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Abstract

T̋ An edge double Roman dominating function (EDRDF ) on a graph G is a function f : E(G) →
{0, 1, 2, 3} satisfying the condition that such that every edge e with f(e) = 0, is adjacent to at least two
edge e, e′ for which f(e) = f(e′) = 2 or one edge e′′ with f(e′′) = 3, and if f(e) = 1, then edge e must
have at least one neighbor e′ with f(e′) ≥ 2. The Edge double Roman dominating number of G, denoted
by γ′dR(G), is the minimum weight w(f) =

∑
e∈E(G) f(e) of an edge double Roman dominating function

f of G. In this paper, we introduction some results on the edge double Roman domination number of a
graph.

Keywords: Double Roman dominating function. Double Roman domination number. Edge double Ro-
man dominating function. Edge double Roman domination number.

1 Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). The order |V | of G
is denoted by n = n(G). For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V (G) :
uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = |N(v)|.

A Edge Roman dominating function(ERDF) of graph G is a function f : E(G) −→ {0, 1, 2} satisfying
the condition that every edge e with f(e) = 0 is adjacent to some edge e′ with f(e′) = 2. The Edge Roman
domination number of a graph G, denoted by γ′R(G), is the minimum weight w(f) =

∑
e∈E(G) f(e) of an

Edge Roman dominating function of G. The concept of edge Roman domination has been several variants
of domination, see for example [9, 10, 14, 15, 8, 4]
A Edge double Roman dominating function(EDRDF) of graph G is a function f : E(G) −→ {0, 1, 2, 3}
having the property that if f(e) = 0, then edge e has at least two neighbors assigned 2 under f or
one neighbor e′ with f(e′) = 3, and if f(e) = 1, then edge e must have at least one neighbor e′ with
f(e′) ≥ 2. The weight of an edge double Roman dominating number of f , denote by ω(f), is the
value

∑
e∈E(G) f(e). The weight of a EDRDF,

∑
e∈E(G) f(e). The minimum weight of a EDRDF is

the edge double roman domination number of G, denoted by γ′dR(G). If f is a EDRDF in a graph G,

then we simply can represent f by f = (E0, E1, E2, E3)(or f = (Ef
0 , E

f
1 , E

f
2 , E

f
3 ) to refer to f), where

E0 = {e ∈ E(G) : f(e) = 0}, E1 = {e ∈ E(G) : f(e) = 1}, E2 = {e ∈ E(G) : f(e) = 2}, and
E3 = {e ∈ E(G) : f(e) = 3}.
In this note we initiate the study of the Edge double Roman domination in graphs and present some (sharp)
bounds for this parameter. In addition, we determine the Edge double Roman domination number of some
classes of graphs.

2 Graphs with Small or large Edge double Roman Domination Number

speaker

639
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Figure 1: Structure of graphs in the family T

Let T be the class of all graphs G such that G = K2 ∨Kn−2 or G is obtained from K2 ∨Kn−2 by removing
at most one edge incident with x for every vertex x ∈ V (K2 ∨Kn−2), where V (K2) = {u, v}.

Proposition 2.1. Let G be a connected graph of size m ≥ 2. Then γ′dR(G) = 3 if and only if G ∈
{K4 − e} ∪ T , where e ∈ E(K4).

Proof. Assume that γ′dR(G) = 3. Let f = (Ef
0 , E

f
1 , E

f
2 , E

f
3 ) be a γ′dR(G)-function of G such that E1 = ∅(by

proposition ??) and |Ef
3 | is maximum. Assume that |Ef

3 | = 1. Let Ef
3 = {xy}. Clearly, {xy} is an edge

dominating set of G. Then, each edge must be incident on x or y. Thus, G = K2∨Kn−2 or is obtained from
K2∨Kn−2 by removing at most one edge incident with u for every vertex u ∈ V (G)−{x, y}. Consequently,
G ∈ {K4 − e} ∪ T . The converse is obvious.

Proposition 2.2. Let G be a connected graph of size m ≥ 4. Then γ′dR(G) = 4 if and only if G ∈ {K4, C4}.

Proof. Assume that γ′dR(G) = 4. Let f = (Ef
0 , E

f
1 , E

f
2 , E

f
3 ) be a γ′dR(G)-function of G such that E1 = ∅(by

proposition ??) and |Ef
2 | is maximum. Assume that |Ef

2 | = 2. Let Ef
2 = {uv}, {u′v′}. by definition γ′dR(G),

each other edge must be incident on u orv and u′ or v′. It is easy to see that G = K4 and G = C4. The
converse is obvious.

