
 

136 

 

A strongly polynomial-time algorithm to minimum 𝒔𝒕-cut interdiction 
problems on planar networks 

 

Javad Tayyebi1, Hamid Bigdeli2 
1Department of Industrial Engineering, Faculty of Industrial and Computer Engineering,  

Birjand University of Technology, Birjand, I.R. Iran. 
2Institute for the Study of War, Army Command and Staff University, 

Tehran, I.R. Iran 

 Javadtayyebi@birjandut.ac.ir; Hamidbigdeli92@gmail.com  

 ABSTRACT 

A popular class of combinatorial optimization problems is minimum 𝑠𝑡-cut problems in which a 

decision maker, called the attacker, wants to cut off any link joining two prescribed nodes  𝑠 and 𝑡 in a 

weighted network. For this purpose, he chooses a 𝑠𝑡-cut with minimum weight.  An extension of this 

problem is that there is another decision maker, called the defender, which would like prevent that the 

attacker achieves his goal. So, he increases the edge weights under some budget and bound constraints. In 

this paper, this problem is considered in the case that the underlying network is planar. A strongly 

polynomial-time algorithm is proposed to solve the problem.    
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1 INTRODUCTION 

Combinatorial optimization problems are a wide class of optimization problems in which, among 

many objects with common structure, one is searched with minimum cost (maximum utility). A minimum 

𝑠𝑡-cut problem is a well-known member of this class. In this problem, any object is an 𝑠𝑡-cut in the network, 

namely, the minimal set of edges whose removal separates two prescribed nodes 𝑠 and 𝑡. Our aim of solving 

the minimum 𝑠𝑡-cut problem is to find an 𝑠𝑡-cut which the sum of its weights is minimized. The problem 

is defined on an undirected graph 𝐺(𝑉, 𝐴) where 𝑉 is the set of 𝑛 nodes, and A is the set of 𝑚 edges. It 

admits the following mathematical programming formulation [2]. 

min 𝑧 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

, 

𝜋𝑖 − 𝜋𝑗 + 𝑥𝑖𝑗 ≥ 0     ∀(𝑖, 𝑗) ∈ 𝐴, 

𝜋𝑡 − 𝜋𝑠 ≥ 1, 
𝜋𝑖 ∈ {0,1}      ∀𝑖 ∈ 𝑉, 
𝑥𝑖𝑗 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴, 

 

 

(1) 

in which  𝑥𝑖𝑗 is a zero-one variable which takes one if and only if (𝑖, 𝑗) belongs to the desired 𝑠𝑡-cut; 𝑤𝑖𝑗 is 

the nonnegative weight associated to (𝑖, 𝑗), and 𝜋𝑖 is a zero-one variable that takes one if and only if 𝑖 
belongs to the connected component containing 𝑡.  

Fortunately, we can replace the last two constraints to the nonnegativity constraints 𝜋𝑖 ≥ 0, 𝑥𝑖𝑗 ≥ 0 

due to the unimodularity property of the coefficient matrix. This implies that the problem belongs to the 

prominent class of linear programming problems. So, it can be solved by the available approaches in the 

linear programming class, such as the well-known simplex method. As another approach, one can solve the 

corresponding duality problem to obtain an optimal solution of problem (1) by the complementary slackness 

mailto:Javadtayyebi@birjandut.ac.ir
mailto:Hamidbigdeli92@gmail.com


 

137 

theorem [3]. This approach is a common way deriving several polynomial-time algorithms for solving the 

problem because the dual problem is the well-known maximum flow problem [2].  

 A typical application of problem (1) is the situation in which there is an attacker that wants to cut off 

all paths between two vital points 𝑠 and 𝑡. For this end, he chooses a minimum 𝑠𝑡-cut for incurring the 

minimum possible cost. Now, suppose that there exists another decision maker, called the defender.  Two 

decision makers have conflicting goals. On the other word, the defender would like to prevent that the 

attacker achieves his goal. For this purpose, he is capable of increasing the edge weights under a budget 

constraint as well as some bound constraints. This problem is a game which has a hierarchy structure. At 

first, the defender chooses some edges and increases their weights. Then, the attacker observes the 

defender's action and selects an 𝑠𝑡-cut. In the context of game theory, such the problems are referred to as 

Stackelberg game due to hierarchy structure [4]. On the other hand, the problem can be regarded as a zero-

sum game since the payoff of the attacker is equal to the loss of the defender. One can formulate the problem 

as follows: 

max 𝑧 

∑ 𝑟𝑖𝑗𝑑𝑖𝑗 ≤ 𝑅,

(𝑖,𝑗)∈𝐴

 

0 ≤ 𝑑𝑖𝑗 ≤ �̅�𝑖𝑗      ∀(𝑖, 𝑗) ∈ 𝐴, 

z = min { ∑ (𝑤𝑖𝑗 + 𝑑𝑖𝑗)𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

 

                      𝜋𝑖 − 𝜋𝑗 + 𝑥𝑖𝑗 ≥ 0     ∀(𝑖, 𝑗) ∈ 𝐴 

                      𝜋𝑡 − 𝜋𝑠 ≥ 1 
                      𝑥𝑖𝑗 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴}. 

