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Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular
code. A perfect z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts
Py,---, P, such that for all 4,j € {1,---,z}, each vertex of P; is adjacent to p;;, vertices of P;. The
matrix P = (pij)ijef1,. 2}, is called parameter matrix. In this article, we classify all the realizable
parameter matrices of perfect 4-colorings of some the generalized peterson graph.
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1 Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics, and
coding theory (completely regular codes). There is another phrase for this concept in the writing as “eq-
uitable partition” (see [8]). In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in
Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson
graphs, including J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3), J(8,4), and J(v,3) (v odd) ([2, 3, 7]).

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube @, for
n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-
colorings of the n-dimensional cube with a given parameter matrix ([4, 5, 6]). In this article, we classify the
parameter matrices of all perefect 4-colorings of some generalized peterson graph.

Some generalized peterson graph including GP(7,1), GP(8,1), GP(8,2) and GP(8, 3) given as follow:
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Figure 1: Some generalized peterson graph

Definition 1.1. The generalized peterson graph GP(n, k) has vertices,respectively, edges given by

V(GP(n,k)) ={a;,bi : 0<i<n—1},
E(GP(TL, k)) == {aiaiﬂ,aibi,bibi_,_k :0 S ) S n — 1},

Where the subscripts are expressed as integers modulo n (> 5) , and k (> 1) is the skip.

Definition 1.2. For a graph G and an integer z, a mapping 7' : V(G) — {1,2,--- ,z} is called a perfect
z-coloring with matrix P = (pij); jeq1,.. z}, if it is surjective,and for all i, j,for every vertex of color i, the
number of its neighbours of color j is equal to p;; . The matrix P is called the parameter matrix of a perfect
coloring. In the case z = 4, we call the first color white that show by W, the second color black that show
by B and the third color red that show by R and the color foure green that show by G.

2 Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect 4-coloring
of some generalized peterson graph with a given parameter matrix
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The simplest necessary condition for the existence of perfect 4-colorings of some generalized peterson with
a b c d

the matrix f.z f g h is

i 7 k1
m mn o p
at+btct+d=e+f+g+h=i+j+k+l=m+nt+o+p=4

Theorem 2.1. [8] If T is a perfect coloring of a graph G with z colors, then any eigenvalue of T' is an
eigenvalue of G.

a b c d
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(6) if b,g,h # 0, then
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(12) if c,g,1 # 0, then
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Remark 2.3. The distinct eigenvalues of the graph GP(7,1) are the numbers 3,1, The distinct eigenvalues
of the graph GP(8,1) are the numbers 3,1,-1, The distinct eigenvalues of the graph GP(8,2) are the numbers
1,3 and the distinct eigenvalues of the graph GP(8,3) are the numbers 3,1,-1.
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By using Theorem 2.1, we only have the following matrices, which we have shown with Py, -, Ps1.
0 0 0 3] 0 0 0 3] 0 0 0 3] 0 0 0 3] 0 0
00 1 2 00 1 2 00 2 1 00 3 0 0 1
Pr=19 1 0 2 =101 0 2 Ps=10 2 1 0 Pa=19 111 B=10 o
111 0 111 0 2 1 0 0 10 1 1) 11
0 0 0 3] 0 0 0 3] 0 0 0 3] 0 0 1 2] 0 0
010 2 01 1 1 01 20 010 2 0 1
=10 0 2 1 Pr=101 2 0 B=101 0 2 Po=11 ¢ 9 ol To=11
111 0 2 1 0 0 10 2 0 110 1) 2 1
0 0 1 2] 0 0 1 2] 0 0 1 2] 0 0 3 0] 0 0
01 20 020 1 0210 000 3 0 0
Pu=1y 9 g ol P2= |1 g2 0l" D3=1]1 1 1 0" Pu=|1 0 0 2" 5= |1 1
2 0 0 1 2 1 0 0 2 0 0 1) 01 1 1 0 1
0 0 3 0] 0 0 3 0] 0 1 0 2] 0 1 0 2] 0 1
00 1 2 010 2 100 2 1 200 10
Pis=19 1 ¢ ol P7= 11 00 2" 8= {0 02 1| P9= |0 0 0 3|° = |1 1
01 0 2 01 1 1 111 0 10 2 0 11
0 1 1 1] 0 1 2 0] 0 3 0 0] 0 3 0 0] 0 3
101 1 1 200 100 2 100 2 10
Pu=1y 11 ol P27 |1 00 20" =001 2" ™ {00 2 1| = |01
11 0 1 0 0 1 2 01 2 0 01 1 1 0 0
1 0 0 2] 10 0 2] 10 1 1] 10 1 1] 12
00 2 1 010 2 011 1 02 0 1 10
Ps=1g 9 10l 7= 000 2 1] =1 110" = |1 0 2 0" D=1 ¢
110 1 111 0 110 1 110 1 0 1
12 0 0]
100 2
Pa=1g 0 1 2
01 2 0