Let G be the class of all graphs H such that H is obtained from a graph G ∈ T by adding an edge
between the vertices V (G)− {u, v} or adding a leaf to a vertex of V (G)− {u, v}.

Proposition 2.3. Let G be a connected graph of size m ≥ 3. Then γ′dR(G) = 5 if and only if G ∈ G.

Proof. Assume that γ′dR(G) = 5. Let f = (Ef
0 , E

f
2 , E

f
3 ) be a γ′dR(G)-function such that |Ef

3 | is maximum.

Assume that |Ef
3 | = 1 then without loss of generality, assume that |Ef

2 | = 1. Let Ef
3 = {uv} and Ef

2 = {xy}.
Then, each edge with exception of xy is incident with u or v. Since G is connected and f is a γ′dR(G)-function,
we may assume without loss of generality, that N(x) ∩ {u, v} 6= ∅. Assume N(y) ∩ {u, v} 6= ∅. Then clearly
Γ′dR(G−xy) = 3 and f |G−xy is a γ′dR(G−xy)-function. By proposition 2.1, G−xy ∈ T . Consequently, G ∈ G.
Thus assume that N(y)∩{u, v} = ∅. Then clearly γ′dR(G− y) = 3 and f |G−y is a γ′dR(G−xy)-function. By
proposition 2.1, G− y ∈ T , then clearly G ∈ G. The converse is obvious.

A1 A2 A3 A4 A5 A6

Figure 2:

Theorem 2.4. For any graph G of order n ≥ 4, γ′dR(G) ≤ 2n − 4. Equality holds if and only if G =
{C4,K4, C5,K5,K2,3, A1, A2, A3, A4, A5, A6}.
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Proof. Let n = 4 and M be a maximum matching in G. We assigning 2 to the edges of M and 0 to each other
edge produces a EDRDF , implying that γ′dR(G) ≤ 4 = 2n− 4. Now assume n ≥ 5. Let M be a maximum
matching in G. Clearly, |M | ≤ n

2 . If |M | < bn2 c then 3 to the each of M and 0 to each other edge produces
a EDRDF , implying that γ′dR(G) ≤ 3bn2 c < 2n − 4. Thus, assume that |M | = n

2 . Let {e1, e2, ..., ebn
2
c}

be a maximum matching of G. If n is even then assigning 2 to ei for i ∈ {1, 2, ..., n2 and 0 to each other
edge produces a EDRDF for G, thus γ′dR(G) ≤ 2(n2 ) < 2n − 4. If n is odd then assigning 2 to ei for
i ∈ {1, 2, ..., bn2 c+ 1} and 0 to each other edge produces a EDRDF for G, thus γ′dR(G) ≤ 2bn2 c+ 2 ≤ 2n−4.
Now, assume that equality holds. By the above argument n = 4 it is not hard to see that G = C4,K4 and
|M | = bn2 c for n odd, it is not hard to see that n = 5 therefore G ∈ C5,K5,K2,3, A1, A2, ..., A6.
The converse is obvious.

H1 H2 H3

Figure 3:

Theorem 2.5. For any triangle-free graph G of order n ≤ 4, γ′dR(G) = 2n − 6 if and only if G ∈
P6, C6, C7, H1, H2, H3.

Proof. Let G be a graph of order n ≥ 4 and γ′dR(G) = 2n − 6. Let Cg = (x1x2...xg(G)) be a shortest
cycle in G. Assume that g(G) ≥ 8. Let I be the set of isolated vertices of G − Cg and J be the set
of vertices of all K2- components of G − Cg. We assign the values of a γ′dR(Cg)-function to the edges of
H = G − Cg − (I ∪ J) and 2 to each incident to any vertex of I ∪ J . Clearly, there is precisely one edge
incident to any vertex of I. Furthermore, by theorem 2.4, γ′dR(H) ≤ 2(n−g(G)−|I|− |J |)−4 and therefore
γ′dR(G) ≤ 3dg2e + |J | + 2(n − g(G) − |I| − |J |) − 4 ≤ 2n + 3dg2e − 2g − 4. If G is even then, we obtain a
EDRDF for G of weight less than 2n− 8, a contradiction. If G is odd then, we obtain a EDRDF for G of
weight less than 2n− 7, a contradiction. We conclude that g(G) ≤ 7. We continue with the following cases.
Case 1. g(G) = 7.

