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 ABSTRACT 

In this note we consider a particular symmetric matrix involving Jacobsthal sequence. We investigate 

determinant, Euclidean norm, 1-Norm and Infinity-Norm of this matrix and give lower bound and some 

upper bounds for the spectral norm of it. We prove that this matrix is positive definite. Also, we represent 

some numerical examples about these results. 
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1 INTRODUCTION 

In modelling some natural phenomena or some mathematical problems that follow regular rules, we 

encounter the recursive sequences. Fibonacci, for example, became interested in a strange issue in 1202. 

He wanted to know what the pattern would be if he had a pair of male and female rabbits and defined a 

behaviour for their descendants. And so, the famous Fibonacci sequence was defined. After that, many 

authors have studied Fibonacci sequence, some generalization of this sequence and several recurrence 

sequences of natural numbers like as Lucas, Pell, PellLucas, Pell, Jacobsthal, and Jacobsthal-Lucas 

sequences and etc.   

A Jacobsthal sequence {𝐽𝑛} is defined by 

𝐽𝑛 = 𝐽𝑛−1 + 2𝐽𝑛−2,     𝐽0 = 0, 𝐽1 = 1, 𝑛 ≥ 0.    (1) 

The first values of Jacobsthal sequence are:  

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731. 

The Jacobsthal-Lucas sequence{𝑗𝑛}  is defined by  

𝑗𝑛 = 𝑗𝑛−1 + 2𝑗𝑛−2,     𝑗0 = 2, 𝑗1 = 1, 𝑛 ≥ 0.     (2) 

The first values of Jacobsthal-Lucas sequence are:  

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191. 

In [1] Bueno studied (k,h)-Jacobsthal sequence of the form 

𝑇𝑛 = 𝑘𝑇𝑛−1 + 2h𝑇𝑛−2.             (3) 
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He found a formula of 𝑛th term and sum of the first 𝑛 terms of this sequence.  In [2] Campus and 

Catrino established an explicit formula for the term of order 𝑛, the well-known Binets formula, Catalans 

and Ocagnes identities and a generating function for k-Jacobsthal-Lucas sequence. Godase and Dhakne in 

[7] by using particular 2×2 matrices have studied some properties of k−Fibonacci and k−Lucas numbers. 

Petoudi and Pirouz in [11] investigated some properties of (k,h)-Pell sequence and (k,h)-Pell-Lucas 

sequence. For more information about Jacobsthal sequence, Jacobsthal-Lucas sequence, Fibonacci 

sequence, some generalizations of Fibonacci sequence and other related number sequences we refer to [3]-

[6], [12]-[15]. 

In this paper we consider a particular matrix of the form 𝕁 = [𝐽𝑘𝑖,𝑗
]𝑖,𝑗=1
𝑛  where 𝑘𝑖,𝑗 = min(𝑖, 𝑗) + 1 

and 𝐽𝑛is the 𝑛th Jacobsthal number. In exact, this matrix is given as  

𝕁 =

[
 
 
 
 
𝐽2 𝐽2 𝐽2
𝐽2 𝐽3 𝐽3

⋯ 𝐽2
⋯ 𝐽3

𝐽2 𝐽3 𝐽4
⋮ ⋮ ⋮
𝐽2 𝐽3 𝐽4

⋯ 𝐽4
⋱ ⋮
⋯ 𝐽𝑛+1]

 
 
 
 

,                   (4) 

Its Hadmard exponential matrix 𝑒°𝕁 is given by 

𝑒°𝕁 =

[
 
 
 
 
𝑒𝐽2 𝑒𝐽2 𝑒𝐽2

𝑒𝐽2 𝑒𝐽3 𝑒𝐽3

⋯ 𝑒𝐽2

⋯ 𝑒𝐽3

𝑒𝐽2 𝑒𝐽3 𝑒𝐽4

⋮ ⋮ ⋮
𝑒𝐽2 𝑒𝐽3 𝑒𝐽4

⋯ 𝑒𝐽4

⋱ ⋮
⋯ 𝑒𝐽𝑛+1]

 
 
 
 

.         (5) 

We represent the Euclidean norm of 𝕁 and find two upper bounds and lower bounds for the spectral norm 

of this matrix by using some well-known properties of Jacobsthal sequence. 

