

Combinatorics, Cryptography, Computer Science and Computing

November: 17-18, 2021

An efficient localized meshless technique for approximating the Sobolev equation

Zakieh Avazzadeh¹

Department of Applied Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

Omid Nikan

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

Abstract

This paper studies a numerical approach for finding the approximate solution of the Sobolev equation. The proposed method approximates the unknown solution with the help of two main stages. At a first stage, the time discretization is performed by means of a second-order finite difference procedure. At a second stage, the space discretization is accomplished using the local radial basis function partition of unity collocation method based on the finite difference (LRBF-PUM-FD). The major disadvantage of global techniques is the high computational burden of solving large linear systems. The LRBF-PUM-FD significantly sparsifies the linear system and reduces the computational burden, while simultaneously maintaining a high accuracy level. Numerical results and comparisons illustrate the high accuracy of the proposed method.

Keywords: Sobolev equation, Finite difference, RBF, LRBF-PUM Mathematics Subject Classification [2010]: 65M15, 65M60

1 Introduction

In this paper, we focus our attention on the approximated solution of the Sobolev equation [1]:

$$\frac{\partial u(\mathbf{x},t)}{\partial t} - \gamma \frac{\partial \Delta u(\mathbf{x},t)}{\partial t} - \sigma \Delta u(\mathbf{x},t) = f(\mathbf{x},t), \quad \mathbf{x} = (x,y) \in \Omega \subset \mathbb{R}^2, \quad 0 < t \le T,$$
(1)

with boundary conditions

$$u(\mathbf{x},t) = h(\mathbf{x},t), \quad \mathbf{x} \in \partial\Omega, \quad t > 0$$
 (2)

and initial condition

$$u(\mathbf{x},0) = g(\mathbf{x}), \qquad \mathbf{x} \in \overline{\Omega} = \Omega \cup \partial\Omega,$$
(3)

where Ω represents a continuous bounded domain in \mathbb{R}^2 , $\partial\Omega$ denotes the boundary of Ω , T is the final time and Δ stands for the Laplacian operator. The source term $f(\mathbf{x}, t)$ is supposed to be sufficiently smooth and two functions $g(\mathbf{x})$ and $h(\mathbf{x}, t)$ are given continuous functions. The outline of this paper is as follows. Section 2 implements a second-order of accuracy difference scheme to establish the semi-time discrete formulation. Section 3 presents the LRBF-PUM-FD for the full discretization in the spatial variables. Finally, Section 4 reports the numerical results to show the accuracy and efficiency of the proposed method.

¹speaker

2 The time-discrete formulation

In this section, we present a Crank-Nicolson formulation to approximate the problem (1) in the temporal direction. For convenience, we require a time step size, which is chosen as $\delta t = T/L$ and $t_k = k\delta t$, $0 \le k \le L$, where L represents the total number of time steps. Let us introduce the notation $u^{k+\frac{1}{2}} = \frac{u^k + u^{k+1}}{2}$, where $\{u^k = u(\mathbf{x}, t_k) | 0 \le k \le L\}$ denotes a given grid function. By using the Crank-Nicolson difference scheme, we can get the semi-discrete formulation in the time variable

$$\frac{u^{k+1}-u^k}{\delta t} - \gamma \frac{\Delta u^{k+1} - \Delta u^k}{\delta t} - \sigma \frac{\Delta u^{k+1} + \Delta u^k}{2} = f^{k+\frac{1}{2}} + \mathcal{R}^{k+\frac{1}{2}},\tag{4}$$

or

$$u^{k+1} - \left(\gamma + \sigma \frac{\delta t}{2}\right) \Delta u^{k+1} = u^k - \left(\gamma - \sigma \frac{\delta t}{2}\right) \Delta u^k + \delta t f^{k+\frac{1}{2}} + \delta t \mathcal{R}^{k+\frac{1}{2}},\tag{5}$$

where $u^k = u(\mathbf{x}, t_k)$ represents the analytic solution and $\mathcal{R}^{k+\frac{1}{2}}$ is the local truncation error, which is bounded by

