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Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular
code. A perfect z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts
P1, · · · , Pz such that for all i, j ∈ {1, · · · , z}, each vertex of Pi is adjacent to pij , vertices of Pj . The
matrix P = (pij)i,j∈{1,··· ,z}, is called parameter matrix. In this article, we classify all the realizable
parameter matrices of perfect 4-colorings of some the generalized peterson graph.
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1 Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics, and
coding theory (completely regular codes). There is another phrase for this concept in the writing as “eq-
uitable partition” (see [8]). In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in
Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson
graphs, including J(4, 2), J(5, 2), J(6, 2), J(6, 3), J(7, 3), J(8, 3), J(8, 4), and J(v, 3) (v odd) ([2, 3, 7]).

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Qn for
n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-
colorings of the n-dimensional cube with a given parameter matrix ([4, 5, 6]). In this article, we classify the
parameter matrices of all perefect 4-colorings of some generalized peterson graph.

Some generalized peterson graph including GP (7, 1), GP (8, 1), GP (8, 2) and GP (8, 3) given as follow:

1speaker



Perfect 4-colorings of some generalized peterson graph 327

a1

a2

a3

a4a5

a6

a7

a8
a9

a10

a11a12

a13

a14

a1 a2

a3

a4

a5

a6

a7

a8a9
a10

a11

a12

a13

a14

a15

a16

GP (8, 3)

GP (8, 1)GP (7, 1) GP (8, 2)

a1

a2

a3

a4

a5

a6

a7

a8

a9
a10

a11

a12
a13

a14

a15

a16

a1

a2

a3

a4

a5

a6

a7

a8
a9

a10

a11

a12

a13

a14

a15

a16

Figure 1: Some generalized peterson graph

Definition 1.1. The generalized peterson graph GP (n, k) has vertices,respectively, edges given by

V
(
GP (n, k)

)
= {ai, bi : 0 ≤ i ≤ n− 1},

E
(
GP (n, k)

)
= {aiai+1, aibi, bibi+k : 0 ≤ i ≤ n− 1},

Where the subscripts are expressed as integers modulo n (≥ 5) , and k (≥ 1) is the skip.

Definition 1.2. For a graph G and an integer z, a mapping T : V (G) −→ {1, 2, · · · , z} is called a perfect
z-coloring with matrix P = (pij)i,j∈{1,··· ,z}, if it is surjective,and for all i, j,for every vertex of color i, the
number of its neighbours of color j is equal to pij . The matrix P is called the parameter matrix of a perfect
coloring. In the case z = 4, we call the first color white that show by W, the second color black that show
by B and the third color red that show by R and the color foure green that show by G.

2 Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect 4-coloring
of some generalized peterson graph with a given parameter matrix

P =


a b c d
e f g h
i j k l
m n o p


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The simplest necessary condition for the existence of perfect 4-colorings of some generalized peterson with

the matrix


a b c d
e f g h
i j k l
m n o p

 is

a + b + c + d = e + f + g + h = i + j + k + l = m + n + o + p = 4.

Theorem 2.1. [8] If T is a perfect coloring of a graph G with z colors, then any eigenvalue of T is an
eigenvalue of G.

Theorem 2.2. [1] Let T a perfect 4-coloring of a graph G with matrix P =


a b c d
e f g h
i j k l
m n o p


(1) if b, c, d 6= 0, then

|W | = |V (G)|
1 + b

e + c
i + d

m

, |B| = |V (G)|
e
b + 1 + ec

bi + ed
bm

,

|R| = |V (G)|
i
c + ib

ce + 1 + id
cm

, |G| = |V (G)|
m
d + mb

de + mc
di + 1

.

(2) if b, c, h 6= 0, then

|W | = |V (G)|
1 + b

c + c
i + bh

en

, |B| = |V (G)|
e
b + 1 + ec

bi + h
n

,

|R| = |V (G)|
i
c + ib

ce + 1 + ibh
cen

, |G| = |V (G)|
ne
hb + n

h + nec
hbi + 1

.

(3) if b, c, l 6= 0, then

|W | = |V (G)|
1 + b

e + c
i + cl

io

, |B| = |V (G)|
e
b + 1 + ec

bi + ecl
bio

,

|R| = |V (G)|
i
c + ib

ce + 1 + l
o

, |G| = |V (G)|
oi
lc + oib

lce + o
l + 1

.

(4) if b, d, g 6= 0, then

|W | = |V (G)|
1 + b

e + bg
ej + d

m

, |B| = |V (G)|
e
b + 1 + e

j + ed
bm

,

|R| = |V (G)|
je
gb + j

g + 1 + jeb
gbm

, |G| = |V (G)|
m
d + mb

de + mbg
dej + 1

.

