Perfect 3-colorings of some generalized peterson graph

Mehdi Alaeiyan and Zahra Shokoohi ${ }^{1}$
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular code. A perfect z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts P_{1}, \cdots, P_{z} such that for all $i, j \in\{1, \cdots, z\}$, each vertex of P_{i} is adjacent to $p_{i j}$, vertices of P_{j}. The matrix $P=\left(p_{i j}\right)_{i, j \in\{1, \cdots, z\}}$, is called parameter matrix. In this article, we classify all the realizable parameter matrices of perfect 3-colorings of some the generalized peterson graph.

Keywords: Parameter matrices, Perfect coloring, Equitable partition, Generalized peterson graph. Mathematical Subject Classification 03E02, 05C15, 68R05

1 Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another phrase for this concept in the writing as "equitable partition" (see [9]). In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson graphs, including $J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3), J(8,4)$, and $J(v, 3)(v$ odd) (see $[3,4,8])$.

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_{n} for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2colorings of the n-dimensional cube with a given parameter matrix (see[5, 6,7$]$). In this article, we classify the parameter matrices of all perefect 3 -colorings of some generalized peterson graph.

Some generalized peterson graph including $\operatorname{GP}(7,1), \operatorname{GP}(8,1), G P(8,2)$ and $G P(8,3)$ given as follow:

[^0]
$G P(7,1)$

$G P(8,1)$

$G P(8,2)$

$G P(8,3)$

Figure 1: Some generalized peterson graph
Definition 1.1. The generalized peterson graph $\operatorname{GP}(n, k)$ has vertices, respectively, edges given by

$$
\begin{aligned}
& V(G P(n, k))=\left\{a_{i}, b_{i}: 0 \leq i \leq n-1\right\}, \\
& E(G P(n, k))=\left\{a_{i} a_{i+1}, a_{i} b_{i}, b_{i} b_{i+k}: 0 \leq i \leq n-1\right\},
\end{aligned}
$$

Where the subscripts are expressed as integers modulo $n(\geq 5)$, and $k(\geq 1)$ is the skip.
Definition 1.2. For a graph G and an integer z, a mapping $T: V(G) \longrightarrow\{1,2, \cdots, z\}$ is called a perfect z-coloring with matrix $P=\left(p_{i j}\right)_{i, j \in\{1, \cdots, z\}}$, if it is surjective, and for all i, j, for every vertex of color i, the number of its neighbours of color j is equal to $p_{i j}$. The matrix P is called the parameter matrix of a perfect coloring. In the case $z=3$, we call the first color white that show by W , the second color black that show by B and the third color red that show by R. In this article, we generally show a parameter matrix by

$$
P=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] .
$$

Remark 1.3. In this paper, we consider all perfect 3 -colorings, up to renaming the colors; i.e. We identify the perfect 3 -coloring with the matrices

$$
\left[\begin{array}{lll}
d & c & b \\
g & i & h \\
d & e & f
\end{array}\right],\left[\begin{array}{lll}
e & d & f \\
b & a & c \\
h & g & i
\end{array}\right], \quad\left[\begin{array}{lll}
e & f & d \\
h & i & g \\
b & c & a
\end{array}\right], \quad\left[\begin{array}{lll}
i & h & g \\
f & e & d \\
c & b & a
\end{array}\right], \quad\left[\begin{array}{lll}
i & g & h \\
c & a & b \\
f & d & e
\end{array}\right] .
$$

Obtained by switching the colors with original coloring .

2 Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect 3colorings of the generalized peterson graph of $\operatorname{GP}(7,1), G P(8,1), G P(8,2)$ and $G P(8,3)$ with a given parameter matrix

$$
P=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

The simplest necessary condition for the existence of perfect 3-colorings of the generalized peterson

$$
a+b+c=d+e+f=g+h+i=3 .
$$

By using this condition and some computation, it is clear that we should consider 18 matrices .These matrices are listed below:

$$
\begin{array}{lll}
P_{1}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right], & P_{2}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right], & P_{3}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],
\end{array}
$$

Theorem 2.1. [9] If T is a perfect coloring of a graph G in z colors, then any eigenvalue of T is an eigenvalue of G.