Also, we prove that 𝕁  is a positive definite matrix. We verify that the 1-norm, infinity norm and trace of 𝕁 

are all equal. Finally, some examples about these results are given in this paper. Some properties of 

Jacobsthal sequence and Jacobsthal-Lucas sequences are listed here: 

 

 

Binet formula: 

𝐽𝑛 =
2𝑛−(−1)𝑛

3
,        𝑗𝑛 = 2𝑛 + (−1)𝑛.     (6) 

Summation formulas: 

∑ 𝐽𝑘
𝑛
𝑘=2 =

𝐽𝑛+2−3

2
,       ∑ 𝑗𝑘

𝑛
𝑘=2 =

𝑗𝑛+2−5

2
.    (7) 

Let 𝐴 = [𝑎𝑖𝑗] is an 𝑛 × 𝑛 matrix. Trace of 𝐴 is denoted by 𝑇𝑟𝑎𝑐𝑒(𝐴) and is defined by 

𝑇𝑟𝑎𝑐𝑒(𝐴) = 𝑎11 + 𝑎22  + 𝑎33  + ⋯ + 𝑎𝑛𝑛.   (8) 

All definition and statements of this section are in the reference [1]-[4] and [17]. 

Let 𝐴 = [𝑎𝑖𝑗] is an 𝑛 × 𝑛 matrix. The 𝑙𝑝norm of 𝐴 is defined by 

‖𝐴‖𝑝 = (∑ ∑ |𝑎𝑖𝑗|
𝑝𝑛

𝑗=1
𝑛
𝑖=1 )

1

𝑝
.                     (9) 

For 𝑝 = 2, this norm is called Frobenius or Euclidean norm and showed by ‖𝐴‖𝐸. The maximum column 

length norm of 𝐴 denoted 𝑐(𝐵) , is defined   as 

𝑐1(𝐴) = 𝑚𝑎𝑥𝑗√∑ |𝑎𝑖𝑗|
2

𝑖   ,                           (10) 

 and the maximum row length norm of matrix 𝐴 denoted  𝑟(𝐴), is defined   

 

𝑟1(𝐴) = 𝑚𝑎𝑥𝑖√∑ |𝑎𝑖𝑗|
2

𝑗  .                           (11) 
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Let 𝐵 = [𝑏𝑖𝑗] and 𝐶 = [𝑐𝑖𝑗]are 𝑚 × 𝑛 matrices. Then Hadamard product of 𝐵 and 𝐶 is defined by 

𝐵°𝐶 = [𝑏𝑖𝑗𝑐𝑖𝑗]. If 𝐴 = 𝐵°𝐶, (Hadamard product of 𝐵 and 𝐶). Then we have 

‖𝐴‖2 ≤ 𝑟1(𝐵)𝑐1(𝐶) ,     (12) 

Where 𝑐1(𝐶)is the maximum column length norm of 𝐶 and 𝑟1(𝐵) is the maximum row length norm of 𝐵. 

The spectral norm of 𝐴 is defined by 

            ‖𝐴‖2 = √max
1≤𝑖≤𝑛

𝜌𝑖              (13) 

where 𝜌𝑖is the eigenvalue of matrix 𝐴𝐴𝐻 and 𝐴𝐻 is conjugate transpose of matrix 𝐴. There is a 

relation between euclidean and spectral norm, that is 
1

√𝑛
‖𝐴‖𝐸 ≤ ‖𝐴‖2 ≤ ‖𝐴‖𝐸 .      (14) 

It is known that 

∑ 𝑥𝑘 =
𝑥𝑛−1

𝑥−1
𝑛−1
𝑘=0  ,                               (15) 

∑ 𝑘𝑥𝑘 =
(𝑛−1)𝑥𝑛−𝑛𝑥𝑛−1+1

(𝑥−1)2
𝑛−1
𝑘=0              (16) 

If 𝐴 = [𝑎𝑖𝑗]𝑖,𝑗=1
𝑛  is an 𝑛 × 𝑛 matrix, then we have the following relations about the 1-norm and infinity 

norm 𝐴: 

‖𝐴‖1 = max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗| 

𝑛

𝑖=1

                   (17) 

 

‖𝐴‖∞ = max
1≤𝑖≤𝑛

∑|𝑎𝑖𝑗| 

𝑛

𝑗=1

                   (18) 

 

 

 

2  MAIN RESULTS 

In this section we give determinants, Euclidean norm, 1-Norm, Infinity-Norm, lower bound and 

two upper bounds for the spectral norm of matrix 𝕁 . Also, we show that this matrix is positive definite.  

 

Theorem (2.1). Let 𝕁 be a matrix as in (4), then we get  

det( 𝕁) = 2∏𝐽𝑘−1

𝑛−1

𝑘=2

 . 

