

6th International Conference on

Combinatorics, Cryptography, Computer Science and Computing

November: 17-18, 2021

Perfect 3-colorings of some generalized peterson graph

Mehdi Alaeiyan and Zahra Shokoohi¹ School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract

The notion of a perfect coloring, introduced by Delsarte, generalizes the concept of completely regular code. A perfect z-colorings of a graph is a partition of its vertex set. It splits vertices into z parts P_1, \dots, P_z such that for all $i, j \in \{1, \dots, z\}$, each vertex of P_i is adjacent to p_{ij} , vertices of P_j . The matrix $P = (p_{ij})_{i,j \in \{1,\dots,z\}}$, is called parameter matrix. In this article, we classify all the realizable parameter matrices of perfect 3-colorings of some the generalized peterson graph.

Keywords: Parameter matrices, Perfect coloring, Equitable partition, Generalized peterson graph. **Mathematical Subject Classification** 03E02, 05C15, 68R05

1 Introduction

The concept of a perfect z-coloring plays a significant role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another phrase for this concept in the writing as "equitable partition" (see [9]). In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Since then, some effort has been made to count the parameter matrices of some Johnson graphs, including J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3), J(8,4), and J(v,3) (v odd) (see [3, 4, 8]).

Fon-Der-Flass count the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_n for n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the n-dimensional cube with a given parameter matrix (see[5, 6, 7]). In this article, we classify the parameter matrices of all perefect 3-colorings of some generalized peterson graph.

Some generalized peterson graph including GP(7,1), GP(8,1), GP(8,2) and GP(8,3) given as follow:

¹speaker

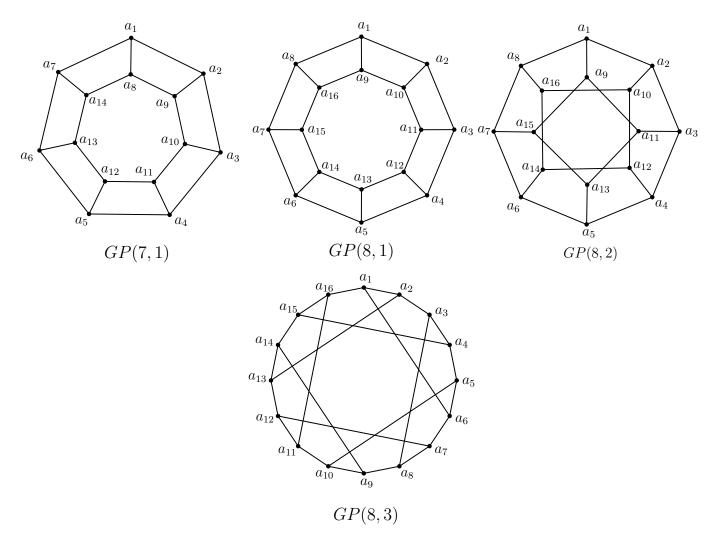


Figure 1: Some generalized peterson graph

Definition 1.1. The generalized peterson graph GP(n,k) has vertices, respectively, edges given by

$$V(GP(n,k)) = \{a_i, b_i : 0 \le i \le n-1\},$$

$$E(GP(n,k)) = \{a_i a_{i+1}, a_i b_i, b_i b_{i+k} : 0 \le i \le n-1\},$$

Where the subscripts are expressed as integers modulo $n \geq 5$, and $k \geq 1$ is the skip.

Definition 1.2. For a graph G and an integer z, a mapping $T:V(G) \longrightarrow \{1,2,\cdots,z\}$ is called a perfect z-coloring with matrix $P=(p_{ij})_{i,j\in\{1,\cdots,z\}}$, if it is surjective, and for all i,j, for every vertex of color i, the number of its neighbours of color j is equal to p_{ij} . The matrix P is called the parameter matrix of a perfect coloring. In the case z=3, we call the first color white that show by W, the second color black that show by W and the third color red that show by W. In this article, we generally show a parameter matrix by

$$P = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Remark 1.3. In this paper, we consider all perfect 3-colorings, up to renaming the colors; i.e. We identify the perfect 3-coloring with the matrices

$$\begin{bmatrix} d & c & b \\ g & i & h \\ d & e & f \end{bmatrix}, \quad \begin{bmatrix} e & d & f \\ b & a & c \\ h & g & i \end{bmatrix}, \quad \begin{bmatrix} e & f & d \\ h & i & g \\ b & c & a \end{bmatrix}, \quad \begin{bmatrix} i & h & g \\ f & e & d \\ c & b & a \end{bmatrix}, \quad \begin{bmatrix} i & g & h \\ c & a & b \\ f & d & e \end{bmatrix}.$$

Obtained by switching the colors with original coloring .