Let I be the set of isolated vertices of G−C7 and J be the set of vertices of all K2- components of G−C7.
We assign the values of a γ′dR(C7)-function to the edges of H = G−C7−(I∪J) and 2 to each incident to any
vertex of I∪J . Clearly, there is precisely one edge incident to any vertex of I. Furthermore, by theorem 2.4,
γ′dR(H) ≤ 2(n−7−|I|−|J |)−4. If H 6= ∅ then γ′dR(G) ≤ 2d72e+|J |+2(n−7−|I|−|J |)−4 ≤ 2n−10−|I|−|J |,
a contradiction. Thus H 6=. if |I| 6= ∅ and |J | = ∅ then 2n − 6 ≤ 8 + |I|, it can be easily seen |I| ≤ 0.
Similarity, |J | ≤ 0. Thus assume that H = |I| = |J | = ∅. Consequently, G = C7.
Case 2. g(G) = 6.

Let I be the set of isolated vertices of G−C6 and J be the set of vertices of all K2- components of G−C6.
We assign the values of a γ′dR(C6)-function to the edges of H = G−C6−(I∪J) and 2 to each incident to any
vertex of I∪J . Clearly, there is precisely one edge incident to any vertex of I. Furthermore, by theorem 2.4,
γ′dR(H) ≤ 2(n−6−|I|−|J |)−4. If H 6= ∅ then γ′dR(G) ≤ 2d62e+|J |+2(n−6−|I|−|J |)−4 ≤ 2n−10−|I|−|J |,
a contradiction. Thus H 6=. if |I| 6= ∅ and |J | = ∅ then 2n − 6 ≤ 6 + |I|, it can be easily seen |I| ≤ 0.
Similarity, |J | ≤ 0. Thus assume that H = |I| = |J | = ∅. Consequently, G = C6.
Case 3. g(G) = 5.

Let I be the set of isolated vertices of G−C5 and J be the set of vertices of all K2- components of G−C5.
We assign the values of a γ′dR(C5)-function to the edges of H = G−C5−(I∪J) and 2 to each incident to any
vertex of I∪J . Clearly, there is precisely one edge incident to any vertex of I. Furthermore, by theorem 2.4,
γ′dR(H) ≤ 2(n−5−|I|−|J |)−4. If H 6= ∅ then γ′dR(G) ≤ 2d52e+|J |+2(n−5−|I|−|J |)−4 ≤ 2n−8−|I|−|J |,
a contradiction. Thus H 6=. if |I| 6= ∅ and |J | = ∅ then 2n − 6 ≤ 8 + |I|, it can be easily seen |I| ≤ 2.Let
|I| = 2. Without less of generality assume that y1 ∈ N(x1)−{x2, x5} and y2 ∈ N(x3)−{x2, x4}. We assign
3 to x1x2, x3x4 and 0 to x1y1, x1x5, x2x3, x3y2, x4x5, then we obtain a EDRDF for G of weight less than
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2n − 6, a contradiction. Assume that |I| = 1 and y1 ∈ N(x2) − {x1, x3}. We assign 3 to x1x2, x4x5 and 0
to each edge incident to x1x2, x4x5, then we obtain a EDRDF for G of weight 2n − 6, therefore G = H1.
Similarity, |J | ≤ 2. Without less of generality assume that y1 ∈ N(x1)−{x2, x5} and y2 ∈ N(y1)−{x1}. We
assign 3 to x1y1, x3x4 and 0 to x1x2, x1x5, x2x3, x3y2, x4x5, then we obtain a EDRDF for G of weight less
than 2n − 6, a contradiction. Thus assume that H = |I| = |J | = ∅. Consequently, G = C5 a contradiction
since γ′dR(C5) = 6 6= 2n− 6.
Case 4. g(G) = 4.