$$\left|\mathcal{R}^{k+\frac{1}{2}}\right| \le C\delta t^2, \quad \text{or} \quad \mathcal{R}^{k+\frac{1}{2}} = \mathcal{O}(\delta t^2),$$

where C is positive constant. Dropping the truncation error $\mathcal{R}^{k+\frac{1}{2}}$ from the above relation and introducing $U^k = U(\mathbf{x}, t_k)$ as the approximation solution of u^k , we derive the following semi-discrete scheme

$$U^{k+1} - \left(\gamma + \sigma \frac{\delta t}{2}\right) \Delta U^{k+1} = U^k - \left(\gamma - \sigma \frac{\delta t}{2}\right) \Delta U^k + \delta t f^{k+\frac{1}{2}}.$$
(6)

3 The spatial discretization

The RBF interpolation method uses linear combination of translates of one function $\phi(r)$ of a single real variable. Given a set of centers Ξ in Ω , the RBF interpolant takes the form

$$u(\mathbf{x}) \simeq S(\mathbf{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\mathbf{x}, \varepsilon), \tag{7}$$

where λ_j are unknown real coefficients, $\phi_j(\mathbf{x}, \varepsilon) = \phi(||\mathbf{x} - \mathbf{x}_j||_2, \varepsilon)$, $j = 1, \ldots, N$, is a smooth strictly positive definite (SPD) RBF depending on a shape parameter ε , and $r = ||\mathbf{x} - \mathbf{x}_j||_2$ denotes the Euclidean norm. Imposing the interpolation conditions $S(\mathbf{x}_i) = u_i$, $i = 1, \ldots, N$ results in the linear system

$$A\lambda = u, \tag{8}$$

in which $A_{ij} = \phi(\|\mathbf{x}_i - \mathbf{x}_j\|_2, \varepsilon), \lambda = [\lambda_1, \dots, \lambda_N]^T$, and $u = [u(\mathbf{x}_1), \dots, u(\mathbf{x}_N)]^T$. The alternative formulation for the interpolant (7) is derived as follows:

$$S(\mathbf{x}) = \Psi(\mathbf{x})u,\tag{9}$$

in which $\Psi(\mathbf{x}) = [\psi_1(\mathbf{x}), \dots, \psi_N(\mathbf{x})]^T$. By using Eqs. (9), (8) and (7), we can deduce the relation between primary radial basis and cardinal basis as:

$$\Psi(\mathbf{x}) = \Phi A^{-1},\tag{10}$$

in which $\Phi = [\phi(\|\mathbf{x} - \mathbf{x}_1\|_2, \varepsilon), \dots, \phi(\|\mathbf{x} - \mathbf{x}_N\|_2, \varepsilon)]^T$ [2]. Let $\Omega \subset \mathbb{R}^2$ be a bounded set, and let a covering $\{\Omega_j\}_{j=1}^M$ of the region Ω such that $\bigcup_{j=1}^M \supseteq \Omega$. Moreover, sub-domains Ω_j satisfy some mild overlap condition. This means that each point of the global computational domain must be in the interior of at least one local subdomain. Further, the set $I(\mathbf{x}) = \{j : \mathbf{x} \in \Omega_j\}$, for all $\mathbf{x} \in \Omega$, is uniformly bounded on Ω , i.e., there is

the constant C independent of the number of sub-domains, such that $\operatorname{card}(I)(\mathbf{x}) \leq C$. We can establish PU weight function w_j for each sub-domain Ω_j with the help of the Shepard method as

$$w_j(\mathbf{x}) = \frac{\varphi_j(\mathbf{x})}{\sum\limits_{k \in I(\mathbf{x})} \varphi_k(\mathbf{x})},\tag{11}$$

where $\varphi_j(\mathbf{x})$ is the compactly supported function on Ω_j . The weight functions w_j are non-negative, compactly supported on Ω_j , and satisfy the PU property, i.e.,

$$\sum w_j(\mathbf{x}) = \begin{cases} 0, & j \notin I(\mathbf{x}), \\ 1, & j \in I(\mathbf{x}). \end{cases}$$
(12)