(5) if b, d, l 6= 0, then

|W | = |V (G)|
1 + b

e + do
ml + d

m

, |B| = |V (G)|
e
b + 1 + edo

bml + ed
bm

,

|R| = |V (G)|
lm
od + lmb

ode + 1 + l
o

, |G| = |V (G)|
m
d + mb

de + o
l + 1

.
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(6) if b, g, h 6= 0, then

|W | = |V (G)|
1 + b

e + bg
ej + bh

en

, |B| = |V (G)|
e
b + 1 + g

j + h
n

,

|R| = |V (G)|
je
gb + j

g + 1 + jh
gn

, |G| = |V (G)|
ne
hb + n

h + ng
hj + 1

.

(7) if b, g, l 6= 0, then

|W | = |V (G)|
1 + b

e + bg
ej + bgl

ejo

, |B| = |V (G)|
e
b + 1 + g

j + gl
jo

,

|R| = |V (G)|
je
gb + j

b + 1 + l
o

, |G| = |V (G)|
oje
lgb + oj

lg + o
l + 1

.

(8) if b, h, l 6= 0, then

|W | = |V (G)|
1 + b

e + bho
enl + bh

en

, |B| = |V (G)|
e
b + 1 + ho

nl + h
n

,

|R| = |V (G)|
lne
ohb + ln

oh + 1 + l
o

, |G| = |V (G)|
ne
hb + n

h + o
l + 1

.

(9) if c, d, g 6= 0, then

|W | = |V (G)|
1 + cj

ig + c
i + d

m

, |B| = |V (G)|
gi
cj + 1 + g

j + gid
jcm

,

|R| = |V (G)|
i
c + j

g + 1 + id
cm

, |G| = |V (G)|
m
d + mcj

dig + mc
di + 1

.

(10) if c, d, h 6= 0, then

|W | = |V (G)|
1 + dn

mh + c
i + d

m

, |B| = |V (G)|
hm
dn + 1 + hmc

ndi + h
n

,

|R| = |V (G)|
i
c + idn

cmh + 1 + id
cm

, |G| = |V (G)|
m
d + n

h + mc
di + 1

.

(11) if c, g, h 6= 0, then

|W | = |V (G)|
1 + cj

ig + c
i + cjh

igh

, |B| = |V (G)|
gi
jc + 1 + g

j + h
n

,

|R| = |V (G)|
i
c + j

g + 1 + jh
gn

, |G| = |V (G)|
ngi
hjc + n

h + ng
hj + 1

.
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(12) if c, g, l 6= 0, then

|W | = |V (G)|
1 + cj

ig + c
i + cl

io

, |B| = |V (G)|
gi
jc + 1 + g

j + gl
jo

,

|R| = |V (G)|
i
c + j

g + 1 + l
o

, |G| = |V (G)|
oi
lc + oj

lg + o
l + 1

.

(13) if c, h, l 6= 0, then

|W | = |V (G)|
1 + cln

ioh + c
i + cl

io

, |B| = |V (G)|
hoi
nlc + 1 + ho

nl + h
n

,

|R| = |V (G)|
i
c + ln

oh + 1 + l
o

, |G| = |V (G)|
oi
lc + n

h + o
l + 1

.

(14) if d, g, h 6= 0, then

|W | = |V (G)|
1 + dn

mh + dng
mhj + d

m

, |B| = |V (G)|
hm
nd + 1 + g

j + h
n

,

|R| = |V (G)|
jhm
gnd + j

g + 1 + jh
gn

, |G| = |V (G)|
m
d + n

h + ng
hj + 1

.

(15) if d, g, l 6= 0, then

|W | = |V (G)|
1 + doj

mlg + do
ml + d

m

, |B| = |V (G)|
glm
jod + 1 + g

j + gl
jo

,

|R| = |V (G)|
lm
od + j

g + 1 + l
o

, |G| = |V (G)|
m
d + oj

lg + o
l + 1

.

(16) if d, h, l 6= 0, then

|W | = |V (G)|
1 + dn

mh + do
ml + d

m

, |B| = |V (G)|
hm
nd + 1 + ho

nl + h
n

,

|R| = |V (G)|
lm
od + ln

oh + 1 + l
o

, |G| = |V (G)|
m
d + n

h + o
l + 1

.