3 Perfect 4-colorings of some generalized peterson graph

The parameter matrices of GP(7,1), GP(8,1), GP(8,2) and GP(8,3) graphs are enumerated in the next
teorems.

Theorem 3.1. The graph GP(7,1) has no perfect 4-colorings.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(7,1) may be one of the
matrices P, --- , P3;. By using Theorem 2.2, only the matrices P, Pig, P2 can be a parameter matrices,
because the number of white, black, red and green are an integer. For matrix P, each vertex with color
green has one adjacent vertices with color green. Now have the following possibilities:

(1) T(a1) = B, T(az2) = T(a3) = T(as) = T(as) = T(ag) = R, T(ag) = T(a7) = T(ag) = T(a13) = G,
T(a14) = W and then T'(a11) = G, T(a1p) = T(a12) = B, which is a contradiction with four row of
matrix P;j.

(2) T(al) = W, T(ag) = T(a14) = B, T(a4) = T((l5) = T(an) = T(a12) = T(alg) = R and T(a6) =
T(a7) = T(a10) = G then T(az) = T(ag) = T'(ag) = G,which is a contradiction with the four row of
matrix P;. Hence graph GP(7,1) has no perfect 4-colorings with matrix P;.

Similar to matrix P;, we can proof for matrices Pig and Pag as follows:
For matrix Pjg, each vertex with color white has three adjacent vertices with color red. Now have the
following possibilities:
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(3) T(a1) = T(az) = T(ag) = T(ar0) = G, T(as) = T(ag) =
T(a5) = T(CLH) = T(alg) W then ((114) R and ( )
three row of matrix Pig.

T(a12) = R, T(a3) = T(ag) = B and
= (7, which is a contradiction with the

(4) T(a1) = T(as) = T(ag) = T(a11) = T(a3) = W, T(az) = B, T(az) = T(as) = T(as) = T(a10) =
T(a12) = R then T'(a7) = T'(ag) = R and T'(a14) = B, which is a contradiction with the three row of
matrix Pjg. Hence graph GP(7,1) has no perfect 4-colorings with matrix Pjg.

For matrix Psg, each vertex with color white has two adjacent vertices with color green, and each vertex
with color green has zero adjacent vertices with color red. Now have the following possibilities:

(5) T(al) = T(ag) = T(alg) = T(a14) = B, T(a4) = T(a5) = T(CLG) = T(a7) = T(alg) = R, T(ag) =
T(a19) = T'(a11) = G then T'(ag) = R and T'(ag) = W, which is a contradiction with the one row of
matrix Pyg.

(6) T'(a1) = T(a2) = T(a3z) = T(ai0) = T(a11) = T(a1a) = R, T(as) = T(a7) = T(ag) = T(a12) = B,
T(as) = T(ag) = G then T'(ag) = G and T'(a13) = R, which is a contradiction with the four row of
matrix Pag. Hence graph GP(7,1) has no perfect 4-colorings with matrix Pyg.