2 Preliminaries

In this section, we present some results concerning necessary conditions for the existence of perfect 3-colorings of the generalized peterson graph of GP(7,1), GP(8,1), GP(8,2) and GP(8,3) with a given parameter matrix

$$P = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

The simplest necessary condition for the existence of perfect 3-colorings of the generalized peterson

$$a + b + c = d + e + f = g + h + i = 3.$$

By using this condition and some computation, it is clear that we should consider 18 matrices . These matrices are listed below:

$$P_{1} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{2} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 3 \\ 1 & 2 & 0 \end{bmatrix}, \qquad P_{3} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{4} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix},$$

$$P_{5} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{6} = \begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}, \qquad P_{7} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{8} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix},$$

$$P_{9} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \qquad P_{10} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \qquad P_{11} = \begin{bmatrix} 0 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}, \qquad P_{12} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 2 & 0 \end{bmatrix},$$

$$P_{13} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{14} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}, \qquad P_{15} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad P_{16} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$P_{17} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \qquad P_{18} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

Theorem 2.1. [9] If T is a perfect coloring of a graph G in z colors, then any eigenvalue of T is an eigenvalue of G.

Theorem 2.2. [1] Suppose that T is a perfect 3- coloring with matrix $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, in the connected graph G. Then in this case, none of the following situations will occer.

- (1) b = c = 0.
- (2) d = f = 0,
- (3) q = h = 0,
- (4) $b = 0 \leftrightarrow d = 0, c = 0 \leftrightarrow g = 0, h = 0 \leftrightarrow f = 0.$

Theorem 2.3. [2] Let T a perfect 3-coloring of a graph G with matrix $P = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

(1) If $b, c, f \neq 0$, then

$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{q}}, \qquad |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, \qquad |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.$$

(2) If
$$b = 0$$
, then
$$|W| = \frac{|V(G)|}{\frac{c}{a} + 1 + \frac{ch}{fa}}, \qquad |B| = \frac{|V(G)|}{\frac{f}{b} + 1 + \frac{fg}{cb}}, \qquad |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{g}{c}}.$$

(3) If
$$c = 0$$
, then
$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{bf}{dh}}, \qquad |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{f}{h}}, \qquad |R| = \frac{|V(G)|}{\frac{h}{f} + 1 + \frac{dh}{hf}}.$$

(4) If
$$f = 0$$
, then
$$|W| = \frac{|V(G)|}{\frac{b}{d} + 1 + \frac{c}{q}}, \qquad |B| = \frac{|V(G)|}{\frac{d}{b} + 1 + \frac{cd}{bq}}, \qquad |R| = \frac{|V(G)|}{\frac{g}{c} + 1 + \frac{bg}{cd}}.$$

Theorem 2.4. [1] If $P = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ be a parameter matrix of a k-regular graph, then the eigenvalues of

P are

$$\lambda_{1,2} = \frac{\operatorname{tr}(P) - k}{2} \pm \sqrt{\left(\frac{\operatorname{tr}(P) - k}{2}\right)^2 - \frac{\det(P)}{k}}, \quad \lambda_3 = k.$$

Remark 2.5. The distinct eigenvalues of the graph GP(7,1) are the numbers 3, 1, The distinct eigenvalues of graph GP(8,1) are the numbers 3, 1, -1, The distinct eigenvalues of graph GP(8,2) are the numbers 1, 3 and the distinct eigenvalues of graph GP(8,3) are the numbers 3, 1, -1.

3 Perfect 3- colorings of some generalized peterson graph

The parameter matrices of GP(7,1), GP(8,1), GP(8,2) and GP(8,3) graphs are enumerated in the next teorems.

Theorem 3.1. The graph GP(7,1) has no perfect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(7,1) may be one of the matrices P_1, \dots, P_{18} . By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices $P_3, P_4, P_5, P_6, P_{10}, P_{12}, P_{15}$, and P_{18} can be a parameter matrices. By using Theorem 2.3, matrices P_3, P_6, P_{10}, P_{12} , and P_{15} cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_4 , each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:

- (1) $T(a_1) = T(a_{11}) = W$, $T(a_3) = T(a_5) = T(a_9) = T(a_{10}) = B$, $T(a_2) = T(a_4) = T(a_7) = T(a_8) = T(a_{12}) = R$ then $T(a_2) = T(a_{13}) = T(a_{14}) = B$, which is a contradiction with the second row of matrix P_4 .
- (2) $T(a_1) = T(a_8) = T(a_9) = T(a_{14}) = B$, $T(a_3) = W$, $T(a_2) = T(a_4) = T(a_6) = T(a_7) = T(a_{10}) = T(a_{13}) = R$ then $T(a_5) = T(a_{11}) = T(a_{12}) = B$, which is a contradiction with the second row of matrix P_4 . Hence graph GP(7,1) has no perfect 3-colorings with matrix P_4 .

