
Generalization of the F4 Algorithm to Parametric Polynomial Ideals

Mahdi Dehghani Darmian1

Department of Mathematics, Technical and Vocational University (TVU),

Tehran, Iran

Amir Hashemi
Department of Mathematical Sciences, Isfahan University of Technology,

Isfahan, 84156-83111, Iran

Abstract
In this paper, we design a parametric version of the F4 algorithm (so-called PF4) which can be considered as a

expantion of Faugère’s F4 algorithm [5] to the parametric polynomial ideals. Our idea is based on the F4 algorithm
and the Montes DisPGB algorithm [10]. Also, we apply the parametric linear algebra methods developed in [3].
The input of the PF4 algorithm is a parametric polynomial ideal and two monomial orderings on the variables and
the parameters. It returns a Gröbner system of the ideal with respect to a compatible elimination product of the
given monomial orderings. We have implemented our new algorithm in Maple and give timings and used momory
to compare its performance with our implementation of the DisPGB algorithm [10] and the Kapur et al. algorithm
namely PGBMain [8].

Keywords: Gröbner systems, F4 algorithm, PF4 algorithm, PGBMain algorithm, DisPGB algorithm.

AMS Mathematical Subject Classification [2010]: 13P10, 68W30.

1 Introduction

Gröbner bases as a particular kind of generating set of the polynomial ideals are a powerful computational tool in

computer algebra with many important applications in Mathematics, science, and engineering. These bases together

with the first algorithm to compute them were introduced by Buchberger in his Ph.D. thesis under the supervision of

Gröbner [2]. Later on, he accelerated his algorithm by propounding two criteria to remove redundant reductions [1].

Nevertheless, Buchberger’s algorithm is so time consuming and that is why Lazard in 1983 proposed an algorithm

for computing Gröbner bases, by using linear algebra methods [9]. In 1999 and 2002 Faugère presented, respectively,

his two well-known F4 [5] and F5 [6] algorithms for computing Gröbner bases. The F4 algorithm uses the same

mathematical concepts as the Buchberger algorithm, but computes many normal forms simultaneously by forming a

generally sparse matrix and using fast linear algebra to perform the reductions.

In this paper, we adapt the F4 algorithm to compute Gröbner systems (as an extension of Gröbner bases) for

parametric polynomial ideals. A Gröbner system is a finite set of triples (so-called branches); each branch contains

a parametric constraints (a couple of null and non-null parametric sets) and also a set of polynomials so that for any

1speaker

1014

Generalization of the F4 Algorithm to Parametric Polynomial Ideals 1015

specialization there is a branch so that the specialization satisfies its constraints, and the specialized polynomial set

forms a Gröbner basis for the parametric ideal under the substitution of the values of the parameters. The concept

of Gröbner system was introduced by Weispfenning in [12]. He proved also the existence of a Gröbner system for

any given parametric polynomial ideal [12, Proposition 3.4 and Theorem 2.7] and presented the first algorithm to

compute it [12, Theorem 3.6]. In 2002, Montes [10] propounded a more efficient algorithm (DisPGB) for computing

Gröbner systems (see also [4, 7]). In [11] Suzuki and Sato proposed an effective improvement for computing Gröbner

systems. The Suzuki-Sato algorithm utilized recursively computations of reduced Gröbner bases in an extension of

the base polynomial ring. Finally, Kapur et al. in 2010 designed an efficient algorithm (PGBMain algorithm [8]) for

computing Gröbner systems by using combination of the Weispfenning [13] and the Suzuki-Sato algorithms. The

PGBMain algorithm at each iteration computes the Gröbner basis over a polynomial ring in terms of the variables and

the parameters. Therefore, this step may be very expensive and time consuming in practice, because the complexity

of Gröbner basis computation is extremely impressed by the number of variables and degree of the given polynomials.

Therefore, it is important to design an efficient algorithm to reduces the computation in a polynomial ring in terms of

only the variables. On the other hand, the DisPGB algorithm works in a polynomial ring in terms of only the variables.

At this algorithm, like the Buchberger’s algorithm, a parametric S-polynomials is computed and if its remainder is

non zero then it is added to the basis set (see also [7]). In consequence, DisPGB creates new branches when a new

polynomial with an undecidable coefficient is constructed and this may leads to many number of branches which can

cause the inefficiency of the algorithm in practice. In order to prevent this problem, we present a parametric version of

the F4 algorithm. Based on parametric linear algebra technique and using the basic ideas from the DisPGB structure

[10], we propose a parametric F4 algorithm to compute Gröbner systems for parametric polynomial ideals. Our new

presented algorithm along with the the PGBMain and DiSPGB algorithms have been implemented in Maple and their

efficiency is discussed on a diverse set of parametric polynomial ideals.