O
Theorem 3.2. The graph GP(8,1) has a perfect 4-colorings only with the matrices Pio, Pag, P21 and Pss.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8,1) may be one of the
matrices Pl, s ,P31. USiIlg the Theorem 2.2, only the matrices P4, PlO, P12, P13, Plg, PQ(), P21, PQQ, P23,
P54, and Pog can be a parameter matrices, because the number of white, black, red and green are an integer.
For matrix Py, each vertex with color white has three adjacent vertices with color green and each vertex
with color red has one adjacent vertices with color green. Now have the following possibilities:

(1) T(a1) = W, T(as) = B,T(az) = T(as) = T(a11) = T(a12) = R, T(a2) = T(ar) = T(as) = T(ay) =
T(a10) = T'(a13) = G then T(a14) = B and T(a15) = W and T'(a16) = R, which is a contradiction
with one row of the matrix Pj.

(2) T(al) = T(CLQ) = T(aﬁ) = T(ag) = T(CLH) = T(CL14) = G,T(ag) == T(a5) = T(alz) = T(alg) = R,
T(a7) = T(a19) = W, T(asg) = B then T'(ag) = T(a15) = G and T(a16) = R, which is a contradiction
with three row of the matrix Py. Hence graph GP(8,1) has no perfect 4- colorings with the matrix
Py.

The proof of the matrices Pio, P13, P9, Pao, Pa3, Psy is similar to the proof of the matrix P,. Consider the
mapping 11, 1o, T3 and Ty as follows:

Ti(a1) = Ti(as) = T1(a10) = Ti(ar3) = W, Ti(az) = T1(as) = Ti(a15) = T1(a1s) = B
Tl(a7) = Tl(ag) = Tl(an) = Tl(alg) = R, Tl(GQ) = Tl(a5) = Tl(ag) = Tl((l14) = G

Ty(a1) = Ta(as) = Ta(a11) = Ta(a1s) = W, Ta(az) = Ta(as) = Ta(a12) = Ta(ais) = B,
Tg(a4) = Tg(ag) = Tg(alo) = TQ(CL14> = R, Tg(ag) = Tg(a7) = Tg(ag) = Tz(alg) = G

T3(a1) = T3(as) = T3(a11) = T3(a15) = W,  T3(az) = Ts(as) = T3(a12) = T3(a16) = B
T3(ag) = T3(a10) = T3(a13) = T3(a14) = R, T3(a3) = T3(as) = T3(a7) = T3(ag) = G.

)

Ty(a1) = Tu(as) = Ty(as) = Ta(as) = W, Ty(aro) = Tu(a11) = Tu(a14) = Tu(a1s) = B,
T4(a2) = T4(a3) = T4(a6) = T4(a7) = R, T4(a9) = T4(a,12) = T4(a13) = T4(a4) = G

It is clear that T, 15, T5 and Ty are perfect 4-coloring with the matrices Pig, Pag, P21 and Pag respectively.
O
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Theorem 3.3. The graph GP(8,2) has a perfect 4-colorings with only the matrices Pig and Pis.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8, 2) may be one of the
matrices P, - - -, P3;. By using Theorem 2.2, graph GP(8,2) can have perfect 4-colorings only with matrices
Py, P12, P13, P19, Poo and Py4, because the number of white, black, red and green are an integer. For matrix
P13, each vertex with color white has one adjacent vertices with color red and two adjacent vertices with
color green. Now have the following possibilities:

(1) T(a1) = T(as) = T(a10) = T(ar5) = W, T(az) = T(as) = T(ag) = T(an) = T(a12) = T(a13) =
G,T(a7) =T(ag) = R, T(a14) = T(a16) = B, then T'(a5) = W and T'(ag) = B, which is a contradiction
with one row of the matrix Pi3.