 

 

 

 

 

(2) 

This formulation contains two levels. The first level is the defender's level which has a continuous variable 

𝑑𝑖𝑗. This variable is the amount of increasing the weight of (𝑖, 𝑗). So, the modified weight of (𝑖, 𝑗) is 𝑤𝑖𝑗 +

𝑑𝑖𝑗. The first level contains two types of constraints: one budget constraint as well as bound constraints. In 

this level, 𝑅 is the total amount of available budget; 𝑟𝑖𝑗 is the cost of increasing the weight of (𝑖, 𝑗) by one 

unit, and �̅�𝑖𝑗 is an upper bound on this increment. The second level is the attacker's level that is the same 

minimum 𝑠𝑡-cut problem with respect to the edge weights 𝑤𝑖𝑗 + 𝑑𝑖𝑗. 

 

This problem is studied in [1], and a (weakly) polynomial-time algorithm is presented to solve the problem 

in the general case. In this paper, we consider a special case of the problem in which the underlying graph 

is planar. We propose a strongly polynomial-time algorithm for solving the problem.   

2 PRELIMINARIES 

In this section, we mention some notions of cuts and planar graphs used throughout the paper.  

For any subset 𝑁 of 𝑉 with 𝑠 ∈ 𝑁 and 𝑡 ∈ 𝑉\𝑁, a set 𝐶 of edges that have one endpoint in 𝑁 and the other 

in 𝑉\𝑁 is referred to as an 𝑠𝑡-cut, denoted by 𝐶 =  [𝑁, �̅�]  =  [𝑁, 𝑉 \𝑁]. The weight of an 𝑠𝑡-cut [𝑁, �̅�] 
with respect to a weight vector 𝒘, denoted by 𝒘[𝑁, �̅�], is the total weight of its edges, i.e., 𝒘[𝑁, �̅�] =
∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝐶 . 

 

Definition 1. A graph is called planar if it can be drawn in a two-dimensional plane so that no two edges 

cross. A face of a planar graph is a region bounded by edges that satisfies the condition that any two points 

in the region can be connected by a continuous curve that meets no nodes and edges. 

 

An important property of planar networks is that finding a minimum 𝑠𝑡-cut is equivalent to finding a 

shortest 𝑠𝑡 −path (a shortest path from 𝑠 to 𝑡) in an auxiliary network. This new network is called the dual 

of the original network and can be constructed from the original network in linear time [2]. 
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3 PROPOSED ALGORITHM 

  

In this section, we formally state our proposed algorithm to solve problem (2) on planar networks in strongly 

polynomial time. Let us begin our discussion with a key result.  

 

Lemma 1. If 𝐶 is a minimum 𝑠𝑡-cut with respect to the initial weights 𝑤𝑖𝑗, then there is an optimal 

solution of problem (2) for which 𝐶 also remains a minimum 𝑠𝑡-cut. 

 

Proof. The proof is easy to be proved since one can convert any optimal solution to another optimal 

solution in which 𝐶 is also a minimum 𝑠𝑡-cut.  

 

From Theorem 1, since there is at least a minimum 𝑠𝑡-cut 𝐶 with respect to the initial edge 

lengths 𝑤𝑖𝑗, it follows that we must increase its weight so that it remains minimum 𝑠𝑡-cut with 

respect to 𝑤𝑖𝑗 + 𝑑𝑖𝑗 for any feasible strategy 𝑑𝑖𝑗 of the attacker. It means that if the weight of any 

𝑠𝑡-cut 𝐶′ becomes equal to that of 𝐶, it is necessary that we also increase the weight of 𝐶′ together 

𝐶. Based on this observation, the general procedure of our proposed algorithm is in the following 

way. At each iteration, it finds all minimum 𝑠𝑡-cuts and increases their weights as long as possible 

with minimum cost. This procedure is repeated until that either the budget constraint is satisfied 

in the equality form or there exists an 𝑠𝑡-cut, which the weight of all its edges is on their upper 

bound. In the first case, there is not any additional budget to be paid for increasing the weight of 

minimum 𝑠𝑡-cuts. So, the algorithm terminates because increasing the objective function of the 

attacker is not possible. In the second case, the weight of an 𝑠𝑡-cut cannot be increased, and 

consequently, increasing the weight of other minimum 𝑠𝑡-cuts is unnecessary.  