Theorem 2.2. [1] Suppose that T is a perfect 3- coloring with matrix $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, in the connected graph G.Then in this case, none of the following situations will occer.
(1) $b=c=0$,
(2) $d=f=0$,
(3) $g=h=0$,
(4) $b=0 \leftrightarrow d=0, c=0 \leftrightarrow g=0, h=0 \leftrightarrow f=0$.

Theorem 2.3. [2] Let T a perfect 3-coloring of a graph G with matrix $P=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.
(1) If $b, c, f \neq 0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}}, \quad|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{f}{h}}, \quad|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}} .
$$

(2) If $b=0$, then

$$
|W|=\frac{|V(G)|}{\frac{c}{g}+1+\frac{c h}{f g}}, \quad|B|=\frac{|V(G)|}{\frac{f}{h}+1+\frac{f g}{c h}}, \quad|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}} .
$$

(3) If $c=0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{b f}{d h}}, \quad|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{f}{h}}, \quad|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{d h}{b f}} .
$$

(4) If $f=0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}}, \quad|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{c d}{b g}}, \quad|R|=\frac{|V(G)|}{\frac{g}{c}+1+\frac{b g}{c d}} .
$$

Theorem 2.4. [1] If $P=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a parameter matrix of a-regular graph, then the eigenvalues of P are

$$
\lambda_{1,2}=\frac{\operatorname{tr}(P)-k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(P)-k}{2}\right)^{2}-\frac{\operatorname{det}(P)}{k}}, \quad \lambda_{3}=k
$$

Remark 2.5. The distinct eigenvalues of the graph $G P(7,1)$ are the numbers 3, 1 , The distinct eigenvalues of graph $G P(8,1)$ are the numbers $3,1,-1$, The distinct eigenvalues of graph $G P(8,2)$ are the numbers 1 , 3 and the distinct eigenvalues of graph $G P(8,3)$ are the numbers $3,1,-1$.

3 Perfect 3- colorings of some generalized peterson graph

The parameter matrices of $\operatorname{GP}(7,1), \operatorname{GP}(8,1), G P(8,2)$ and $G P(8,3)$ graphs are enumerated in the next teorems.

Theorem 3.1. The graph $G P(7,1)$ has no perfect 3-colorings.
Proof. A parameter matrix corresponding to perfect 3-colorings of the graph $\operatorname{GP}(7,1)$ may be one of the matrices P_{1}, \cdots, P_{18}. By using Theorem 2.1 and Theorem 2.4 , we can see that only the matrices $P_{3}, P_{4}, P_{5}, P_{6}, P_{10}, P_{12}, P_{15}$, and P_{18} can be a parameter matrices. By using Theorem 2.3, matrices $P_{3}, P_{6}, P_{10}, P_{12}$, and P_{15} cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_{4}, each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:
(1) $T\left(a_{1}\right)=T\left(a_{11}\right)=W, T\left(a_{3}\right)=T\left(a_{5}\right)=T\left(a_{9}\right)=T\left(a_{10}\right)=B, T\left(a_{2}\right)=T\left(a_{4}\right)=T\left(a_{7}\right)=T\left(a_{8}\right)=$ $T\left(a_{12}\right)=R$ then $T\left(a_{2}\right)=T\left(a_{13}\right)=T\left(a_{14}\right)=B$, which is a contradiction with the second row of matrix P_{4}.
(2) $T\left(a_{1}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=T\left(a_{14}\right)=B, T\left(a_{3}\right)=W, T\left(a_{2}\right)=T\left(a_{4}\right)=T\left(a_{6}\right)=T\left(a_{7}\right)=T\left(a_{10}\right)=$ $T\left(a_{13}\right)=R$ then $T\left(a_{5}\right)=T\left(a_{11}\right)=T\left(a_{12}\right)=B$, which is a contradiction with the second row of matrix P_{4}. Hence graph $\operatorname{GP}(7,1)$ has no perfect 3 -colorings with matrix P_{4}.