In addition, to ensure that weight function is non-negative and compactly support on Ω_j , the function $\varphi_j(\mathbf{x})$ is defined as follows:

$$\varphi_j(\mathbf{x}) = \varphi_j(\frac{\|\mathbf{x} - \tilde{\mathbf{x}}_j\|}{R_j}), \qquad j = 1, 2, \dots, M,$$
(13)

where $\tilde{\mathbf{x}}_j$ and R_j are the center and radius corresponding to the *j*-th sub-domain, respectively, and φ_j denotes the Wendland C^2 function for constructing the weight function. The PUM approximation is formed a global approximation function \mathcal{P} of function $u(\mathbf{x})$ in entire domain Ω as follows:

$$\mathcal{P}_{u}(\mathbf{x}) = \sum_{j \in I(\mathbf{x})} w_{j}(\mathbf{x}) S_{j}(\mathbf{x}) = \sum_{j \in I(\mathbf{x})} \sum_{i \in J(\Omega_{j})} w_{j}(\mathbf{x}) \psi_{i}(\mathbf{x}) u(\mathbf{x}),$$
(14)

where $\{S_j\}_{j=1}^N$ are RBF based local interpolants corresponding to each sub-domain Ω_j . From (14), the approximation solution U^k can be expressed as

$$U^{k} \approx \mathcal{P}_{u}(\mathbf{x}) = \sum_{j \in I(\mathbf{x})} \sum_{i \in J(\Omega_{j})} w_{j}(\mathbf{x}) \psi_{i}(\mathbf{x}) U^{k}.$$
(15)

4 Numerical results

Figure 1 includes a representation of the associated PU subdomains for the considered domains with the uniform and Halton points. In the present research, the subdomains are selected as circles in \mathbb{R}^2 , but they can selected also in other forms, such as ellipses or squares. The box structure presented by [3] is used here to define the centers and radius of the subdomains. In this paper, we follow the algorithm provided by Sarra to specify an optimal shape parameter ε . The value of condition number (CN) is calculated with the help of the Matlab command condest. The numerical experiments were done in MATLAB 2016a on a PC with 8 GB of RAM.

Figure 1: Partitioning of considered domains having circular subdomains.

Consider the following Sobolev equation

$$\frac{\partial u(x,y,t)}{\partial t} - \gamma \frac{\partial \Delta u(x,y,t)}{\partial t} - \sigma \Delta u(x,y,t) = f(x,y,t), \qquad (x,y) \in \Omega, \qquad 0 < t \leq T,$$

The source term f(x, y, t), the initial and Dirichlet boundary conditions are calculated from the analytical solution $u(x, y, t) = \exp(-t)\sin(\pi x)\sin(\pi y)$. Table 1 lists the L_2 errors, the time convergence orders $C_{\delta t}$ and the obtained computational times (in seconds) of the proposed method by taking N = 100 at final time T = 1 on the square domain $\Omega = [0, 1]^2$. Table 2 makes the comparison of the L_{∞} and L_2 errors with those provided by the techniques described in [5–7] on the square domain $\Omega = [0, 1]^2$. The obtained numerical results clarify that the proposed method is better than the others in terms of the accuracy and the elapsed computational time. Table 3 displays the L_{∞} errors, the condition number and the associated computational times on the square domain $\Omega = [0, 1]^2$ for the uniform and Halton nodes with $\delta t = 1/100$.