In the following, we give a very brief review of the basic notations and definitions relating to Gröbner bases and

Gröbner systems.

Throughout this paper, we consider R = K[x1, . . . , xn] the polynomial ring in terms of x1, . . . , xn over a field K.

Let I = ⟨ f1, . . . , fk⟩ ⊂ R be the polynomial ideal generated by the fi’s. We consider a monomial ordering ≺ on the set

of all monomials (power products of the xi’s) of R. For any f ∈ R, the leading monomial of f , denoted by LM≺(f),

is the greatest monomial (with respect to ≺) appearing in f and its coefficient is the leading coefficient of f which

denoted by LC≺(f). The leading term of f with respect to ≺ is the product LT≺(f) = LC≺(f)LM≺(f). The leading

monomial ideal of I is defined to be LM≺(I) = ⟨LM≺(f) | f ∈ I⟩. A finite subset {g1, . . . , gm} ⊂ I is called a Gröbner

basis for I with respect to ≺ if LM≺(I) = ⟨LM≺(g1), . . . ,LM≺(gm)⟩.
Now consider S = K[a, x] where K is an arbitrary field, a = a1, . . . , am is a sequence of parameters and x =

x1, . . . , xn is a sequence of variables. Let ≺x be a monomial order on the variables and ≺a be a monomial order on the

parameters. The product of ≺x and ≺a gives rise to an ordering on S, denoted by ≺x,a which is defined as follows: For

all α, β ∈ Nn and γ, δ ∈ Nm, xαaγ ≺x,a xβaδ ⇐⇒ xα ≺x xβor (xα = xβand aγ ≺a aδ). Let us consider σ : K[a] → K
as a specialization of parameters where K is the algebraic closure of K. This morphism can be considered as a

substitution of existent parameters in f ∈ K[a] with an elements of K
m

. Also, for a finite set F ⊂ R, we call V(F) the

variety of F which is the set of common zeros of F. Now, we are ready to recall the definition of a Gröbner system

for a parametric polynomial ideal.

Definition 1.1. Let F ⊂ S and G = {(Gi,Ni,Wi)}ℓi=1 be a finite triples set where Ni,Wi ⊂ K[a] and Gi ⊂ S are finite

for i = 1, . . . , ℓ. The set G is called a Gröbner system of ⟨F⟩ w.r.t. ≺x,a on V ⊆ Km
if for any i we have

1016 M. Dehghani Darmian and A. Hashemi

• For any specialization σ : K[a]→ K satisfying (Ni,Wi) the set σ(Gi) ⊂ K[x] is a Gröbner basis of ⟨σ(F)⟩ w.r.t.

≺x. (We say that σ satisfies (Ni,Wi) if σ(p) = 0 for all p ∈ Ni and σ(q) , 0 for some q ∈ Wi)

• V ⊆ ⋃ℓi=1V(Ni) \ V(Wi)

Each (Ni,Wi,Gi) is called a branch of the Gröbner system G and we can consider (Ni,Wi) as a condition set which Ni

is the null condition set and Wi the non-null condition set. Furthermore, G is a Gröbner system of F if V = K
m

.

Example 1.2. Let F = {(1 − c)y − ax2, x + by2} ⊂ K[a, b, c, x, y] where a, b, c are parameters and x, y are variables.
Using our implementation of PGBMain algorithm in Maple, we obtain the following CGS for ⟨F⟩ w.r.t. the product
ordering y ≺lex x and c ≺lex b ≺lex a


([], [ab2], [ab2y4 − y + cy, x + by2])
([ab2], [c − 1], [cy − y, x + by2])
([c − 1, ab2], [], [x + by2]).

For instance, if a = 2, b = 0 and c = 3 then the second branch corresponds to these values of parameters. Therefore, {x, y} will
be a Gröbner basis for the ideal ⟨F⟩ |a=2,b=0,c=3 = ⟨−2y − 2x2, x⟩.