Let I be the set of isolated vertices of G−C4 and J be the set of vertices of all K2- components of G−C4.
We assign the values of a γ′dR(C4)-function to the edges of H = G−C4−(I∪J) and 2 to each incident to any
vertex of I∪J . Clearly, there is precisely one edge incident to any vertex of I. Furthermore, by theorem 2.4,
γ′dR(H) ≤ 2(n−4−|I|− |J |)−4. If H 6= ∅ then γ′dR(G) ≤ 4+ |J |+2(n−4−|I|− |J |)−4 ≤ 2n−8−|I|− |J |,
a contradiction. Thus H 6=. if |I| 6= ∅ and |J | = ∅ then 2n − 6 ≤ 8 + |I|, it can be easily seen |I| ≤ 2.Let
|I| = 2. Without less of generality assume that y1 ∈ N(x1)−{x2, x4} and y2 ∈ N(x3)−{x2, x4}. We assign
3 to x1y1, x3y2 and 0 to x1x2, x2x3, x3x4, x1x4, then we obtain a EDRDF for G of weight than 2n − 6.
Therefore G = H2. Assume that |I| = 1 and y1 ∈ N(x1) − {x1, x4}. We assign 2 to x1x2, x3x4, 1 to x1y1
and 0 to x1x3, x2x4, then we obtain a EDRDF for G of weight less than 2n− 6, a contradiction. Similarity,
|J | ≤ 2. Without less of generality assume that y1 ∈ N(x1)−{x2, x4} and y2 ∈ N(y1)−{x1}. We assign 2 to
x1x4, x2x3, y1y2 and 0 to x1y1, x1x2, x3x4, then we obtain a EDRDF for G of weight 2n− 6, thus G = H3.
Thus assume that H = |I| = |J | = ∅. Consequently, G = C4 a contradiction since γ′dR(C4) = 4 6= 2n− 6.
Case 5. g(G) = 0.

Thus, G = T is a tree . If diam(T ) = 2, then T is a star with at least four vertices. So γ′dR(G) = 3,
a contradiction. If diam(T ) = 3, then T is a double-star with at least four vertices. So γ′dR(G) = 3, a
contradiction. Let P be a diametrical path. If diam(T ) ≥ 7 then it can be easily seen that T is EDRDF of
weight less than 2n− 6, a contradiction. Thus, 4 ≤ diam(T ) ≤ 6. Let ∆(T ) ≥ 3. Without less of generality
assume that y1 ∈ N(X4) − {x3, x5}. We assign 3 to x3x4, 0 to x2x3, x4y1, x4x5 and 2 to each other edge
produces a EDRDF for T of weight less than 2n − 6, a contradiction. Thus ∆(T ) = 2. If T = P4 then
γ′dR(P4) = 4 6= 2n− 6 and if T = P5 then γ′dR(P5) = 6 6= 2n− 6. Consequently, T = P6.
The converse is obvious.

Proposition 2.6. Let G be a connected graph of size m. Then γ′dR(G) = 2m − 3 if and only if G =
C3,K1,3, P4, P5.

Proof. Let G be a connected graph of size m with γ′dR(G) = 2m − 3. By theorem ??, m ≤ 4. Thus,
diam(G) ≤ 4 and g(G) ≤ 4. If g(G) = 4 then the assumption m = 4 implies that G = C4, a contradiction
since γ′dR(C4) = 4.
Assume that g(G) = 3. Let C : (x1, x2, x3) be a cycle in G. If deg(x1) ≥ 3 and y1 ∈ N(x1)− {x2, x3} then
assigning 3 to x1x2, 0 to x1y1, x1x3, x2x3 and 2 to each other edge produces a EDRDF for G of weight
less than 2m − 3, a contradiction. Thus, deg(x1) = 2 and similarly deg(x2) = deg(x3) = 2. Consequently
G = C3.
Next, assume that g(G) = 0. Thus, G = T is a tree. Suppose that T has a vertex v of degree at least 4
and {w1, w2, w3, w4} ⊆ N(v). Then f = ({vw1, vw2, vw3}, E(G)− {vw1, vw2, vw3, vw4}, vw4) is a EDRDF
with w(f) < 2m− 3, a contradiction. Thus, ∆(G) ≤ 3. If diam(T ) = 2, then G is star and one can a easily
check that G = K1,3.
Assume that diam(G) = 3. Then G is a double star. If ∆(G) > 2, then f = (E(G) − {uv}, ∅, {uv}),
where uv is the central edge of G, is a EDRDF with w(f) < 2m − 3, a contradiction. Thus ∆(G) = 2.
Consequently, G = P4. It remains to assume that diam(G) = 4. Let x0x1x2x3x4 be a diametrical path in
G. If deg(x2) > 2 or deg(x3) > 2, then we assign 3 to x2x3, 0 to any edge incident with x2x3 and 2 to any
other edge of G to obtain a EDRDF with w(f) < 2m − 3, a contradiction. Thus, deg(x2) = deg(x3) = 2
and by symmetry, deg(x1) = 2. Consequently, G = P5.