Remark 2.3. The distinct eigenvalues of the graph GP (7, 1) are the numbers 3,1, The distinct eigenvalues
of the graph GP (8, 1) are the numbers 3,1,-1, The distinct eigenvalues of the graph GP (8, 2) are the numbers
1,3 and the distinct eigenvalues of the graph GP (8, 3) are the numbers 3,1,-1.
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By using Theorem 2.1, we only have the following matrices, which we have shown with P1, · · · , P31.

P1 =


0 0 0 3
0 0 1 2
0 1 0 2
1 1 1 0

 , P2 =


0 0 0 3
0 0 1 2
0 1 0 2
1 1 1 0

 , P3 =


0 0 0 3
0 0 2 1
0 2 1 0
2 1 0 0

 , P4 =


0 0 0 3
0 0 3 0
0 1 1 1
1 0 1 1

 , P5 =


0 0 0 3
0 1 0 2
0 0 1 2
1 1 1 0

 ,

P6 =


0 0 0 3
0 1 0 2
0 0 2 1
1 1 1 0

 , P7 =


0 0 0 3
0 1 1 1
0 1 2 0
2 1 0 0

 , P8 =


0 0 0 3
0 1 2 0
0 1 0 2
1 0 2 0

 , P9 =


0 0 1 2
0 1 0 2
1 0 2 0
1 1 0 1

 , P10 =


0 0 1 2
0 1 1 1
1 1 1 0
2 1 0 0

 ,

P11 =


0 0 1 2
0 1 2 0
1 2 0 0
2 0 0 1

 , P12 =


0 0 1 2
0 2 0 1
1 0 2 0
2 1 0 0

 , P13 =


0 0 1 2
0 2 1 0
1 1 1 0
2 0 0 1

 , P14 =


0 0 3 0
0 0 0 3
1 0 0 2
0 1 1 1

 , P15 =


0 0 3 0
0 0 1 2
1 1 1 0
0 1 0 2

 ,

P16 =


0 0 3 0
0 0 1 2
2 1 0 0
0 1 0 2

 , P17 =


0 0 3 0
0 1 0 2
1 0 0 2
0 1 1 1

 , P18 =


0 1 0 2
1 0 0 2
0 0 2 1
1 1 1 0

 , P19 =


0 1 0 2
1 2 0 0
0 0 0 3
1 0 2 0

 , P20 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,

P21 =


0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

 , P22 =


0 1 2 0
1 2 0 0
1 0 0 2
0 0 1 2

 , P23 =


0 3 0 0
1 0 0 2
0 0 1 2
0 1 2 0

 , P24 =


0 3 0 0
1 0 0 2
0 0 2 1
0 1 1 1

 , P25 =


0 3 0 0
1 0 2 0
0 1 0 2
0 0 1 2

 ,

P26 =


1 0 0 2
0 0 2 1
0 2 1 0
1 1 0 1

 , P27 =


1 0 0 2
0 1 0 2
0 0 2 1
1 1 1 0

 , P28 =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 , P29 =


1 0 1 1
0 2 0 1
1 0 2 0
1 1 0 1

 , P30 =


1 2 0 0
1 0 0 2
0 0 0 3
0 1 2 0

 ,

P31 =


1 2 0 0
1 0 0 2
0 0 1 2
0 1 2 0

 .

3 Perfect 4-colorings of some generalized peterson graph

The parameter matrices of GP (7, 1), GP (8, 1), GP (8, 2) and GP (8, 3) graphs are enumerated in the next
teorems.

Theorem 3.1. The graph GP (7, 1) has no perfect 4-colorings.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP (7, 1) may be one of the
matrices P1, · · · , P31. By using Theorem 2.2, only the matrices P1, P16, P26 can be a parameter matrices,
because the number of white, black, red and green are an integer. For matrix P1, each vertex with color
green has one adjacent vertices with color green. Now have the following possibilities:

(1) T (a1) = B, T (a2) = T (a3) = T (a4) = T (a5) = T (a9) = R, T (a6) = T (a7) = T (a8) = T (a13) = G,
T (a14) = W and then T (a11) = G, T (a10) = T (a12) = B, which is a contradiction with four row of
matrix P1.

(2) T (a1) = W , T (a3) = T (a14) = B, T (a4) = T (a5) = T (a11) = T (a12) = T (a13) = R and T (a6) =
T (a7) = T (a10) = G then T (a2) = T (a8) = T (a9) = G,which is a contradiction with the four row of
matrix P1. Hence graph GP (7, 1) has no perfect 4-colorings with matrix P1.