2 Main results

The strength point of the Faugère’s F4 algorithm [5] compared to the Buchberger algorithm is the use of row-reduction

techniques on the sparse matrix to perform the reductions of several S-polynomial, simultaneously. In this section,

we present a parametric F4 algorithm which can be considered as a generalization of the F4 algorithm to polynomial

ideals with parametric coefficients. At each iteration of the F4 algorithm we shall perform linear and non-linear

reductions, and it is non-trivial to handle the parametric variants of all these reductions. To resolve this issue ,we

apply the GES algorithm [3] with slight modifications. This algorithm computes a Gaussian elimination system for a

parametric matrix (equivalently a parametric linear system corresponding to the input matrix). However, we utilize this

algorithm on non-linear polynomials to make a linear inter-reduction, and we look for their Gaussian forms according

to parametric constraints. In this direction, we shall linearize the input polynomials by replacing each monomial

appearing in the polynomials by new variables. The main engine of the GES algorithm is the LDS algorithm [3] which

discusses the dependency of a linear parametric polynomial with respect to a given set of parametric polynomials

without the use of Gröbner systems. More precisely, the input of LDS algorithm is (N,W, F, f) where (N,W) is a pair

of condition sets, F is a set of linear parametric polynomials (which forms a parametric Gröbner basis with respect to

the given parametric constraint) and f is a linear parametric polynomial. LDS algorithm returns a finite set of triples

of the form (Ni,Wi, [f lag,Q, g]) where (Ni,Wi) is a pair of condition sets, flag is a Boolean variable, Q represents the

quotients of the division and g is the normal form of f with respect to F. If flag is true then g = 0 and in consequence

f is linear dependent on F with respect to (Ni,Wi), and if it is false then f is linear independent modulo F with respect

to (Ni,Wi).

Generalization of the F4 Algorithm to Parametric Polynomial Ideals 1017

Algorithm 1 LDS (Linear Dependency System)
Require: G ⊂ S; a linear set which is a reduced Gröbner basis w.r.t. the product of the monomial orderings ≺x and ≺a provided that a conditions pair (N,W) is

satisfied and g ∈ S; a parametric linear polynomial
Ensure: A linear dependency system of g on (N,W,G)

Sys:= {}
f ,Q :=NormalForm(g,GröbnerBasis(N,≺a),≺a)
f ′,Q′ :=NormalForm(f ,G,≺x)
if f ′ = 0 then

Sys:=Sys
⋃{(N,W, [true,Q′, 0])}

else
A := {ai1 , . . . , ait } where f ′ = ai1 xi1 + · · · + ait xit with ai j , 0 and xi1 ≻x · · · ≻x xit
for j from 1 to t do

if ai j is not constant then
Sys:=Sys

⋃{(N ∪ {ai1 , . . . , ai j−1 },W ∪ {ai j }, [f alse,Q′, f ′ |ai1=0,...,ai j−1=0])}
else

Sys:=Sys
⋃{(N ∪ {ai1 , . . . , ai j−1 },W, [f alse,Q′, f ′ |ai1=0,...,ai j−1=0])}

Return(Sys)
end if

end for
Sys:=Sys

⋃{(N⋃ A,W, [true,Q′, 0])}
end if

Return(Sys)

Theorem 2.1. LDS algorithm terminates and is correct.

Proof. The termination of these algorithm is trivial. The correctness of LDS algorithm comes from the fact that g is

dependent on G iff either f ′ = 0 or all the coefficients of f ′ are null. If f ′ , 0, we add the coefficients of f ′ (which

are polynomials in K[a]) into N and verify the consistency of the new conditions pairs. □

Using LDS algorithm, we are aspiring to propose an efficient algorithm to compute a Gaussian elimination system

for a set of parametric polynomials. Below, the variable Sys is initialized to the empty set, and finally, it is the output

Gaussian elimination system. In more detail, each saved segment in Sys is a triple (N,W,G) where (N,W) is a pair of

condition sets and G is a Gaussian elimination form of the input parametric polynomials set with respect to (N,W).

Algorithm 2 GES (Gaussian Elimination System)
Require: N ⊂ K[a]; null condition set, W ⊂ K[a]; non-null condition set, F ⊂ K[a, x]; a parametric polynomial set
Ensure: A Gaussian elimination system of F according to N and W

Sys:= {}
M := Mon(F) = [m1, . . . ,mt] (the set of all monomials in terms of the xi’s appearing in F)
[Y1, . . . , Yt] :=A list of tag variables corresponding to Mon(F)
L := ϕ(F) where ϕ is a linear map sending each mi into Yi
A := {(N,W, {}, L[1], L)}
while A , {} do

a := A[1] and A := A \ {a}
if a[5] = {} then

G := ϕ−1(a[3])
Sys:=Sys

⋃{(a[1], a[2],G)}
else

G := a[5] \ {a[4]}
g := G[1]
P :=LDS(a[1], a[2], a[3], a[4])
for i from 1 to |P| do

Let P[i] = (N1,W1, [f lag,Q, f])
if f lag = true then

A := A ∪ {(N1,W1, a[3], g,G)}
else

A := A ∪ {(N1,W1, a[3] ∪ { f }, g,G)}
end if

end for
end if

end while

Return (Sys)

Theorem 2.2. The GES algorithm terminates in finitely many steps and is correct.