Let H be a graph obtained from C5 by adding a leaf to one vertex of C5. Let T1 be a tree obtained
from P7 : x1 − x2 − x3 − x4 − x5 − x6 − x7 by adding a leaf to vertex x4 of P7, T2 be a tree obtained
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P6 : x1− x2− x3x4− x5− x6 by adding a leaf to vertex x3 of P6, T3 be a tree obtained from P6 by adding a
leaf to one support vertex of P6, T4 be a tree obtained from T2 by subdividing the pendant edge incident to
a vertex of degree three and T5 be a tree obtained from P5 by adding a leaf to a each support vertex of P5.

H

T1 T2

T3
T4

T5

Figure 4:

Proposition 2.7. Let G be a connected graph of size m. Then γ′dR(G) = 2m − 6 if and only if G ∈
{C6, C7, H, P7, T1, T2, T3, T4, T5}.

Proof. Let G be a connected graph of size m with γ′dR(G) = 2m − 6. By theorem ??, m ≤ 8. Thus,
diam(g) ≤ 8 and g(G) ≤ 8. Let g(G) > 0 and C = (x1, x2, ..., xg) be a cycle in G. We consider the following
cases:
Case 1. g(G) = 8.

If deg(x1) > 2 then, we assign 3 to x1x2 and 2 to x3x4, x5x6, x7x8, 0 to each other edge of G to obtain a
EDRDF for G of weight less than 2m − 6, a contradiction. Thus, deg(x1) = 2 and similarly deg(xi) = 2
for i = 2, 3, ..., 8. Consequently, G = C8, a contradiction since γ′dR(C8) = 8 6= 2m− 6.
Case 2. g(G) = 7.

If deg(x1) > 2 then, we assign 3 to x1x2 and x4x5, 0 to each edge incident with x1, x2, x4or x5 and 2 to each
other edge of G to obtain a EDRDF for G of weight less than 2m− 6, a contradiction. Thus, deg(x1) = 2
and similarly deg(xi) = 2 for i = 2, 3, ..., 7. Consequently, G = C7.
Case 3. g(G) = 6.

If deg(x1) > 2 then, we assign 3 to x1x2 and 2 to x3x4, x5x6, 0 to each other edge of G to obtain a
EDRDF for G of weight less than 2m − 6, a contradiction. Thus, deg(x1) = 2 and similarly deg(xi) = 2
for i = 2, 3, ..., 6. Consequently, G = C6.
Case 4. g(G) = 5.

If deg(x1) > 3 then, we assign 3 to x1x2 and x4x5, 0 to each edge incident with x1, x2, x4or x5 of G to
obtain a EDRDF for G of weight less than 2m−6, a contradiction. Thus, deg(x1) ≤ 3. If deg(x1) = 3 then
We assign and similarly deg(xi) ≤ 3 for i = 2, 3, 4, 5. With a similar argument, we observe that at least
one vertex among {x1, x2, ..., x5} has degree three. Consequently, G ∈ H. Thus deg(x1) = 2 and similarly
deg(x2) = deg(x3) = deg(x4) = 2, consequently G = C5, a contradiction since γ′dR(C5) = 6 6= 2m− 6.
Case 5. g(G) = 4.

If deg(x1) > 2 then, we assign 3 to x1x2 and 2 to x3x4, 0 to each other edge of G to obtain a EDRDF for G of
weight less than 2m−6, a contradiction. Thus, deg(x1) = 2 and similarly deg(x2) = deg(x3) = deg(x4) = 2.
Consequently G = C4 a contradiction since γ′dR(C4) = 4 6= 2m− 6.
Case 6. g(G) = 3.

If deg(x1) > 2 then, we assign 3 to x1x2 and 0 to each other edge of G to obtain a EDRDF for G of
weight less than 2m− 6, a contradiction. Thus, deg(x1) = deg(x2) = deg(x3) = 2, Consequently G = C3, a
contradiction since γ′dR(C3) = 3 6= 2m− 6.
Case 7. g(G) = 0.