Similar to matrix P1, we can proof for matrices P16 and P26 as follows:
For matrix P16, each vertex with color white has three adjacent vertices with color red. Now have the

following possibilities:
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(3) T (a1) = T (a2) = T (a9) = T (a10) = G, T (a4) = T (a6) = T (a12) = R, T (a3) = T (a8) = B and
T (a5) = T (a11) = T (a13) = W then T (a14) = R and T (a7) = G, which is a contradiction with the
three row of matrix P16.

(4) T (a1) = T (a5) = T (a9) = T (a11) = T (a13) = W , T (a3) = B, T (a2) = T (a4) = T (a6) = T (a10) =
T (a12) = R then T (a7) = T (a8) = R and T (a14) = B, which is a contradiction with the three row of
matrix P16. Hence graph GP (7, 1) has no perfect 4-colorings with matrix P16.

For matrix P26, each vertex with color white has two adjacent vertices with color green, and each vertex
with color green has zero adjacent vertices with color red. Now have the following possibilities:

(5) T (a1) = T (a3) = T (a12) = T (a14) = B, T (a4) = T (a5) = T (a6) = T (a7) = T (a13) = R, T (a8) =
T (a10) = T (a11) = G then T (a2) = R and T (a9) = W , which is a contradiction with the one row of
matrix P26.

(6) T (a1) = T (a2) = T (a3) = T (a10) = T (a11) = T (a14) = R, T (a4) = T (a7) = T (a8) = T (a12) = B,
T (a5) = T (a9) = G then T (a6) = G and T (a13) = R, which is a contradiction with the four row of
matrix P26. Hence graph GP (7, 1) has no perfect 4-colorings with matrix P26.

Theorem 3.2. The graph GP (8, 1) has a perfect 4-colorings only with the matrices P10, P20, P21 and P28.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP (8, 1) may be one of the
matrices P1, · · · , P31. Using the Theorem 2.2, only the matrices P4, P10, P12, P13, P19, P20, P21, P22, P23,
P24, and P28 can be a parameter matrices, because the number of white, black, red and green are an integer.
For matrix P4, each vertex with color white has three adjacent vertices with color green and each vertex
with color red has one adjacent vertices with color green. Now have the following possibilities:

(1) T (a1) = W , T (a4) = B, T (a3) = T (a5) = T (a11) = T (a12) = R, T (a2) = T (a7) = T (a8) = T (a9) =
T (a10) = T (a13) = G then T (a14) = B and T (a15) = W and T (a16) = R, which is a contradiction
with one row of the matrix P4.

(2) T (a1) = T (a2) = T (a6) = T (a9) = T (a11) = T (a14) = G,T (a3) = T (a5) = T (a12) = T (a13) = R,
T (a7) = T (a10) = W , T (a4) = B then T (a8) = T (a15) = G and T (a16) = R, which is a contradiction
with three row of the matrix P4. Hence graph GP (8, 1) has no perfect 4- colorings with the matrix
P4.

The proof of the matrices P12, P13, P19, P22, P23, P24 is similar to the proof of the matrix P4. Consider the
mapping T1, T2, T3 and T4 as follows:

T1(a1) = T1(a6) = T1(a10) = T1(a13) = W, T1(a3) = T1(a4) = T1(a15) = T1(a16) = B

T1(a7) = T1(a8) = T1(a11) = T1(a12) = R, T1(a2) = T1(a5) = T1(a9) = T1(a14) = G.

T2(a1) = T2(a5) = T2(a11) = T2(a15) = W, T2(a2) = T2(a6) = T2(a12) = T2(a16) = B,

T2(a4) = T2(a8) = T2(a10) = T2(a14) = R, T2(a3) = T2(a7) = T2(a9) = T2(a13) = G.

T3(a1) = T3(a5) = T3(a11) = T3(a15) = W, T3(a2) = T3(a6) = T3(a12) = T3(a16) = B,

T3(a9) = T3(a10) = T3(a13) = T3(a14) = R, T3(a3) = T3(a4) = T3(a7) = T3(a8) = G.

T4(a1) = T4(a4) = T4(a5) = T4(a8) = W, T4(a10) = T4(a11) = T4(a14) = T4(a15) = B,

T4(a2) = T4(a3) = T4(a6) = T4(a7) = R, T4(a9) = T4(a12) = T4(a13) = T4(a4) = G.

