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Abstract

This paper studies a numerical approach for finding the approximate solution of the Sobolev equation.
The proposed method approximates the unknown solution with the help of two main stages. At a first
stage, the time discretization is performed by means of a second-order finite difference procedure. At
a second stage, the space discretization is accomplished using the local radial basis function partition
of unity collocation method based on the finite difference (LRBF-PUM-FD). The major disadvantage of
global techniques is the high computational burden of solving large linear systems. The LRBF-PUM-
FD significantly sparsifies the linear system and reduces the computational burden, while simultaneously
maintaining a high accuracy level. Numerical results and comparisons illustrate the high accuracy of the
proposed method.
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1 Introduction

In this paper, we focus our attention on the approximated solution of the Sobolev equation [1]:

∂u(x, t)

∂t
− γ ∂∆u(x, t)

∂t
− σ∆u(x, t) = f(x, t), x = (x, y) ∈ Ω ⊂ R2, 0 < t ≤ T, (1)

with boundary conditions

u(x, t) = h(x, t), x ∈ ∂Ω, t > 0 (2)

and initial condition

u(x, 0) = g(x), x ∈ Ω = Ω ∪ ∂Ω, (3)

where Ω represents a continuous bounded domain in R2, ∂Ω denotes the boundary of Ω, T is the final time
and ∆ stands for the Laplacian operator. The source term f(x, t) is supposed to be sufficiently smooth and
two functions g(x) and h(x, t) are given continuous functions. The outline of this paper is as follows. Section
2 implements a second-order of accuracy difference scheme to establish the semi-time discrete formulation.
Section 3 presents the LRBF-PUM-FD for the full discretization in the spatial variables. Finally, Section 4
reports the numerical results to show the accuracy and efficiency of the proposed method.
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2 The time-discrete formulation

In this section, we present a Crank-Nicolson formulation to approximate the problem (1) in the temporal
direction. For convenience, we require a time step size, which is chosen as δt = T/L and tk = kδt, 0 ≤ k ≤ L,
where L represents the total number of time steps. Let us introduce the notation uk+ 1

2 = uk+uk+1

2 , where{
uk = u(x, tk)

∣∣0 ≤ k ≤ L} denotes a given grid function. By using the Crank-Nicolson difference scheme,
we can get the semi-discrete formulation in the time variable

uk+1 − uk

δt
− γ∆uk+1 −∆uk

δt
− σ∆uk+1 + ∆uk

2
= fk+ 1

2 +Rk+ 1
2 , (4)

or

uk+1 −
(
γ + σ

δt

2

)
∆uk+1 = uk −

(
γ − σδt

2

)
∆uk + δtfk+ 1

2 + δtRk+ 1
2 , (5)

where uk = u(x, tk) represents the analytic solution and Rk+ 1
2 is the local truncation error, which is bounded

by ∣∣∣Rk+ 1
2

∣∣∣ ≤ Cδt2, or Rk+ 1
2 = O(δt2),

where C is positive constant. Dropping the truncation error Rk+ 1
2 from the above relation and introducing

Uk = U(x, tk) as the approximation solution of uk, we derive the following semi-discrete scheme

Uk+1 −
(
γ + σ

δt

2

)
∆Uk+1 = Uk −

(
γ − σδt

2

)
∆Uk + δtfk+ 1

2 . (6)

3 The spatial discretization

The RBF interpolation method uses linear combination of translates of one function φ(r) of a single real
variable. Given a set of centers Ξ in Ω, the RBF interpolant takes the form

u(x) ' S(x) =

N∑
j=1

λjφj(x, ε), (7)

where λj are unknown real coefficients, φj(x, ε) = φ(‖x−xj‖2, ε), j = 1, . . . , N, is a smooth strictly positive
definite (SPD) RBF depending on a shape parameter ε, and r = ‖x − xj‖2 denotes the Euclidean norm.
Imposing the interpolation conditions S(xi) = ui, i = 1, . . . , N results in the linear system

Aλ = u, (8)

in which Aij = φ(‖xi−xj‖2, ε), λ = [λ1, . . . , λN ]T , and u = [u(x1), . . . , u(xN )]T . The alternative formulation
for the interpolant (7) is derived as follows:

S(x) = Ψ(x)u, (9)

in which Ψ(x) = [ψ1(x), . . . , ψN (x)]T . By using Eqs. (9), (8) and (7), we can deduce the relation between
primary radial basis and cardinal basis as:

Ψ(x) = ΦA−1, (10)

in which Φ = [φ(‖x− x1‖2, ε), . . . , φ(‖x− xN‖2, ε)]T [2]. Let Ω ⊂ R2 be a bounded set, and let a covering

{Ωj}Mj=1 of the region Ω such that
M⋃
j=1
⊇ Ω. Moreover, sub-domains Ωj satisfy some mild overlap condition.