Thus, G = T is a tree. It can be easily seen that 4 ≤ diam(T ) ≤ 6. Let y1, y2, ..., ydiam(T )+1 be a diametrical
path. Assume that diam(T ) = 6. It is not hard no pair vertices of degree three. Consequently, T ∈ {T1, P7}.
Next, assume that diam(T ) = 5. It is not hard to see that each vertex of T has degree at most three and
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there is no pair vertices of degree three. Consequently, T ∈ {T2, T3, T4}.
Next, assume that diam(T ) = 4. It is not hard to see that each vertex of T has degree at most three.
Consequently, T ∈ T5.

A graph G is called a edge double Roman graph when γ′dR(G) = 3γ′(G). In other words, one can find a
minimum edge dominating function for G using only labels 2.

B1 B2 B3

Figure 5:

Proposition 2.8. Let G be a graph of size m. If ∆(G) ≤ 3, then 3m
5 ≤ γ′dR(G). The equality holds if and

only if G is edge double Roman graph and G is decomposed in to some copies of B1, B2 and B3.

Proof. Suppose that f = (E0, E2, E3) is a γ′dR-function for G. Since ∆(G) ≤ 3, |NG[e]| ≤ 5, for every
e ∈ E(G) and the equality holds if and only if both vertices of e are of degree 3. therefore

m− |E2| ≤
∑

e∈E3
|N(e)| ≤ 5|E3|,

and consequently

3m+7|E2|
5 ≤ 3|E3|+ 2|E2| = γ′dR(G).

If the equality holds, then E2 = ∅, |NG[e]| = 5 for every e ∈ E3 and N [e]
⋂
N [e′] = ∅, for every two distinct

edges in E3. So G is a edge double Roman graph and also by the above argument G[N [e]] is a copy of
B1, B2or B3 and then G is decomposed into some copies of B1, B2 and B3.

A removable triple of a graph G is a triple (S,M2,M1), where S is a nonempty subset of V (G) and
M2,M1 are disjoint matching in G[S] such that every edge e ∈ E(G) −M1 incident to a vertex in S is
adjacent to some edges in M2. We define the ratio ρ(S,M2,M1) of a removable triple (S,M2,M1) to be
3|M2|+2|M1|

|S| .

Proposition 2.9. If a graph G has a removable triple (S,M2,M1) with ρ(S,M2,M1) ≤ α, then γ′dR(G) ≤
γ′dR(G− S) + α|S|.

Proof. Let G′ = G− S and let f ′ be an edge double Roman dominating function of G′ with the minimum
weight. Define a function f : E(G) −→ {0, 1, 2, 3} by setting

f(e) =


f ′(e) if e ∈ E(G′)
2 if e ∈M2

3 if e ∈M1

0 otherwise

suppose e is an edge with f(e) = 0. If e ∈ E(G′), then e is adjacent to an edge e′ ∈ E(G′), with
f(e′) = f ′(e′) = 3. If e ∈/∈ E(G”), then e is incident to some vertex in S and so by the definition of a
removable triple e is adjacent to some edge e′ ∈ M2 with f(e′) = 3. Hence, f is an edge double Roman
dominating function of G and so γ′dR(G) ≤ γ′dR(G′) + 3|M2|+ 2|M1| ≤ γ′dR(G− S) + α|S|.
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3 Edge double Roman domination and edge Roman domination

By proposition ??, for any edge double Roman dominating function g′, there exists a edge double Roman
dominating g of no greater weight than g′ for which E1 = ∅. Henceforth, without loss of generality, in
determining the value γ′dR(G) for any graph G, we can assume that E1 = ∅ for all edge double Roman
dominating functions under consideration.

Proposition 3.1. Let G be a graph and f = (E0, E1, E2) a γ′R(G)-function of G. Then γ′dR(G) ≤ 2|E2|+
3|E3|.

Proof. Let G be a graph and f = (E0, E1, E2) be a γ′R-function of G. We define a function g = (E′0, E
′
2, E

′
3)

as follows: E′0 = E0, E
′
2 = E1, and E′3 = E2. Note that under g, every edge assigned a 0 has a neighbor

assigned 3, and no edge is assigned 1. Hence, g is edge double Roman dominating function. Thus, γ′dR(G) ≤
2|E′2|+ 3|E′3| = 2|E1|+ 3|E2|, as desired.

