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ABSTRACT

The energy of a graph G, £(G), is the sum of absolute values of the eigenvalues of its adjacency
matrix. This concept was extended by Nikiforov to arbitrary complex matrices. The Nikiforov energy of a
digraph D is defined as, V(D) = Y-, a;, where g, > --- = g, are the singular values of the adjacency
matrix of D. In this paper, we show that for any digraph D, V(D) = rank(D) and the equality holds if and
only if D is a disjoint union of directed cycles and directed paths. We prove that for a directed cycle C,
N (C,)< n. Finally, we characterize all digraphs with only one singular value.
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1 INTRODUCTION

Let G = (V,E) be a simple graph with vertex set V(G) = {v4, ..., v, } and edge set E(G). By order and
size of G, we mean the number of vertices and the number of edges of G, respectively. The adjacency matrix
of G, A(G) = [ay;], is an n X n matrix, where a;; = 1 if v;v; € E(G), and a;; = 0, otherwise. Thus A(G)
is a symmetric matrix and all eigenvalues of A(G) are real. The energy of a graph G, £(G), is defined as
the sum of absolute values of eigenvalues of A(G), see [5]. For a graph G, let rank(G) denote the rank of
the adjacency matrix of G.

For any matrix A, A is the conjugate transpose of A. The singular values of a matrix A, o; = - = gy,
are defined as the square roots of the eigenvalues of A*A. One can see that,

2
tr(A*A) = YLy 0f = Yi<ijen lagl?.

Let D = (V,A) be a digraph without loops and multiple edges. Assume that the set of vertices of D is
given by {1, ...,n}. The adjacency matrix of D is defined as an n x n matrix A whose element a;; is

N ={1 if (i,j) is an arc in A
Y 10 otherwise.

Note that the singular values of D are the singular values of A. For any vertex v € V(D), let N*(v) =
{w: (v,w) € A} and d*(v) = [Nt (v)| (the outdegree of v). Similarly, for any vertex v € V(D), let
N~(v) = {w: (w,v) € A}andd~(v) = |[N~(v)| (the indegree of v). Let C,, and C, denote the orientation
of C,, whose directions are clockwise and counterclockwise, respectively. An acyclic digraph is a digraph
having no directed cycle. Let A be the adjacency matrix of D, then A is nilpotent if and only if the directed
graph D is acyclic.
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Let A € M, (C). The trace norm of A, V'(A) is defined as the sum of singular values of A. The concept
of energy has been extended to digraphs as the trace norm of a digraph D, denoted by V'(D), is the sum of
singular values of D, [4]. Let D be a digraph of order n, size m, and with adjacency matrix A. Let o; >
*+ = 0y, be the singular values of A . Since tr(A*A) = Yyev (g d~ (v) = m, we have Y1, of = m. This

implies that g,, < \/% < o;.

The singular values of a directed cycle of order n, (C_n areg; = =0, = 1andso N(‘C_n) =n, see [2,
Example 2.3.]. The singular values of the directed path of order n, E areg; =+ =0,_4=1andg, = 0.

Hence V'(B,) = n — 1, see [1, Example 2.1.]

Lemmal [3,p.238]If A € M,(C) is Hermitian, then 1,4, (4) = a;; = Apin(4), foralli =1, ...,n.

2 MAIN RESULTS

In this section, we study the relation between rank and Nikiforov energy of a digraph. Furthermore, we
investigate the Nikiforov energy of directed cycles.

Theorem 1. Let D be a directed graph of order n. Then V(D) > rank(D) and the equality holds if and
only if D is a disjoint union of directed cycles and directed paths.

Proof. Let A be the adjacency matrix of D. Since A is real, rank(A*A) = rank(4). Let rank(4) = r and
assume that o; > --- > a,. are all non-zero singular values of D. If f(x) = ¥, a;x™ " is the characteristic
polynomial of A%A, then a; € Z, for i = 0, ...,n and a, = (—1)"6? - 02 # 0. Thus 7 --- 2 = 1. Then
arithmetic-geometric inequality implies that

DL ey = Yol R 2 1 e

Thus V(D) = rank(D). In order to prove the last assertion, first assume that C,, is a directed cycle of
order n. Since the adjacency matrix of CTQ is non-singular, rank(Cj) = n. Furthermore N(Cj) = n. Next,
assume that P, is a directed path of order n. Then rank(P,) = n — 1. In particular, by Theorem 3, N (B,) =
n — 1. Now, let D be a disjoint union of ¢ directed cycles and p directed paths, we find that N (D) =
rank(D) =n —p.

Conversely, suppose that V(D) = rank(D), so the equality holds in (1), that is o; = :- = g,, = 1. By
Lemmal, o > (AtA);;. Since (AtA);; = d~(v;), we find that for each i, d~ (v;) < 1. By asimilar method,
we obtain d* (v;) < 1. This implies that each component of D is either a directed cycle or a directed path.

Theorem 2. Letn = 3 be a positive integer. Then for any orientation of C,,, N (C,,) < n, except
for clockwise and counterclockwise.

Proof. Consider C,, with an arbitrary orientation, which is not directed cycles ‘C_n and C_,{ Since this directed
graph is acyclic, then A is nilpotent, where A is the adjacency matrix of the directed C,,. Now, if ¢y = -+ =
o, are singular values of the directed C,,, then g,, = 0. Thus the following holds:
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N(C) = XI5 0 < (n— DH(EIT o) = Jan—D <,

the proof is complete.

Theorem 3. Let D be a digraph with only one singular value. Then D is a union of isolated vertices
or a disjoint union of directed cycles.
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