1018 M. Dehghani Darmian and A. Hashemi

Proof. The termination of the GES algorithm is a direct consequence of the termination of the LDS algorithm and the

finiteness of F. Also, the correctness of the LDS algorithm warrantes the correctness of this algorithm. More precisely,

by the structure of the algorithm, we discuss a new polynomial f ∈ F using the LDS algorithm. If it is linear dependent

on the computed basis, then it is removed. Otherwise, its normal form with respect to the computed basis is added into

the basis. Thus, each branch contains a Gaussian elimination form of the input parametric polynomial set according

to the corresponding parametric constraint. □

Example 2.3. Let us consider F = {ax2 + by + 1, cz3 + (a − 1)y − b, (a − b)y2 + (c − 1)xy − 2} ⊂ K[a, b, c][x, y, z] as
a set of parametric polynomials. Using the GES algorithm, we get the following Gaussian elimination system for F
when (N,W) = ([a − 1], [c]).

([a − 1], [c, c − 1], [x2 + by + 1, cz3 − b, (1 − b)y2 + cxy − xy − 2]),
([c − 1, a − 1], [b − 1], [x2 + by + 1, z3 − b, (1 − b)y2 − 2]),
([c − 1, b − 1, a − 1], [], [x2 + y + 1, z3 − 1,−2]).

We are willing now to present a parametric variant of the F4 algorithm, so-called PF4 for the computation of

Gröbner systems for parametric polynomial ideals. This algorithm receives a parametric polynomial set F and two

monomial orderings on variables and parameters and returns a Gröbner system for the ideal generated by F. Below,

the notion OUTSYS stands for a global variable which is initialized to empty sequence and at each iteration of two

algorithms PF4 and PF4Basis, some new branches are added to this sequence, and finally it is a Gröbner system of the

input ideal.

Algorithm 3 PF4
Require: F ⊂ K[a, x] = K[a1, . . . , am, x1, . . . , xn], ≺x,≺a; two monomial orderings
Ensure: G; A Gröbner system of ⟨F⟩ with respect to ≺x,a

OUTS YS := NULL
A :=GES([], [], F)
for (Nn,Wn, Fn) ∈ A do

if Fn = [] then
OUTSYS:= OUTSYS, (Nn,Wn, [])

end if
if there is any constant or non-zero parameter in Fn then

OUTSYS:= OUTSYS, (Nn,Wn, [1])
else

t := |Fn | (the cardinality of Fn)
B := [[{i, j}, deg(lcm(LM≺x (Fn[i]),LM≺x (Fn[j])))] | 1 ≤ i < j ≤ t, gcd(LM≺x (Fn[i]),LM≺x (Fn[j])) , 1]
if B = [] then

OUTSYS:= OUTSYS, (Nn,Wn, Fn)
else

S YS := [[Nn,Wn, Fn, t, B]]
end if

end if
PF4Basis(S YS)

end for

In the following we describe the PF4Basis algorithm which is the engine of the PF4 algorithm. In this algorithm,
the Newpolys is a procedure which receives two lists of polynomials F,G and returns the list of those polynomials
f ∈ F such that LM(f) < ⟨LM(G)⟩. Also, NormalSet(F,G,≺) = { f G

≺ | f ∈ F} where f
G
≺ is a remainder of f on division

by G with respect to ≺. Moreover, in order to enhance the efficiency of the PF4Basis algorithm, we keep track of the
computations by saving any branch sys ∈ S YS in the PF4Basis algorithm of the form sys = (a[1], . . . , a[5]) containing
the following information:

• a[1]: The null condition set

• a[2]: The non-null condition set

• a[3]: The set of polynomials which forms a Gröbner basis for ⟨F⟩ with respect to ≺x

• a[4]: The cardinality of a[3]

• a[5]: A list of pairs so that the first component each element is a pair {i, j} and second component is
deg(lcm(LM≺x (a[3][i]),LM≺x (a[3][j]))).

