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 ABSTRACT 

Assume that 𝜎ϵ𝑆𝑛 is a permutation on 𝑛 elements, for example {1,2,3, … , 𝑛}. Consider that 

𝑘 is an integer such that 1 ≤ 𝑘 < 𝑛. We define 

 

 

𝑋𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖 + 1) + 𝑘 ≠ 𝜎(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

Also, assume that 𝑠𝑘 = ⎹𝑋𝑘⎹ , the cardinal number of 𝑋𝑘. 
 

Then,  

 

𝑠𝑘 = (
𝑘
1

) 𝑠𝑘−1 + ⋯ + (
𝑘

𝑘 − 1
) 𝑠1 + (

𝑘
𝑘

) 𝑠0. 

 

When, 𝐷𝑛 = 𝑠0. 
 
. 
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1 INTRODUCTION 

Derangements are arrangements of some number of objects into positions such that no object goes 

to its specified position. The derangement problem was formulated by P. R. de Montmort in 1708, and solved 

by him in 1713 (de Montmort 1713-1714). Nicholas Bernoulli also solved the problem using the inclusion-

exclusion principle. The number of derangements of an n-element set is called the n -th derangement 

number or rencontres number, or the sub-factorial of n  and is sometimes denoted   Dn. Counting the 

derangements of a set amounts to what is known as the hat-check problem, in which one considers the 

number of ways in which n hats can be returned to n people such that no hat makes it back to its owner. 

This number satisfies the recurrences 

 

Dn = (n − 1)(Dn−1 + Dn−2). 
 

Also, it is well-known that  

https://aip.scitation.org/doi/10.1063/1.2114849
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lim
n→∞

Dn

n!
= e−1 = 0.3678 … 

 

The problème des rencontres asks how many permutations of a size 𝑛 set have exactly 𝑘 fixed points. 

 

Derangements are an example of the wider field of constrained permutations. For example, 

the ménage problem asks if n opposite sex couples are seated man-woman-man-woman-... around a table, 

how many ways can they be seated so that nobody is seated next to his or her partner? 

 

More formally, given sets A and S, and some sets U and V of surjections A →  S, we often wish to 

know the number of pairs of functions (f,  g) such that f is in U and g is in V, and for 

all   a in 𝐴,  𝑓(𝑎)  ≠  𝑔(𝑎); in other words, where for each 𝑓 and 𝑔, there exists a derangement 𝜑 of 𝑆 such 

that 𝑓(𝑎)  =  𝜑(𝑔(𝑎)). 

 

Another generalization is the following problem: 

 

The interesting this is that the number e itself also has applications in probability theory, in a way 

that is not obviously related to exponential growth. Suppose that a gambler plays a slot machine that pays 

out with a probability of one in n and plays it n times. Then, for large n, the probability that the gambler 

will lose every bet is approximately 1/e. 

 

Recently, Gordon and McMahon in [6] considered isometries of the 𝑛-dimensional hypercube that 

leave no facet unmoved. Algebraically, such an isometry is an element 𝜎 of the hyperoctahedral group 𝐵𝑛 

for which 𝜎(𝑖)  ≠  𝑖 for any 𝑖. Combinatorially, the problem then is to enumerate 𝑛 ×  𝑛 matrices with 

entries from {0, ±1} such that each row and column has exactly one nonzero entry and no diagonal entry 

equals 1. Gordon and McMahon derive a formula for the number of facet derangements, an expression of 

facet derangements in terms of permutation derangements, and recurrence relations for facet derangements. 

 

Gordon and McMahon noted that the number of derangements in the hyperoctahedral group gives 

the rising 2-binomial transform of the derangement numbers for 𝑆𝑛. More generally, they shows that the 

cyclic derangement numbers give a mixed version of the rising 𝑟-binomial transform and falling (𝑟 −  1) 

binomial transform of 𝐷𝑛. This new hybrid 𝑘-binomial transform may share many of the nice properties of 

Spivey and Steil’s transforms, including Hankel invariance and/or a simple description of the change in the 

exponential generating function. Further, it could be interesting to evaluate the expression for negative or 

even non-integer values of 𝑘. For instance, taking 𝑘 =  1/2 gives the binomial mean transform which is of 

some interest. 

 

Also,  in [2], authors defined a special case of derangement  as following:  

 

Definition A. The FPF property obviously means that in this permutation any cycle is of length 

greater than one. What we add to this requirement is the following. We take a permutation on n +  r letters 

and we restrict the first r of these to be in distinct cycles. We arrive at the definition of the subject of the 

paper An FPF permutation on n +  r letters will be called FPF r-permutation if in its cycle decomposition 

the first r letters appear to be in distinct cycles. The number of FPF r-permutations denote by Dr(n) and 

call r-derangement number. The first r elements, as well as the cycles they are contained in, will be called 

distinguished. This definition was motivated by the extensive study of the so-called r-Stirling numbers of 

the first kind  which count permutations with a fixed number of cycles where the same restriction on the 

first distinguished elements is added.  