 δt	Ref. [4]		LRBF-PUM-FD				
	L_2	CPU	L_2	$C_{\delta t}$	CPU		
1/2	1.1963e - 01	0.89	7.8104e - 03	_	0.424952		
1/4	1.4943e - 02	1.77	2.8091e - 03	1.47529	0.443898		
1/8	7.2957e - 03	3.44	6.9891e - 04	2.00693	0.444320		
1/16	1.8217e - 03	6.78	1.7452e - 04	2.00171	0.451735		
1/32	4.5530e - 04	13.45	4.3616e - 05	2.00047	0.464944		
1/64	1.1382e - 05	26.91	1.0903e - 05	2.00013	0.475786		
1/128	2.8453e - 05	54.44	2.7258e - 06	1.99998	0.482230		

Table 1: Numerical errors, time convergence orders $C_{\delta t}$ and associated computational time of LRBF-PUM-FD with $\gamma = \sigma = 1$ and N = 100 at T = 1 on the domain $\Omega = [0, 1]^2$.

	Ref. [5]		Ref. [6]		Ref. [7]		LRBF-PUM-FD	
N	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2	L_{∞}	L_2
4	2.2100e - 02	8.0968e - 03	6.4901e - 03	9.3030e - 04	7.4767e - 03	1.7519e - 02	1.1566e - 06	2.3132e - 06
8	6.4901e - 03	2.9283e - 03	1.4656e - 04	4.9647e - 04	2.1515e - 03	8.9465e - 03	2.9784e - 06	3.8763e - 06
16	1.7223e - 03	8.0121e - 04	1.2647e - 05	9.8424e - 05	4.9543e - 04	4.0019e - 03	3.1065e - 06	5.8890e - 06
32	4.2893e - 04	1.9983e - 04	3.7398e - 06	5.9866e - 05	5.9549e - 05	9.5508e - 04	3.1328e - 06	8.6059e - 06

Table 2: Comparison between the L_{∞} and L_2 errors of the LRBF-PUM-FD and the methods of [5–7] with $\delta t = 1/100$ and $\gamma = \sigma = 1$ on the domain $\Omega = [0, 1]^2$.

Table 3: The L_{∞} errors, condition numbers and associated computational times on the square domain with $\gamma = \sigma = 1$ and $\delta t = 1/100$ at T = 1 on the domain $\Omega = [0, 1]^2$.

Uniform nodes		•			Halton nodes				
N	M	L_{∞}	C-number	CPU	N	M	L_{∞}	C-number	CPU
289	9	3.1400e - 06	7.2666e + 04	1.45537	316	10	3.1232e - 06	9.7179e + 04	5.78059
676	16	3.1285e - 06	2.7648e + 04	3.86449	639	18	3.1282e - 06	5.1763e + 05	3.49469
1024	36	3.1416e - 06	5.5667e + 05	5.84741	1729	29	3.1519e-0 6	1.1767e + 06	6.03137

References

- Nikan, O., Avazzadeh, Z.. A localisation technique based on radial basis function partition of unity for solving sobolev equation arising in fluid dynamics. Applied Mathematics and Computation 2021b;401:126063.
- Fasshauer, G.E., McCourt, M.J.. Kernel-based approximation methods using Matlab. volume 19. World Scientific Publishing Company, 2015.
- [3] Garmanjani, G., Cavoretto, R., Esmaeilbeigi, M.. A RBF partition of unity collocation method based on finite difference for initial-boundary value problems. Computers & Mathematics with Applications 2018;75(11):4066-4090.
- [4] Dehghan, M., Shafieeabyaneh, N., Abbaszadeh, M.: Application of spectral element method for solving Sobolev equations with error estimation. Applied Numerical Mathematics 2020a;158:439–462.
- [5] Gao, F., Wang, X.. A modified weak Galerkin finite element method for Sobolev equation. Journal of Computational and Applied Mathematics 2015;33(3):307–322.
- [6] Oruç, Ö. A computational method based on Hermite wavelets for two-dimensional Sobolev and regularized long wave equations in fluids. Numerical Methods for Partial Differential Equations 2018;34(5):1693– 1715.
- [7] Haq, S., Ghafoor, A., Hussain, M., Arifeen, S.. Numerical solutions of two dimensional Sobolev and generalized Benjamin–Bona–Mahony–Burgers equations via Haar wavelets. Computers & Mathematics with Applications 2019;77(2):565–575.

Email: zakieh.avazzadeh@xjtlu.edu.cn Email: omidnikan77@yahoo.com