It is clear that T1, T2, T3 and T4 are perfect 4-coloring with the matrices P10, P20, P21 and P28 respectively.
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Theorem 3.3. The graph GP (8, 2) has a perfect 4-colorings with only the matrices P10 and P12.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP(8, 2) may be one of the
matrices P1, · · · , P31. By using Theorem 2.2, graph GP (8, 2) can have perfect 4-colorings only with matrices
P10, P12, P13, P19, P22 and P24, because the number of white, black, red and green are an integer. For matrix
P13, each vertex with color white has one adjacent vertices with color red and two adjacent vertices with
color green. Now have the following possibilities:

(1) T (a1) = T (a4) = T (a10) = T (a15) = W , T (a2) = T (a3) = T (a9) = T (a11) = T (a12) = T (a13) =
G,T (a7) = T (a8) = R, T (a14) = T (a16) = B, then T (a5) = W and T (a6) = B, which is a contradiction
with one row of the matrix P13.

(2) T (a1) = T (a7) = T (a8) = T (a9) = T (a15) = B, T (a3) = T (a5) = T (a14) = W , T (a4) = T (a6) =
T (a12) = G, T (a11) = T (a13) = R, then T (a2) = T (a16) = R and T (a10) = W , which is a contradiction
with one row of the matrix P13. Hence graph GP (8, 2) has no perfect 4-colorings with the matrix P13.

The proof of the matrices P19, P22, P24 is similar to the proof of the matrix P13. Consider the mapping T1

and T2 as follows:

T1(a11) = T1(a12) = T1(a15) = T1(a16) = W, T1(a1) = T1(a2) = T1(a5) = T1(a6) = B,

T1(a3) = T1(a4) = T1(a7) = T1(a8) = R, T1(a9) = T1(a10) = T1(a13) = T1(a14) = G.

T2(a1) = T2(a3) = T2(a5) = T2(a7) = W, T2(a10) = T2(a12) = T2(a14) = T2(a16) = B,

T2(a9) = T2(a11) = T2(a13) = T2(a15) = R, T2(a2) = T2(a4) = T2(a6) = T2(a8) = G.

It is clear that T1 and T2 are perfect 4-coloring with the matrices P10 and P12 respectively.

Theorem 3.4. The graph GP (8, 3) has a perfect 4-colorings only with the matrices P20, P21 and P28.

Proof. A parameter matrix corresponding to perfect 4-colorings of the graph GP (8, 3) may be one of the
matrices P1, · · · , P31. By using Theorem 2.2, graph GP (8, 3) can have perfect 4- colorings with matrices
P10, P11, P12, P13, P19, P20, P21, P22, P23, P24 and P28, because the number of white, black, red and green
are an integer. For matrix P10, each vertex with color white has one adjacent vertices with color red and
two adjacent vertices with color green. Now have the following possibilities:

(1) T (a1) = T (a6) = T (a8) = T (a9) = B, T (a2) = T (a3) = T (a5) = T (a10) = R, T (a7) = T (a12) =
T (a14) = T (a16) = G, T (a11) = T (a13) = W , then T (a4) = T (a15) = W , which is a contradiction with
one row of the matrix P10.

(2) T (a1) = T (a5) = T (a16) = R, T (a2) = T (a11) = W , T (a3) = T (a10) = T (a12) = T (a13) = T (a14) = G,
T (a4) = T (a6) = T (a15) = B, then T (a7) = T (a8) = T (a9) = W , which is a contradiction with one
row of the matrix P10. Hence graph GP (8, 3) has no perfect 4-colorings with the matrix P10.

The proof of the matrices P11, P12, P13, P19, P20, P23, P24 is similar to the proof of the matrix P10.
Consider the mapping T1, T2 and T3 as follows :

T1(a1) = T1(a4) = T1(a9) = T1(a12) = W, T1(a3) = T1(a6) = T1(a11) = T1(a14) = B,

T1(a5) = T1(a8) = T1(a13) = T1(a16) = R, T1(a2) = T1(a7) = T1(a10) = T1(a15) = G.

T2(a1) = T2(a4) = T2(a9) = T2(a12) = W, T2(a5) = T2(a8) = T2(a12) = T2(a16) = B,

T2(a2) = T2(a3) = T2(a10) = T2(a11) = R, T2(a6) = T2(a7) = T2(a14) = T2(a15) = G.

T3(a1) = T3(a2) = T3(a9) = T3(a10) = W, T3(a4) = T3(a7) = T3(a12) = T3(a15) = B,

T3(a3) = T3(a8) = T3(a11) = T3(a16) = R, T3(a5) = T3(a6) = T3(a13) = T3(a14) = G.

It is clear that T1, T2 and T3 are perfect 4-coloring with the matrices P20, P21 and P28 respectively.
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Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph
Graphs Parameter Matrices

GP(7,1) #
GP(8,1) P10, P20, P21, P28

GP(8,2) P10, P12

GP(8,3) P20, P21, P28
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