(2) T(al) = T(a7) = T(ag) = T(ag) = T(CL15) = B, T(ag) = T(a5) = T(a14) = W, T(a4) = T(aﬁ) =
T(a12) = G, T(a11) = T(a13) = R, then T'(az) = T'(a16) = R and T'(a19) = W, which is a contradiction

with one row of the matrix Pi3. Hence graph GP(8,2) has no perfect 4-colorings with the matrix P;3.

The proof of the matrices Pig, Pao, P»4 is similar to the proof of the matrix P;3. Consider the mapping T}
and Ty as follows:

Ti(ann) = Ti(a12) = Ti(a15) = Ti(ais) = W, Ti(a1) = Ti(az) = Ti(a5) = Ti(as) = B,
Tl(a3) = Tl(a4) = Tl(a7) = Tl(ag) = R, T1 (ag) = T1 (alo) = Tl(alg) = Tl(a14) = G

Ty(ar) = Tr(az) = Tr(as) = Ta(ar) = W, Ti(aio) = Ta(a12) = T(a14) = Ta(a16) = B,
Tg(ag) = Tg(an) = Tg(alg) = Tg(a15) = R, TQ(CLQ) = TQ(CL4) = TQ(CLG) = Tg(ag) = G

It is clear that T; and T5 are perfect 4-coloring with the matrices Pjg and Pjs respectively. O
Theorem 3.4. The graph GP(8,3) has a perfect 4-colorings only with the matrices Py, Py and Pag.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8,3) may be one of the
matrices Pp,---, P3;. By using Theorem 2.2, graph GP(8,3) can have perfect 4- colorings with matrices
Pl(), P11, P12, Plg, Plg, P20, P21, P22, P23, P24 and ng, because the number of White, black, red and green
are an integer. For matrix Pjg, each vertex with color white has one adjacent vertices with color red and
two adjacent vertices with color green. Now have the following possibilities:

(1) T(a1) = T(as) = T(ag) = T(ag) = B, T(az) = T(a3) = T(as)
T(a14) = T(alg) =G, T(an) = T(alg) = W, then T(a4) = T(CL15)
one row of the matrix Pyg.

(a10) = R, T(a7) = T(a12) =
W, which is a contradiction with

(2) T(al) = T(a5) = T(alﬁ) = R, T(CLQ) = T(an) = W, T(ag) = T(alo) = T(alg) = T(alg) = T(CL14) = G,
T(as) = T(ag) = T(a15) = B, then T'(a7) = T(ag) = T(ag) = W, which is a contradiction with one
row of the matrix Pjg. Hence graph GP(8,3) has no perfect 4-colorings with the matrix Pjg.

The proof of the matrices Pi1, P12, P13, Pig, Pay, Pag, Pa4 is similar to the proof of the matrix Pig.
Consider the mapping 17, T and T3 as follows :

T1(a1) = Ti(as) = T1(ag) = Ti(a12) = W, Ti(a3) = Ti(as) = T1(a11) = T1(a1s) = B,

T1(as) = Ti(ag) = T1(a13) = T1(a1e) = R, Ti(a2) = Ti(a7) = T1(a10) = T1(a15) = G.
Ty(a1) = Ta(as) = To(ag) = To(a12) = W, Ta(as) = Tr(ag) = Ta(ai2) = Ta(ais) = B,
Ty(az) = Tr(az) = Tr(aio) = Ta(a11) = R, Ti(as) = To(ar) = To(a1s) = Ta(ais) = G.
T3(a1) = T3(az) = T3(ag) = T3(a10) = W, T3(as) = T3(ar) = T3(a12) = T3(a15) = B,
T3(a3) = T3(ag) = T3(a11) = T3(a16) = R, T3(as) = T3(as) = T3(a13) = T3(a1s) = G.

It is clear that 17, T3 and T3 are perfect 4-coloring with the matrices Pyg, P»1 and Psg respectively. O
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Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph

Graphs Parameter Matrices
GP(7,1) X

GP(8,1) Po, P, Py, Pog
GP(8,2) Pyo, P12
GP(8,3) Py, Po1, Pog
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