To increase the weight of all minimum 𝑠𝑡-cuts, it is sufficient to increase the length of one 

edge in each minimum 𝑠𝑡-cut. For this purpose, we mention that 𝑠𝑡-cuts and 𝑠𝑡-paths are 

complementary structures. On the other word, any 𝑠𝑡-path and any 𝑠𝑡-cut have at least one 

common edge. So, we can use the notion of shortest 𝑠𝑡-paths to find a set of edges with minimum 

cost for increasing weight of all minimum 𝑠𝑡-cuts. 

The algorithm maintains a set 𝑆 containing all edges belonging to minimum 𝑠𝑡-cuts. At each 

iteration, if a new minimum 𝑠𝑡-cut is found, then its edges are added to 𝑆. According to Lemma 1, 

any element of 𝑆 is not removed during the running of the algorithm, but it is possible that some 

edges are added to it at an iteration. The algorithm begins with running the Dijkstra algorithm on 

the dual network to find a minimum 𝑠𝑡-cut in the original network. It finds all shortest paths by 

using distance labels. Then, it finds all minimum 𝑠𝑡-cuts in the original network because any edge 

a shortest path in the dual network corresponds to exactly one edge of a minimum 𝑠𝑡-cut in the 

original network. So, all such the edges are added to 𝑆. Algorithm 1 provides a pseudocode that 

explains how to determine the set 𝑆 for an arbitrary weight vector.  

 

Algorithm 1 

Input: A planar graph 𝐺(𝑉, 𝐴) with two specified nodes 𝑠 and 𝑡, edge weights 𝑤𝑖𝑗 + 𝑑𝑖𝑗. 

Output: A set 𝑆 containing edges belonging to all minimum 𝑠𝑡-cuts. 

Construct the dual network �̅�(�̅�, �̅�). 

Apply the Dijkstra algorithm to compute the distance label 𝑑𝑖𝑠𝑡(𝑖) for every 𝑖 ∈ �̅� in �̅�.  

Set 𝐴′ = ∅. 
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for (𝑖, 𝑗) ∈ �̅� do 

   if 𝑑𝑖𝑠𝑡(𝑖) + 𝑐𝑖𝑗 + 𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑡(𝑗) then 

        Add edge corresponding to (𝑖, 𝑗) in the original network to 𝐴′. 

Use a traversal algorithm to find the set 𝐴𝑠 of all edges being accessible from 𝑠 in 𝐺(𝑉, 𝐴′). 

Find the set 𝐴𝑡 of all edges which 𝑡 is accessible from them in 𝐺(𝑉, 𝐴′). 

Set 𝑆 = 𝐴𝑠 ∩ 𝐴𝑡 . 

 

 

To increase the weight of all 𝑠𝑡-cuts, a length vector 𝒄 is defined as   

𝑐𝑖𝑗 = {

𝑟𝑖𝑗          (𝑖, 𝑗) ∈ 𝑆 ∧ 𝑑𝑖𝑗 < 𝑑𝑖𝑗
𝑢 ,

+∞         (𝑖, 𝑗) ∈ 𝑆 ∧ 𝑑𝑖𝑗 = 𝑑𝑖𝑗
𝑢 ,

0                             (𝑖, 𝑗) ∈ 𝐴\𝑆,

  ∀(𝑖, 𝑗) ∈ 𝐴. 

 

(3) 

 

Our proposed algorithm searches a shortest 𝑠𝑡-path (a 𝑠𝑡-path 𝑃 with minimum length) with 

respect to 𝒄. The edges in the shortest 𝑠𝑡-path 𝑃 are optimal candidates to increase the weight of 

all minimum 𝑠𝑡-cuts with the minimum possible cost. Notice that the length of 𝑃 cannot be zero 

because S contains at least a minimum 𝑠𝑡-cut whose edges have positive weights by Definition 

(3). Moreover, if the length of 𝑃 is +∞, then it means that there is an 𝑠𝑡-cut 𝐶 which 𝑑𝑖𝑗 = 𝑑𝑖𝑗
𝑢  for 

every (𝑖, 𝑗) ∈ 𝐶. This implies that the algorithm terminates abruptly because the weight of this 

minimum 𝑠𝑡-cut cannot be increased more.  

Now, consider the case that the length of 𝑃 is finite. The algorithm increases the weight of 

all edges of 𝑃 ∩ 𝑆 by a positive value α. This causes that weight of all minimum 𝑠𝑡-cuts grows by 

α. The value of α is computed based on three following properties: 

 

1. α must satisfy the bound constraint 𝑑𝑖𝑗 + α ≤ 𝑑𝑖𝑗
𝑢  for every (𝑖, 𝑗) ∈ 𝑃 ∩ 𝑆. 