Similar to matrix P_{4}, we proof for matrix P_{5} and P_{18} as follows:
For matrix P_{5}, each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:
(3) $T\left(a_{3}\right)=T\left(a_{6}\right)=W, T\left(a_{7}\right)=T\left(a_{8}\right)=T\left(a_{12}\right)=T\left(a_{14}\right)=B, T\left(a_{2}\right)=T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{9}\right)=$ $T\left(a_{13}\right)=R$ then $T\left(a_{4}\right)=T\left(a_{10}\right)=R, T\left(a_{11}\right)=B$ which is a contradiction with the second row of matrix P_{5}.
(4) $T\left(a_{1}\right)=T\left(a_{2}\right)=T\left(a_{5}\right)=T\left(a_{6}\right)=T\left(a_{12}\right)=B, T\left(a_{10}\right)=W, T\left(a_{3}\right)=T\left(a_{4}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=$ $T\left(a_{11}\right)=T\left(a_{13}\right)=R$ then $T\left(a_{7}\right)=B$ and $T\left(a_{14}\right)=W$, which is a contradiction with the second row of matrix P_{5}. Hence graph $\operatorname{GP}(7,1)$ has no perfect 3 -colorings with matrix P_{5}.

For matrix P_{18}, each vertex with color white has two adjacent vertices with color black. Now have the following two possibilities:
(5) $T\left(a_{1}\right)=T\left(a_{2}\right)=T\left(a_{3}\right)=T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{8}\right)=T\left(a_{12}\right)=T\left(a_{14}\right)=R, T\left(a_{7}\right)=T\left(a_{9}\right)=T\left(a_{11}\right)=$ $B, T\left(a_{6}\right)=W$ then $T\left(a_{13}\right)=R$, which is a contradiction with the second three of matrix P_{18}.
(6) $T\left(a_{1}\right)=T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{9}\right)=T\left(a_{10}\right)=T\left(a_{12}\right)=T\left(a_{14}\right)=R, T\left(a_{2}\right)=T\left(a_{3}\right)=B, T\left(a_{8}\right)=$ $T\left(a_{11}\right)=W$ then $T\left(a_{6}\right)=T\left(a_{7}\right)=T\left(a_{13}\right)=B$, which is a contradiction with the second row of matrix P_{18}. Hence graph $G P(7,1)$ has no perfect 3 -colorings with matrix P_{18}.

Theorem 3.2. The graph $G P(8,1)$ has a perfect 3 -colorings with the matrices P_{7} and P_{13}.
Proof. A parameter matrix corresponding to perfect 3-colorings of the graph $\operatorname{GP}(8,1)$ may be one of the matrices P_{1}, \cdots, P_{18}. Using the Theorems 2.1 and 2.4 matrices $P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{10}, P_{12}, P_{13}, P_{15}, P_{16}$ and P_{18} can be a parameter matrices. By using Theorem 2.3 matrices P_{5}, P_{6}, P_{7} and P_{13} cannot be a parameter matrices, because of the number of white colors is not integer.