Similar to matrix P_4 , we proof for matrix P_5 and P_{18} as follows:

For matrix P_5 , each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:

- (3) $T(a_3) = T(a_6) = W$, $T(a_7) = T(a_8) = T(a_{12}) = T(a_{14}) = B$, $T(a_2) = T(a_4) = T(a_5) = T(a_9) = T(a_{13}) = R$ then $T(a_4) = T(a_{10}) = R$, $T(a_{11}) = B$ which is a contradiction with the second row of matrix P_5 .
- (4) $T(a_1) = T(a_2) = T(a_5) = T(a_6) = T(a_{12}) = B$, $T(a_{10}) = W$, $T(a_3) = T(a_4) = T(a_8) = T(a_9) = T(a_{11}) = T(a_{13}) = R$ then $T(a_7) = B$ and $T(a_{14}) = W$, which is a contradiction with the second row of matrix P_5 . Hence graph GP(7,1) has no perfect 3-colorings with matrix P_5 .

For matrix P_{18} , each vertex with color white has two adjacent vertices with color black. Now have the following two possibilities:

- (5) $T(a_1) = T(a_2) = T(a_3) = T(a_4) = T(a_5) = T(a_8) = T(a_{12}) = T(a_{14}) = R$, $T(a_7) = T(a_9) = T(a_{11}) = R$, $T(a_6) = W$ then $T(a_{13}) = R$, which is a contradiction with the second three of matrix P_{18} .
- (6) $T(a_1) = T(a_4) = T(a_5) = T(a_9) = T(a_{10}) = T(a_{12}) = T(a_{14}) = R$, $T(a_2) = T(a_3) = B$, $T(a_8) = T(a_{11}) = W$ then $T(a_6) = T(a_7) = T(a_{13}) = B$, which is a contradiction with the second row of matrix P_{18} . Hence graph GP(7,1) has no perfect 3-colorings with matrix P_{18} .

Theorem 3.2. The graph GP(8,1) has a perfect 3-colorings with the matrices P_7 and P_{13} .

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8,1) may be one of the matrices P_1, \dots, P_{18} . Using the Theorems 2.1 and 2.4 matrices $P_3, P_4, P_5, P_6, P_7, P_{10}, P_{12}, P_{13}, P_{15}, P_{16}$ and P_{18} can be a parameter matrices. By using Theorem 2.3 matrices P_5, P_6, P_7 and P_{13} cannot be a parameter matrices, because of the number of white colors is not integer.

Consider the mapping T_1 and T_2 as follows:

$$T_1(a_1) = T_1(a_5) = T_1(a_{11}) = T_1(a_{15}) = W,$$
 $T_1(a_2) = T_1(a_6) = T_1(a_{12}) = T_1(a_{16}) = B,$ $T_1(a_3) = T_1(a_4) = T_1(a_7) = T_1(a_8) = T_1(a_9) = T_1(a_{10}) = T_1(a_{13}) = T_1(a_{14}) = R.$

$$T_2(a_2) = T_2(a_3) = T_2(a_6) = T_2(a_7) = W,$$
 $T_2(a_9) = T_2(a_{12}) = T_2(a_{13}) = T_2(a_{16}) = B,$ $T_2(a_1) = T_2(a_4) = T_2(a_5) = T_2(a_8) = T_2(a_{10}) = T_2(a_{11}) = T_2(a_{14}) = T_2(a_{15}) = R.$

It is clear that T_1 and T_2 are perfect 3-coloring with the matrices P_7 and P_{13} respectively.

Theorem 3.3. The graph GP(8,2) has no perefect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8,2) may be one of the matrices P_1, \dots, P_{18} . By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices $P_3, P_4, P_5, P_6, P_{10}, P_{12}, P_{15}$ and P_{18} can be a parameter matrices. By using Theorem 2.3, matrices $P_4, P_5, P_{10}, P_{12}, P_{15}, P_{18}$ cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_6 , each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:

- (1) $T(a_1) = T(a_5) = T(a_7) = T(a_8) = T(a_{10}) = T(a_{11}) = T(a_{14}) = T(a_{15}) = R$, $T(a_2) = T(a_3) = B$, $T(a_6) = T(a_9) = T(a_{13}) = T(a_{16}) = W$ then $T(a_4) = B$ and $T(a_{12}) = W$, which is a contradiction with the second row of matrix P_6 .
- (2) $T(a_1) = T(a_5) = T(a_{11}) = T(a_{15}) = R$, $T(a_2) = T(a_9) = T(a_{12}) = T(a_{13}) = W$, $T(a_7) = T(a_8) = T(a_{14}) = T(a_{16}) = B$ then $T(a_3) = T(a_4) = R$, which is a contradiction with the three row of matrix P_6 . Hence graph GP(8,2) has no perfect 3-colorings with the matrix P_6 .