Proof. Using elementary row operations on (4) we get 

det(𝕁) =

[
 
 
 
 
𝐽2 𝐽2 𝐽2
0 𝐽3 − 𝐽2 𝐽3 − 𝐽2

⋯ 𝐽2
⋯ 𝐽3 − 𝐽2

0     0 𝐽4 − 𝐽3
⋮      ⋮ ⋮
0     0 0

⋯ 𝐽4
⋱ ⋮
⋯ 𝐽𝑛+1 − 𝐽𝑛]

 
 
 
 

 

= 𝐽2 ∏ (𝐽𝑘+1
𝑛−1
𝑘=2 − 𝐽𝑘)= ∏ 2𝐽𝑘−1 =𝑛−1

𝑘=2 2∏ 𝐽𝑘−1
𝑛−1
𝑘=2 . 

 

Lemma (2.2). Let 𝐽𝑛 be the 𝑛th Jacobsthal number. Then  
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∑ 𝐽𝑘
𝑛 =

1

9
[𝐽2𝑛+2 + (−1)𝑛+1𝐽𝑛+2 + 𝑛].

𝑛

𝑘=1

 

Proof. See [1]. 

 

Theorem (2.3). Let 𝕁 be a matrix as in (4). The upper bound for 𝕁  is given as 

‖𝕁 ‖2 ≤
1

9
√([𝐽2𝑛+4 + (−1)𝑛+2𝐽𝑛+3 + 𝑛 + 1] −

1

9
) (𝐽2𝑛+2 + (−1)𝑛+1𝐽𝑛+2 + 𝑛). 

Proof. Using definition of Hadamard product for symmetric matrix 𝕁, we write 

 

𝕁 =

[
 
 
 
 
𝐽2 1 1
𝐽2 𝐽3 1

⋯ 1
⋯ 1

𝐽2 𝐽3 𝐽4
⋮ ⋮ ⋮
𝐽2 𝐽3 𝐽4

⋯ 1
⋱ ⋮
⋯ 𝐽𝑛+1]

 
 
 
 

°

[
 
 
 
 
1 𝐽2 𝐽2
1 1 𝐽3

⋯ 𝐽2
⋯ 𝐽3

1 1 1
⋮ ⋮ ⋮
1 1 1

⋯ 𝐽4
⋱ ⋮
⋯ 1]

 
 
 
 

= 𝐴°𝐵. 

 

According to (10) and (11) and lemma (2.) we get  

 

𝑟1(𝐴) = 𝑚𝑎𝑥𝑖√∑ |𝑎𝑖𝑗|
2

𝑗
 = 𝑚𝑎𝑥𝑖√∑ |𝑎𝑖𝑗|

2

𝑗
= √∑ 𝐽𝑖

2

𝑛+1

𝑖=2

= √∑ 𝐽𝑖
2

𝑛+1

𝑖=1

− 1

= √
1

9
[𝐽2𝑛+4 + (−1)𝑛+2𝐽𝑛+3 + 𝑛 + 1] − 1 . 

Also, we have 

𝑐1(𝐵) = 𝑚𝑎𝑥𝑗√∑ |𝑎𝑖𝑗|
2

𝑖
= √∑𝐽𝑖

2 + 1

𝑛

𝑖=2

= √∑𝐽𝑖
2 − 1 + 1

𝑛

𝑖=1

 

= √∑𝐽𝑖
2

𝑛

𝑖=1

= √
1

9
[𝐽2𝑛+2 + (−1)𝑛+1𝐽𝑛+2 + 𝑛] =

1

3
√𝐽2𝑛+2 + (−1)𝑛+1𝐽𝑛+2 + 𝑛 . 

Hence by (12) and after some computation we get 

 

‖𝕁‖2 ≤ 𝑟1(𝐴)𝑐1(𝐵) =
1

9
√([𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛 + 1] −

1

9
) (𝐽2𝑛+2 + (−1)𝑛+1𝐽𝑛+2 + 𝑛). 

This proves the theorem. 

Remark (2.4). Applying (16) we can write 

 

∑ 𝑘𝑥𝑘+1 =
n𝑥𝑛+2 − (𝑛 + 1)𝑥𝑛+1 + x

(𝑥 − 1)2

𝑛

𝑘=1

. 

Theorem (2.5). Let 𝕁 be a matrix as in (4). Then the Euclidean norm of  𝕁 is given by 
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‖𝕁‖𝐸
2 = [

(2𝑛 + 1)(𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛)

9
]

− [
16(−2)𝑛(3 𝑛 + 1) + 22𝑛+5(3𝑛 − 1) + 9𝑛(9𝑛 + 1) + 16

81
]. 