  

https://en.wikipedia.org/wiki/Rencontres_numbers
https://en.wikipedia.org/wiki/M%C3%A9nage_problem
https://en.wikipedia.org/wiki/Surjection
https://en.wikipedia.org/wiki/Probability_theory
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They proved that: 

 

Theorem B. For all n > 2 and r > 0, we have 

 

 

Dr(n) = rDr−1(n − 1)+(n − 1)Dr(n − 2)+(n + r − 1)Dr(n − 1) 

 

 

In following section, we define a new case of derangement and obtain some result about this special 

case of derangement.  

 

 

  
For more result, see [1], [2], [3], [4] and [5]. 

 

2 MAIN RESULT  

 

In this section we define a new special case of  derangement  and also we obtain some 

relation on this subset of derangements. This special case of derangement is a subset of block 

derangement.  

 

Assume that σϵSn is a permutation on n elements, for example {1,2,3, … , n}. Consider that 

𝑘 is an integer such that 0 ≤ 𝑘 < 𝑛. We define 

 

 

𝑋𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖 + 1) + 𝑘 ≠ 𝜎(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

Also, assume that sk = ⎹Xk⎹ , the cardinal number of Xk. Our main goal in this paper is to 

find a way to calculate the value of sk. The following theorem will give an inductive method for 

calculating the number sk. 
  

 

Main Theorem.  Assume that 𝜎ϵ𝑆𝑛 is a permutation on 𝑛 elements, for example {1,2,3, … , 𝑛}. 

Consider that 𝑘 is an integer such that 1 ≤ 𝑘 < 𝑛. We define 

 

 

𝑋𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖 + 1) + 𝑘 ≠ 𝜎(𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}. 
 

Also, assume that 𝑠𝑘 = ⎹𝑋𝑘⎹ , the cardinal number of 𝑋𝑘. 
 

Then,  

 

𝑠𝑘 = (
𝑘
1

) 𝑠𝑘−1 + ⋯ + (
𝑘

𝑘 − 1
) 𝑠1 + (

𝑘
𝑘

) 𝑠0. 
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When, 𝐷𝑛 = 𝑠0. 
 

 
Proof.  

 

Let's take a closer look at the definition of derangement once again. In fact in calculating the 

number of derangements, we count the number of permutations that have no fixed points. Now, 

we will pay more attention to how Xk is defined.  

 

Notice that, when σ(i + 1) + k > n, there is no point in choosing. Therefore, there is no 

such permutation. In fact, k points have freedom of choice. Here you are facing a special kind of 

derangements. In fact, it can be shown by creating a one-to-one correspondence that we are dealing 

with derangements with n − k members. This topic needs more careful consideration that we will 

deal with it in the next paragraph. 

 

To complete the theorem process, we use induction on  k. It is easily seen when  k = 0, 

induction is established. Notice that 
𝐷𝑛+1

𝑛
= 𝐷𝑛 + 𝐷𝑛−1, and hence, 𝑠1 =

𝐷𝑛+1

𝑛
. Using induction,  

first suppose that the theorem holds for i ≤ k − 1. According to the induction process, We must 

prove that the theorem holds for k as well. 

 

By creating a one-to-one correspondence, one can see that in a particular case, in fact, we 

are going to count the number of members of the following set: 

 

𝑇𝑘 = {𝜎ϵ𝑆𝑛⎹ 𝜎(𝑖) ≠ 𝑖 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 𝑘}. 
 

So, it is enough for us to focus all our efforts on calculating the number of members Tk. Note 

the structure of the set Tk. The set Tk is divided into two parts. First part of it is practically a 

derangement. And the other part is a normal permutation. Now suppose in the second part only the 

number i members are not transferred to themselves by permutation. Using induction assumption, 

the number of possible situations in this situation is equal to 

 

 

(
𝑘
𝑖

) 𝑠𝑘−𝑖 . 
 

 

Therefore,  

 

𝑠𝑘 = (
𝑘
1

) 𝑠𝑘−1 + ⋯ + (
𝑘

𝑘 − 1
) 𝑠1 + (

𝑘
𝑘

) 𝑠0. 

 

When, 𝐷𝑛 = 𝑠0, as we claim. 

 

□ 
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Corollary.  𝑠1 =
𝐷𝑛+1

𝑛
 and 𝑠2 = 2

𝐷𝑛+1

𝑛
+ 𝐷𝑛 . 

Proof.  

Notice that 
𝐷𝑛+1

𝑛
= 𝐷𝑛 + 𝐷𝑛−1. Now, by using the previous theorem, the conclusion is 

obtained.  

□ 
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