This means that each point of the global computational domain must be in the interior of at least one local
subdomain. Further, the set I(x) = {j : x ∈ Ωj}, for all x ∈ Ω, is uniformly bounded on Ω, i.e., there is
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the constant C independent of the number of sub-domains, such that card(I)(x) ≤ C. We can establish PU
weight function wj for each sub-domain Ωj with the help of the Shepard method as

wj(x) =
ϕj(x)∑

k∈I(x)

ϕk(x)
, (11)

where ϕj(x) is the compactly supported function on Ωj . The weight functions wj are non-negative, com-
pactly supported on Ωj , and satisfy the PU property, i.e.,

∑
wj(x) =

{
0, j /∈ I(x),

1, j ∈ I(x).
(12)

In addition, to ensure that weight function is non-negative and compactly support on Ωj , the function ϕj(x)
is defined as follows:

ϕj(x) = ϕj(
‖x− x̃j‖

Rj
), j = 1, 2, . . . ,M, (13)

where x̃j and Rj are the center and radius corresponding to the j-th sub-domain, respectively, and ϕj
denotes the Wendland C2 function for constructing the weight function. The PUM approximation is formed
a global approximation function P of function u(x) in entire domain Ω as follows:

Pu(x) =
∑
j∈I(x)

wj(x)Sj(x) =
∑
j∈I(x)

∑
i∈J(Ωj)

wj(x)ψi(x)u(x), (14)

where {Sj}Nj=1 are RBF based local interpolants corresponding to each sub-domain Ωj . From (14), the

approximation solution Uk can be expressed as

Uk ≈ Pu(x) =
∑
j∈I(x)

∑
i∈J(Ωj)

wj(x)ψi(x)Uk. (15)

4 Numerical results

Figure 1 includes a representation of the associated PU subdomains for the considered domains with the
uniform and Halton points. In the present research, the subdomains are selected as circles in R2, but they
can selected also in other forms, such as ellipses or squares. The box structure presented by [3] is used here
to define the centers and radius of the subdomains. In this paper, we follow the algorithm provided by Sarra
to specify an optimal shape parameter ε. The value of condition number (CN) is calculated with the help
of the Matlab command condest. The numerical experiments were done in MATLAB 2016a on a PC with 8
GB of RAM.
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Figure 1: Partitioning of considered domains having circular subdomains.

Consider the following Sobolev equation

∂u(x, y, t)

∂t
− γ ∂∆u(x, y, t)

∂t
− σ∆u(x, y, t) = f(x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,

The source term f(x, y, t), the initial and Dirichlet boundary conditions are calculated from the analytical
solution u(x, y, t) = exp(−t) sin(πx) sin(πy). Table 1 lists the L2 errors, the time convergence orders Cδt
and the obtained computational times (in seconds) of the proposed method by taking N = 100 at final time
T = 1 on the square domain Ω = [0, 1]2. Table 2 makes the comparison of the L∞ and L2 errors with those
provided by the techniques described in [5–7] on the square domain Ω = [0, 1]2. The obtained numerical
results clarify that the proposed method is better than the others in terms of the accuracy and the elapsed
computational time. Table 3 displays the L∞ errors, the condition number and the associated computational
times on the square domain Ω = [0, 1]2 for the uniform and Halton nodes with δt = 1/100.

Table 1: Numerical errors, time convergence orders Cδt and associated computational time of LRBF-PUM-
FD with γ = σ = 1 and N = 100 at T = 1 on the domain Ω = [0, 1]2.

δt Ref. [4] LRBF-PUM-FD

L2 CPU L2 Cδt CPU

1/2 1.1963e− 01 0.89 7.8104e− 03 − 0.424952
1/4 1.4943e− 02 1.77 2.8091e− 03 1.47529 0.443898
1/8 7.2957e− 03 3.44 6.9891e− 04 2.00693 0.444320
1/16 1.8217e− 03 6.78 1.7452e− 04 2.00171 0.451735
1/32 4.5530e− 04 13.45 4.3616e− 05 2.00047 0.464944
1/64 1.1382e− 05 26.91 1.0903e− 05 2.00013 0.475786
1/128 2.8453e− 05 54.44 2.7258e− 06 1.99998 0.482230
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Table 2: Comparison between the L∞ and L2 errors of the LRBF-PUM-FD and the methods of [5–7] with
δt = 1/100 and γ = σ = 1 on the domain Ω = [0, 1]2.

Ref. [5] Ref. [6] Ref. [7] LRBF-PUM-FD

N L∞ L2 L∞ L2 L∞ L2 L∞ L2

4 2.2100e− 02 8.0968e− 03 6.4901e− 03 9.3030e− 04 7.4767e− 03 1.7519e− 02 1.1566e− 06 2.3132e− 06
8 6.4901e− 03 2.9283e− 03 1.4656e− 04 4.9647e− 04 2.1515e− 03 8.9465e− 03 2.9784e− 06 3.8763e− 06
16 1.7223e− 03 8.0121e− 04 1.2647e− 05 9.8424e− 05 4.9543e− 04 4.0019e− 03 3.1065e− 06 5.8890e− 06
32 4.2893e− 04 1.9983e− 04 3.7398e− 06 5.9866e− 05 5.9549e− 05 9.5508e− 04 3.1328e− 06 8.6059e− 06

Table 3: The L∞ errors, condition numbers and associated computational times on the square domain with
γ = σ = 1 and δt = 1/100 at T = 1 on the domain Ω = [0, 1]2.

Uniform nodes Halton nodes

N M L∞ C-number CPU N M L∞ C-number CPU

289 9 3.1400e− 06 7.2666e+ 04 1.45537 316 10 3.1232e− 06 9.7179e+ 04 5.78059
676 16 3.1285e− 06 2.7648e+ 04 3.86449 639 18 3.1282e− 06 5.1763e+ 05 3.49469
1024 36 3.1416e− 06 5.5667e+ 05 5.84741 1729 29 3.1519e− 06 1.1767e+ 06 6.03137
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