2. To hold the budget constraint, α has to satisfy the inequality α ∑ 𝑟𝑖𝑗 ≤ 𝑅′(𝑖,𝑗)∈𝑃∩𝑆  in which 

𝑅′ = 𝑅 − ∑ 𝑑𝑖𝑗(𝑖,𝑗)∈𝐴  is the amount of remaining budget at previous iterations. 

3. α has to be at most equal to the weight of second strict minimum 𝑠𝑡-cut. Notice that if not, at 

least one new edge is eligible to be added to S. So, it is essential that we first update 𝑆 for 

some value less than α. 

 

Satisfying the first and second cases is simply performed, but the third case is more 

challengeable. However, we present an approach which has not any need to find such a 𝑠𝑡-cut, 

directly. The approach is that we first compute α without regarding the third case as follows: 

α = min {
𝑅′

∑ 𝑟𝑖𝑗(𝑖,𝑗)∈𝑃∩𝑆
, 𝑚𝑖𝑛

(𝑖,𝑗)∈𝑃∩𝑆
{𝑑𝑖𝑗

𝑢 − 𝑑𝑖𝑗}}. 
 

(4) 

Then, we increase the weight of edges of 𝑃 ∩ 𝑆 by α, and finally, we run the Dijkstra 

algorithm in the dual network to obtain a minimum 𝑠𝑡-cut with respect to new weights in the 

original network. If the weight of the current minimum 𝑠𝑡-cut is less than α plus the weight of the 

minimum 𝑠𝑡-cut in the previous iteration, then a second minimum 𝑠𝑡-cut of the previous iteration 

is now converted to a minimum 𝑠𝑡-cut due to these changes. In this case, we have to decrease α to 

the difference between them. After computing α, we update 𝑑𝑖𝑗 = 𝑑𝑖𝑗 + α for every (𝑖, 𝑗) ∈ 𝑃 ∩
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𝑆. Notice that this increases the length of each edge (𝑖, 𝑗) ∈ 𝑃 ∩ 𝑆 by α. You can see a formal 

description of our proposed algorithm in Algorithm 2. 

 

Let us discuss about the complexity of Algorithm 2. 

 

Theorem 2: Algorithm 2 solves problem (2) in 𝑂(𝑚 (𝑆(𝑛, 𝑚) + 𝑆̅(𝑛, 𝑚))) time in which 

𝑆(𝑚, 𝑛) and 𝑆̅(𝑛, 𝑚) are respectively the times required for solving shortest path problems in the 

original and dual network. 

 

Proof. The proof is straightforward.  

  

Algorithm 2 

Input: A planar graph 𝐺(𝑉, 𝐴), weights 𝑤𝑖𝑗 , costs 𝑟𝑖𝑗, upper bounds 𝑑𝑖𝑗
𝑢 , a budget 𝑅. 

Output: an optimal weight increment vector 𝑑𝑖𝑗. 

Set 𝑑 = 0, 𝑆 = ∅, 𝑅′ = 𝑅. 

while 𝑅′ >  0 do 

  Apply Algorithm 1 to obtain the set 𝑆. 

  Set 𝑧 to the weight of the current minimum 𝑠𝑡-cut. 

  Compute the length vector 𝒄 defined as (3). 

  Find a shortest 𝑠𝑡-path 𝑃 with respect to 𝒄. 

  if the length of 𝑃 is infinity, then 

          Stop because there is a minimum 𝑠𝑡-cut whose length cannot be increased. 

 end if 

  Compute α using (4). 

  Find a minimum 𝑠𝑡-cut 𝐶 with respect to 𝑐𝑖𝑗 + 𝑑𝑖𝑗 + α by finding the shortest path in the dual. 

  if the weight of 𝐶 is less than 𝑧 + α then 

                      Set α to the difference between the weight of 𝐶 and the weight of the previous minimum 𝑠𝑡-cut. 

end if 

Update z = z +α and 𝑅′ =  𝑅′ − α ∑ 𝑟𝑖𝑗(𝑖,𝑗)∈𝑃∩𝑆 . 

 for (𝑖, 𝑗) in 𝑃 ∩ 𝑆 do 

            Update 𝑑𝑖𝑗 =  𝑑𝑖𝑗 + α. 

end for 

end while 

 
 

4 CONCLUSION 

This paper investigated the minimum 𝑠𝑡-cut interdiction problem on planar networks. It 

developed an algorithm to solve the problem in strongly polynomial time. This algorithm is a 

significant contribution because the only available algorithm can solve the problem in (weakly) 

polynomial time [1].  
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It is notable that this paper considered the problem under linear costs (a linear budget 

constraint). In the case that the costs are fixed, it is proved that the problem is NP-hard [1]. So, the 

use of meta-heuristic or heuristic algorithms can be a convenient remedy in this case.   

As future works, it will be meaningful to consider other combinatorial optimization 

interdiction problems, such as the assignment interdiction problem, and to design algorithms that 

are capable of solving them in polynomial time.  
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