Consider the mapping T_{1} and T_{2} as follows:

$$
\begin{aligned}
& \left.T_{1}\left(a_{1}\right)=T_{1}\left(a_{5}\right)=T_{1}\left(a_{11}\right)=T_{1}\left(a_{15}\right)=W, \quad T_{1}\left(a_{2}\right)=T_{1}\left(a_{6}\right)=T_{1}\left(a_{12}\right)=T_{(} a_{16}\right)=B, \\
& T_{1}\left(a_{3}\right)=T_{1}\left(a_{4}\right)=T_{1}\left(a_{7}\right)=T_{1}\left(a_{8}\right)=T_{1}\left(a_{9}\right)=T_{1}\left(a_{10}\right)=T_{1}\left(a_{13}\right)=T_{1}\left(a_{14}\right)=R . \\
& \\
& T_{2}\left(a_{2}\right)=T_{2}\left(a_{3}\right)=T_{2}\left(a_{6}\right)=T_{2}\left(a_{7}\right)=W, \quad T_{2}\left(a_{9}\right)=T_{2}\left(a_{12}\right)=T_{2}\left(a_{13}\right)=T_{2}\left(a_{16}\right)=B, \\
& T_{2}\left(a_{1}\right)=T_{2}\left(a_{4}\right)=T_{2}\left(a_{5}\right)=T_{2}\left(a_{8}\right)=T_{2}\left(a_{10}\right)=T_{2}\left(a_{11}\right)=T_{2}\left(a_{14}\right)=T_{2}\left(a_{15}\right)=R .
\end{aligned}
$$

It is clear that T_{1} and T_{2} are perfect 3 -coloring with the matrices P_{7} and P_{13} respectivehy.
Theorem 3.3. The graph $\operatorname{GP}(8,2)$ has no perefect 3-colorings.
Proof. A parameter matrix corresponding to perfect 3-colorings of the graph $\operatorname{GP}(8,2)$ may be one of the matrices P_{1}, \cdots, P_{18}. By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices P_{3}, P_{4}, $P_{5}, P_{6}, P_{10}, P_{12}, P_{15}$ and P_{18} can be a parameter matrices. By using Theorem 2.3, matrices P_{4}, P_{5}, P_{10}, P_{12}, P_{15}, P_{18} cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_{6}, each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:
(1) $T\left(a_{1}\right)=T\left(a_{5}\right)=T\left(a_{7}\right)=T\left(a_{8}\right)=T\left(a_{10}\right)=T\left(a_{11}\right)=T\left(a_{14}\right)=T\left(a_{15}\right)=R, T\left(a_{2}\right)=T\left(a_{3}\right)=$ $B, T\left(a_{6}\right)=T\left(a_{9}\right)=T\left(a_{13}\right)=T\left(a_{16}\right)=W$ then $T\left(a_{4}\right)=B$ and $T\left(a_{12}\right)=W$, which is a contradiction with the second row of matrix P_{6}.
(2) $T\left(a_{1}\right)=T\left(a_{5}\right)=T\left(a_{11}\right)=T\left(a_{15}\right)=R, T\left(a_{2}\right)=T\left(a_{9}\right)=T\left(a_{12}\right)=T\left(a_{13}\right)=W, T\left(a_{7}\right)=T\left(a_{8}\right)=$ $T\left(a_{14}\right)=T\left(a_{16}\right)=B$ then $T\left(a_{3}\right)=T\left(a_{4}\right)=R$, which is a contradiction with the three row of matrix P_{6}. Hence graph $G P(8,2)$ has no perfect 3 -colorings with the matrix P_{6}.