Theorem 3.4. The graph GP(8,3) has no perefect 3-colorings.

Proof. A parameter matrix corresponding to perfect 3-colorings of the graph GP(8, 3) may be one of the matrices P_1, \dots, P_{18} . By using Theorem 2.1 and Theorem 2.4, we can see that only the matrices $P_3, P_4, P_5, P_6, P_7, P_{10}, P_{12}, P_{13}, P_{15}$ and P_{18} can be a parameter matrices. By using Theorem 2.3, matrices $P_3, P_4, P_5, P_{10}, P_{12}, P_{14}, P_{15}$, and P_{18} cannot be a parameter matrices, because the number of white, black and red, are not an integer. For matrix P_6 , each vertex with color white has three adjacent vertices with color red. Now have the following possibilities:

- (1) $T(a_1) = T(a_3) = T(a_9) = T(a_{13}) = T(a_{14}) = R$, $T(a_4) = T(a_{10}) = T(a_{11}) = T(a_{15}) = T(a_{16}) = B$, $T(a_2) = T(a_8) = T(a_{12}) = W$ then $T(a_5) = B$ and $T(a_6) = T(a_7) = R$, which is a contradiction with the three row of matrix P_6 .
- (2) $T(a_1) = T(a_{11}) = T(a_{13}) = W$, $T(a_3) = T(a_4) = T(a_7) = T(a_8) = T(a_{15}) = B$, $T(a_2) = T(a_5) = T(a_6) = T(a_{10}) = T(a_{12}) = T(a_{16}) = R$ then $T(a_9) = T(a_{14}) = R$, which is a contradiction with the three row of matrix P_6 . Hence graph GP(8,3) has no prefer 3-colorings with the matrix P_6 .

Similar to matrix P_6 , we can proof for the matrix P_7 as follows:

For matrix P_7 each vertex with color white has two adjacent vertices with color red. Now have the following two possibilities:

- (3) $T(a_1) = T(a_4) = T(a_5) = T(a_8) = T(a_9) = T(a_{16}) = R$, $T(a_3) = T(a_6) = T(a_{10}) = T(a_{15}) = B$, $T(a_2) = T(a_{14}) = W$ then $T(a_7) = T(a_{11}) = W$ and $T(a_{12}) = T(a_{13}) = R$, which is a contradiction with the three row of matrix P_7 .
- (4) $T(a_1) = T(a_4) = T(a_9) = T(a_{12}) = W$, $T(a_5) = T(a_8) = T(a_{13}) = B$, $T(a_2) = T(a_3) = T(a_6) = T(a_7) = T(a_{10}) = T(a_{11}) = T(a_{14}) = R$ then $T(a_{15}) = T(a_{16}) = B$, which is a contradiction with the two row of matrix P_7 . Hence graph GP(8,3) has no perfect 3-colorings with matrix P_7 .

Finally, we summarize the results of this paper in the following table.

Table 1: Parameter matrices of some generalized peterson graph

Graphs	Parameter Matrices
graph GP(7,1)	X
graph GP(8,1)	P_7, P_{13}
graph GP(8,2)	X
graph GP(8,3)	X

References

- [1] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of cubic graphs of order 10, Electronic Journal of Graph Theory and Applications (EJGTA),5(2) (2017),PP.194-206.
- [2] M. Alaiyan, A. Mehrabani, Perfect 3- colorings of the platonic graph, Iranian J. Sci. Technol., Trans. A Sci. (2017) 1-9.
- [3] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs J(6, 3) and J(7,3), Lecture Notes in Computer Science 5228 (2008), 11-19.
- [4] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs J(8,3) and J(8,4) with two colors, Journal of Applied and Industrial Mathematics 5 (2011), 19-30.
- [5] D.G. Fon-Der-Flaass, A bound on correlation immunity, Siberian Electronic Mathematical Reports Journal 4 (2007), 133-135.

- [6] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal 4(2007), 923-930.
- [7] D.G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, Siberian Mathematical Journal 4 (2007), 292-295.
- [8] A.L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs J(v, 3), *Journal of Combinatorial Designs* 21 (2013), 232-252.
- [9] C. Godsil, Compact graphs and equitable partitions, *Linear Algebra and Its Application* 255(1997), 259-266.

Email: alaeiyan@iust.ac.ir;

Email: zahra.shokoohi75@yahoo.com