Clearly, the bound of proposition 3.1is sharp, as can be seen with the family stars G = K1,n−1, where
γ′R(G) = 2 and γ′dR(G) = 3. We also note that strict inequality in the bound can be achieved. Consider the
subdivided star G = K∗1,k, formed by subdividing each edge of the star K1,k with center u and V (K1,k) =
{u, vi, wj : 1 ≤ i, j ≤ k} and E(K1,k) = {uvi, viwj : 1 ≤ i, j ≤ k}, for k ≥ 3, exactly once. We note that
γ′R(G) = k + 1 and γ′dR(G) = 2k + 1. To see this, assign to each edgesviwj except v1w1, 2 to the uv1, and
0 otherwise for a edge Roman dominating function f = (E0, E1, E2); and assign 2 to edges uv1, viwj for
2 ≤ i, j ≤ k, and 0 otherwise for a edge double Roman dominating function. It is simple to check that these
functions are optimal. Hence, |E1| = k and |E2| = 1, and so, 2k + 1 = γ′dR(G) < 2|E1|+ 3|E2| = 2k + 3.

Corollary 3.2. For any graph G, γ′dR(G) ≤ 2γ′R(G), with equality if and only if G = mK2.

Proof. Among all γ′R-functions of G, let f = (E0, E1, E2) be one that minimizes the number of edges in E1.
Since γ′R(G) = |E1|+2|E2|, by proposition 3.1, we have that γ′dR(G) ≤ 2|E2|+3|E2| = γ′R(G)+ |E1|+ |E2| ≤
2γ′R(G).
If γ′dR(G) = 2γ′R(G) = 2|E1|+ 4|E2|, then since γ′dR(G) ≤ 2|E1|+ 3|E2|, we must have that E2 = ∅. Hence,
E0 = ∅ must hold, and so E = E1. Since |E1| is minimized under f , we deduce that no two edges in G are
adjacent, for otherwise, if e and e′ are adjacent, then the function f ′ which assigns a 0 to e, a 2 to e′, and
a 1 to every other vertex is a γR-function of G having a smaller number of edges assigned 1 than f does.
Thus, G = mK2.

From this, the next corollary is immediate.

Corollary 3.3. If G is a nontrivial, connected graph, and f = (E0, E1, E2) is a γ′R-function of G that
maximizes the number of edges in E2, then γ

′
dR(G) ≤ 2γ′R(G)− |E2|.

By corollary 3.3, we see that for a connected graph G, edge double Roman domination does in fact
provide edge double Roman domination does in fact provide edge double the protection with strictly less
than edge double the cost of a edge Roman dominating function. For example, let G be a nontrivial graph
with γ′(G) = 1. Then γ′R(G) = 2 and γ′dR(G) = 3. On the other hand, using the example of the subdivided
star G∗ = K∗1,k, with k ≥ 3, we see that the γ′dR(G) approaches 2γ′R(G) for some graphs. Recall that

γ′R(G∗) = k + 1 and γ′dR(G∗) = 2k + 1, and thus, the ratio of γ′dR(G∗) to γ′R(G∗) is 2k+1
k+1 and approaches 2

as k approaches infinity.
Next we see that the edge Roman domination number is strictly smaller than the edge double Roman
domination number.

Proposition 3.4. For every graph G, γ′R(G) < γ′dR(G).

Proof. Let f = (E0, E2, E3) be any γ′dR-function of G, where E1 = ∅(by proposition ?? such a function
exists). If E3 6= ∅, then every vertex in E3 can be reassigned the value 2 and the resulting function will be
a edge Roman dominating function, that is, γ′R(G) < γ′dR(G).
Assume then that E3 = ∅. Since E2∪E3 dominates G, it follows that E2 6= ∅. Thus, all vertices are assigned
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either the value 0 or the value 2, and all edges in E0 must have at least two neighbors in E2. In this case
one vertex in E2 can be reassigned the value 1 and the resulting function will be a edge Roman dominating
function, that is, γ′R(G) < γ′dR(G).

Corollary 3.5. If f = (E0, E2, E3) is any γ′dR-function of a graph G, then

γ′R(G) ≤ 2(|E2|+ |E3|) = γ′dR(G)− |E3|.

Corollary 3.6. For any nontrivial connected graph G, γ′R(G) < γ′dR(G) < 2γ′R(G).
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