Theorem 3.4. The graph $G P(8,3)$ has no perefect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP $(8,3)$ may be one of the matrices P_{1}, \cdots, P_{18}. By using Theorem 2.1 and Theorem 2.4 , we can see that only the matrices P_{3}, P_{4}, $P_{5}, P_{6}, P_{7}, P_{10}, P_{12}, P_{13}, P_{15}$ and P_{18} can be a parameter matrices. By using Theorem 2.3 , matrices P_{3}, $P_{4}, P_{5}, P_{10}, P_{12}, P_{14}, P_{15}$, and P_{18} cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_{6}, each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:
(1) $T\left(a_{1}\right)=T\left(a_{3}\right)=T\left(a_{9}\right)=T\left(a_{13}\right)=T\left(a_{14}\right)=R, T\left(a_{4}\right)=T\left(a_{10}\right)=T\left(a_{11}\right)=T\left(a_{15}\right)=T\left(a_{16}\right)=$ $B, T\left(a_{2}\right)=T\left(a_{8}\right)=T\left(a_{12}\right)=W$ then $T\left(a_{5}\right)=B$ and $T\left(a_{6}\right)=T\left(a_{7}\right)=R$, which is a contradiction with the three row of matrix P_{6}.
(2) $T\left(a_{1}\right)=T\left(a_{11}\right)=T\left(a_{13}\right)=W, T\left(a_{3}\right)=T\left(a_{4}\right)=T\left(a_{7}\right)=T\left(a_{8}\right)=T\left(a_{15}\right)=B, T\left(a_{2}\right)=T\left(a_{5}\right)=$ $T\left(a_{6}\right)=T\left(a_{10}\right)=T\left(a_{12}\right)=T\left(a_{16}\right)=R$ then $T\left(a_{9}\right)=T\left(a_{14}\right)=R$, which is a contradiction with the three row of matrix P_{6}. Hence graph $G P(8,3)$ has no prtfrct 3 -colorings with the matrix P_{6}.
Similar to matrix P_{6}, we can proof for the matrix P_{7} as follows:
For matrix P_{7} each vertex with color white has two adjacent vertices with color red. Now have the following two possibilities:
(3) $T\left(a_{1}\right)=T\left(a_{4}\right)=T\left(a_{5}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=T\left(a_{16}\right)=R, T\left(a_{3}\right)=T\left(a_{6}\right)=T\left(a_{10}\right)=T\left(a_{15}\right)=$ $B, T\left(a_{2}\right)=T\left(a_{14}\right)=W$ then $T\left(a_{7}\right)=T\left(a_{11}\right)=W$ and $T\left(a_{12}\right)=T\left(a_{13}\right)=R$, which is a contradiction with the three row of matrix P_{7}.
(4) $T\left(a_{1}\right)=T\left(a_{4}\right)=T\left(a_{9}\right)=T\left(a_{12}\right)=W, T\left(a_{5}\right)=T\left(a_{8}\right)=T\left(a_{13}\right)=B, T\left(a_{2}\right)=T\left(a_{3}\right)=T\left(a_{6}\right)=$ $T\left(a_{7}\right)=T\left(a_{10}\right)=T\left(a_{11}\right)=T\left(a_{14}\right)=R$ then $T\left(a_{15}\right)=T\left(a_{16}\right)=B$, which is a contradiction with the two row of matrix P_{7}. Hence graph $G P(8,3)$ has no perfect 3 -colorings with matrix P_{7}.

Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph

Graphs	Parameter Matrices
graph GP $(7,1)$	X
graph GP $(8,1)$	P_{7}, P_{13}
graph GP $(8,2)$	\times
graph GP(8,3)	X

References

[1] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10 , Electronic Journal of Graph Theory and Applications (EJGTA),5(2) (2017),PP.194-206.
[2] M. Alaiyan, A. Mehrabani, Perfect 3- colorings of the platonic graph, Iranian J. Sci. Technol., Trans. A Sci. (2017) 1-9.
[3] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs J (6, 3) and $J(7,3)$, Lecture Notes in Computer Science 5228 (2008), 11-19.
[4] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs $J(8,3)$ and $J(8,4)$ with two colors, Journal of Applied and Industrial Mathematics 5 (2011), 19-30.
[5] D.G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal 4 (2007), 133-135.
[6] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal 4(2007), 923930.
[7] D.G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, Siberian Mathematical Journal 4 (2007), 292-295.
[8] A.L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v, 3), Journal of Combinatorial Designs 21 (2013), 232-252.
[9] C. Godsil, Compact graphs and equitable partitions, Linear Algebra and Its Application 255(1997), 259-266.

Email: alaeiyan@iust.ac.ir;
Email: zahra.shokoohi75@yahoo.com

[^0]: ${ }^{1}$ speaker

