎𝑛 = 0. 

Hence 𝒩(𝑃𝑛
 ⃖  ) = 𝑛 − 1, see [1, Example 2.1.] 

 

 

Lemma 1   [3, p. 238] If 𝐴 ∈ 𝑀𝑛(ℂ) is Hermitian, then 𝜆𝑚𝑎𝑥(𝐴) ≥ 𝑎𝑖𝑖 ≥ 𝜆𝑚𝑖𝑛(𝐴), for all 𝑖 = 1, … , 𝑛.  

 
 

 

2 MAIN RESULTS 

   In this section, we study the relation between rank and Nikiforov energy of a digraph. Furthermore, we 

investigate the Nikiforov energy of directed cycles. 

 

Theorem 1.  Let 𝐷 be a directed graph of order 𝑛. Then 𝒩(𝐷) ≥ 𝑟𝑎𝑛𝑘(𝐷) and the equality holds if and 

only if 𝐷 is a disjoint union of directed cycles and directed paths.  

 

Proof. Let 𝐴 be the adjacency matrix of 𝐷. Since 𝐴 is real, rank(𝐴𝑡𝐴) = rank(𝐴). Let rank(𝐴) = 𝑟 and 

assume that 𝜎1 ≥ ⋯ ≥ 𝜎𝑟 are all non-zero singular values of 𝐷. If 𝑓(𝑥) = ∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑛−𝑖 is the characteristic 

polynomial of 𝐴𝑡𝐴, then 𝑎𝑖 ∈ ℤ, for 𝑖 = 0, … , 𝑛 and 𝑎𝑟 = (−1)𝑟𝜎1
2 ⋯ 𝜎𝑟

2 ≠ 0. Thus 𝜎1
2 ⋯ 𝜎𝑟

2 ≥ 1. Then 

arithmetic-geometric inequality implies that  

 

 
𝜎1+⋯+𝜎𝑟

𝑟
≥ √𝜎1 ⋯ 𝜎𝑟

𝑟 = √𝜎1
2 ⋯ 𝜎𝑟

22𝑟
≥ 1. (1) 

 

   Thus 𝒩(𝐷) ≥ rank(𝐷). In order to prove the last assertion, first assume that 𝐶𝑛
 ⃖    is a directed cycle of 

order 𝑛. Since the adjacency matrix of 𝐶𝑛
 ⃖   , is non-singular, r𝑎𝑛𝑘(𝐶𝑛

 ⃖   ) = 𝑛. Furthermore 𝒩(𝐶𝑛
 ⃖   ) = 𝑛. Next, 

assume that 𝑃𝑛
 ⃖   is a directed path of order 𝑛. Then r𝑎𝑛𝑘(𝑃𝑛

 ⃖  ) = 𝑛 − 1. In particular, by Theorem 3, 𝒩(𝑃𝑛
 ⃖  ) =

𝑛 − 1. Now, let 𝐷 be a disjoint union of 𝑐 directed cycles and 𝑝 directed paths, we find that 𝒩(𝐷) =
r𝑎𝑛𝑘(𝐷) = 𝑛 − 𝑝.  

 

   Conversely, suppose that 𝒩(𝐷) = rank(𝐷), so the equality holds in (1), that is 𝜎1 = ⋯ = 𝜎𝑟 = 1. By 

Lemma 1, 𝜎1
2 ≥ (𝐴𝑡𝐴)𝑖𝑖. Since (𝐴𝑡𝐴)𝑖𝑖 = 𝑑−(𝑣𝑖), we find that for each 𝑖, 𝑑−(𝑣𝑖) ≤ 1. By a similar method, 

we obtain 𝑑+(𝑣𝑖) ≤ 1. This implies that each component of 𝐷 is either a directed cycle or a directed path.  

 

Theorem 2.  Let 𝑛 ≥ 3 be a positive integer. Then for any orientation of   𝐶𝑛,  𝒩(𝐶𝑛) < 𝑛, except     

for clockwise and counterclockwise. 

 

Proof. Consider 𝐶𝑛 with an arbitrary orientation, which is not directed cycles 𝐶𝑛
 ⃖    and 𝐶𝑛

     . Since this directed 

graph is acyclic, then 𝐴 is nilpotent, where 𝐴 is the adjacency matrix of the directed 𝐶𝑛. Now, if 𝜎1 ≥ ⋯ ≥
𝜎𝑛 are singular values of the directed 𝐶𝑛, then 𝜎𝑛 = 0. Thus the following holds:  
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 𝒩(𝐶𝑛) = ∑𝑛−1
𝑖=1 𝜎𝑖 ≤ (𝑛 − 1)

1

2(∑𝑛−1
𝑖=1 𝜎𝑖

2)
1

2 = √𝑛(𝑛 − 1) < 𝑛, 
the proof is complete. 

 

 

Theorem 3. Let 𝐷 be a digraph with only one singular value. Then 𝐷 is a union of isolated vertices  

or a disjoint union of directed cycles.  
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