Proof. By definition of Euclidean norm, we can write 

 

‖𝕁‖𝐸
2 = ∑∑|𝐽𝑘𝑖,𝑗

|
2

𝑛

𝑗=1

𝑛

𝑖=1

= ∑(2𝑛 − 2𝑘 + 1)

𝑛

𝑘=1

𝐽𝑘+1
2 = (2𝑛 + 1) ∑ 𝐽𝑘+1

2

𝑛

𝑘=1

− 2 ∑ 𝑘 𝐽𝑘+1
2

𝑛

𝑘=1

 .  (2.5.1) 

We have 

∑ 𝐽𝑘+1
2

𝑛

𝑘=1

= ∑ 𝐽𝑘
2

𝑛+1

𝑘=1

− 𝐽1 =
1

9
[𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛 + 1 − 1] 

=
1

9
[𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛].              (2.5.2) 

By (6) we have 𝐽𝑛 =
2𝑛−(−1)𝑛

3
. Hence, we obtain 

∑ 𝑘 𝐽𝑘+1
2

𝑛

𝑘=1

= ∑ 𝑘 (
2𝑘+1 − (−1)𝑘+1

3
)

2𝑛

𝑘=1

=
1

9
(∑ 𝑘 [2𝑘+1 − (−1)𝑘+1]2

𝑛

𝑘=1

) 

 

=
1

9
(∑ 𝑘 [4𝑘+1 − 2(−2)𝑘+1 + 1]

𝑛

𝑘=1

). 

 

Using remark (2.4) we get 

 

∑ 𝑘4𝑘+1

𝑛

𝑘=1

=
16[(3𝑛)4𝑛 − 4𝑛 + 1]

9
, ∑ 𝑘(−2)𝑘+1

𝑛

𝑘=1

= −
4

9
[3(−2)𝑛𝑛 − (−2)𝑛 − 1] , 

Also, we have ∑ 𝑘𝑛
𝑘=1 =

𝑛(𝑛+1)

2
.  

By adding these summations, and after some calculations we obtain 

 

∑ 𝑘 𝐽𝑘+1
2

𝑛

𝑘=1

=
48(−2)𝑛𝑛 + 16(−2)𝑛 + (96𝑛)22𝑛 − 22𝑛+5 + 9𝑛2 + 9𝑛 + 16

162
.      (2.5.3) 

Consequently, by (2.5.1), (2.5.2) and (2.5.3) we find that 

‖𝕁‖𝐸
2 = [

(2𝑛 + 1)(𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛)

9
]

− [
16(−2)𝑛(3 𝑛 + 1) + 22𝑛+5(3𝑛 − 1) + 9𝑛(9𝑛 + 1) + 16

81
]. 

 
Theorem (2.6). Let 𝕁 be a matrix as in (4). Then we have the following lower bound and upper bound for 

the spectral norm of  𝕁. 

1

√𝑛
√

(2𝑛 + 1)(𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛)

9
−

16(−2)𝑛(3 𝑛 + 1) + 22𝑛+5(3𝑛 − 1) + 9𝑛(9𝑛 + 1) + 16

81
 

≤ ‖𝕁‖2 
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≤ √
(2𝑛 + 1)(𝐽2𝑛+4 + (−1)𝑛𝐽𝑛+3 + 𝑛)

9
−

16(−2)𝑛(3 𝑛 + 1) + 22𝑛+5(3𝑛 − 1) + 9𝑛(9𝑛 + 1) + 16

81
. 

Proof. It can be proved from (14) and theorem (2.5). 

 

Lemma (2.7). Let 𝐴 is a symmetric matrix, then 

(I) 𝐴 is positive definite if and only if all its leading principal minors are positive. 

(II) 𝐴 is positive definite if and only if all of its eigenvalues are positive. 

Proof. See [17]. 

Theorem (2.8). Let 𝕁 be a matrix as in (4). Then 𝕁 is a positive definite matrix. 

Proof. According to theorem (2.1), all of leading principal minors of 𝕁 are positive. Since 𝕁 is a symmetric 

matrix, thus the result follows from lemma (2.7). 

 

Corollary (2.9). Let 𝕁 be a matrix as in (4). Then, all the eigenvalues of 𝕁 are positive. 

Proof. it follows from lemma (2.7) and theorem (2.8). 

Theorem (2.10). Let 𝕁 be a matrix as in (4). Then 1-Norm, Infinity Norm and Trace of 𝕁 are all equal and 

we have 

‖𝕁‖1 = ‖𝕁‖∞ = 𝑇𝑟𝑎𝑐𝑒(𝕁) = ∑ 𝐽𝑘

𝑛

𝑘=2

=
𝐽𝑛+2 − 3

2
 . 

Proof. According to the definition of 1-norm and the entries of matrix form 𝕁 = [𝐽𝑘𝑖,𝑗
]𝑖,𝑗=1
𝑛 , we have: 

‖𝕁‖1 = max
1≤𝑗≤𝑛

∑𝐽𝑘𝑖,𝑗
=

𝑛

𝑖=1

𝐽2 + 𝐽3 + ⋯+ 𝐽𝑛+1 = ∑ 𝐽𝑘

𝑛

𝑘=2

 .  

By (7) we know that ∑ 𝐽𝑘
𝑛
𝑘=2 =

𝐽𝑛+2−3

2
, thus we deduce that 

‖𝕁‖1 =
𝐽𝑛+2−3

2
. 

Using similar manners, we can prove that 

‖𝕁‖∞ = 𝑡𝑟𝑎𝑐𝑒(𝕁) = ∑ 𝐽𝑘

𝑛

𝑘=2

=
𝐽𝑛+2 − 3

2
 . 

 

3 NUMERICAL EXAMPLES 

In this section we provide two examples about the determinant, Euclidean norm, 1-Norm, Infinity 

Norm, Trace and bounds for the spectral norm of two particular symmetric matrices involving Jacobsthal 

sequence of the form (4). We have used the mathematical online compiler in order to obtain some 

computations about these examples.  

Example 1. Consider the matrix 𝐴 = [

1 1
1 3

1 1
3 3

1 3
1 3

5 5
5 11

], then we have the following numerical results about 

this matrix: 

 

(a1)    𝐷𝑒𝑡(𝐴) = 24, 
(a2)    ‖𝐴‖E = 15.7481, 
(a3)    Eigenvalues of 𝐴 =0.5332, 0.9305,     3.1422,    15.3940. 

(a4)    The 1-Norm, Infinity Norm and trace of matrix 𝐴 are given as follows: 
‖𝐴‖1 = ‖𝐴‖∞ = 𝑇𝑟𝑎𝑐(𝐴) = 20. 

(a5)    We have the following lower bound and upper bound for the spectral norm of symmetric matrix 𝐴: 
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1

2
(15.7481) ≤ ‖𝐴‖2 ≤ 15.7481. 

 

Example 2. Consider the matrix 𝐵 =

[
 
 
 
 
 
 
 
 
1 1 1
1 3 3
1 3 5

1 1 1
3 3 3
5 5 5

1  1 1
3  3 3
5  5 5

1 3 5
1 3 5
1 3 5

11 11 11
11 21 21
11 21 43

11 11 11
21 21 21
43 43 43

1 3 5
1 3 5
1 3 5

11 21 43
11 21 43
11 21 43

     
85 85 85
85 171 171
85 171 341]

 
 
 
 
 
 
 
 

, then we have the 

following numerical results about this matrix: 

 

(b1)    𝐷𝑒𝑡(𝐵) = 3242131200, 
(b2)    ‖𝐵‖E = 508.7721. 

 

(b3)   Eigenvalues of 𝐵 are 0.5332,0.9290, 2.5894, 5.1896, 10.6530, 21.2752, 43.1246, 100.4145, 496.2915. 

 

(b4)   The 1-Norm, Infinity Norm and trace of matrix 𝐵 are given as follows: 
‖𝐴‖1 = ‖𝐴‖∞ = 𝑇𝑟𝑎𝑐(𝐴) = 681. 

(b5)   We have the following lower bound and upper bound for the spectral norm of symmetric matrix 𝐵: 
1

3
(508.7721) ≤ ‖𝐵‖2 ≤ 508.7721. 

4 CONCUSION 

In this paper we considered a particular symmetric matrix involving Jacobsthal sequence. We proved 

some relation about the determinant, Euclidean norm, 1-Norm and Infinity-Norm of this matrix. We 

computed lower bound and some upper bounds for the spectral norm of this matrix. We proved that this 

matrix is positive definite. Also, we represented two numerical examples about these results. 

For the future works, one can consider circulant matrices involving Jacobsthal sequence or other 

special number sequence relate to Jacobsthal sequence and obtain new results about the norm properties of 

these matrices. 
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