Generalization of the F4 Algorithm to Parametric Polynomial Ideals 1019

Algorithm 4 PF4Basis
Require: N ⊂ K[a]; null condition set, W ⊂ K[a]; non-null condition set, F ⊂ K[a, x]; t; the cardinality of F and Cpairs; a list of pairs so that the first

component is a pair of integers {i, j} and second component is deg(lcm≺x (LM(F[i]),LM≺x (F[j])))
Ensure: Decomposing the space of parameters into a finite set of parametric cells and for each cell associating a finite set of parametric polynomials

B := Cpairs
while S YS , [] do

sys := S YS [1] and remove it from S YS
G := sys[3]
B := sys[5]
Select Bp ⊆ B using degree-normal selection strategy
B := B \ Bp
Bsys := B
L := { lcm(LM(fi),LM(fj))

LM(fi)
. fi,

lcm(LM(fi),LM(fj))
LM(fj)

. f j | {i, j} ∈ Bp}
H :=ComputeM(L,G)
Ges :=GES(sys[1], sys[2], H)
allNPi := [Newpolys(Ges[i][3],H), i = 1, . . . ,

∣∣∣ Ges
∣∣∣]

for j from 1 to
∣∣∣ allNPi

∣∣∣ do
t := sys[4]
G := NormalSet(sys[3],Ges[j][1],≺a);
B := Bsys
for ℓ from 1 to

∣∣∣ allNPi[j]
∣∣∣ do

t := t + 1
B :=Update(allNPi[j][ℓ],G, B)
G := [op(G), allNPi[j][ℓ]]
if B = [] then

OUTSYS:= OUTSYS, (Ges[j][1],Ges[j][2],G)
else

S YS := [op(S YS), [Ges[j][1],Ges[j][2],G, t, B]]
end if

end for
end for{
PF4Basis(S YS [m])

}∣∣∣S YS
∣∣∣

m=1
end while

Return (OUTSYS)

Theorem 2.4. The PF4 algorithm terminates in finitely many steps and is correct.

Proof. To prove the termination of this algorithm we can consider this computation like a tree graph and its node

corresponds to a triple which is the output of the GES algorithm. The number of branches is finite (due to the

termination of the original F4 algorithm). Also, the number of nodes in this tree is finite (by termination of the GES

algorithm) and all these arguments together conclude the termination of the algorithm.

Morever, the correctness of the algorithm is guaranteed by the correctness of the GES and the F4 algorithms.

Since, we basically follow the structure of the F4 algorithm, we get at the end a Gröbner system of the input ideal. □

Example 2.5. Let F = [(c2 − 1)x2 + b2 − 1, (a2 − 1)xy2 + c + b] ⊂ K[a, b, c][x, y] where x, y are varibles and a, b, c

are parameters. We consider the monomial orderings y ≺lex x and c ≺lex b ≺lex a. Using our implementation of

the PF4 algorithm in Maple, we obtain the following Gröbner system of ⟨F⟩ w.r.t. the product ordering y ≺lex x and

c ≺lex b ≺lex a saved in OUTSYS as follows:

([a2 − 1], [b + c, c − 1, c + 1], [1]),
([c2 − 1], [a − 1, a + 1, b − 1, b + 1], [1]),
([c2 − 1, a2 − 1], [b − 1, b + 1], [1]),
([c2 − 1, b2 − 1, a2 − 1], [b + c], [1]),
([c2 − 1, b + c, a2 − 1], [], []),
([b2 − 1], [a − 1, a + 1, b + c, c − 1, c + 1, 2bc + c2 + 1], [c2 x2 − x2, a2 xy2 − xy2 + b + c, bc2 x + c3 x − bx − cx, 2bc3 + c4 − 2bc − 1]),
([b + c, a2 − 1], [c − 1, c + 1], [c2 x2 + c2 − x2 − 1]),
([c2 − 1, b2 − 1], [a − 1, a + 1], [a2 xy2 − xy2 + b + c]),
([b + c], [a − 1, a + 1, c − 1, c + 1], [c2 x2 + c2 − x2 − 1, a2 xy2 − xy2, a2c2y2 − a2y2 − c2y2 + y2]),
([], [a − 1, a + 1, b − 1, b + 1, b + c, c − 1, c + 1], [c2 x2 + b2 − x2 − 1, a2 xy2 − xy2 + b + c, a2b2y2 − a2y2 − b2y2−

bc2 x − c3 x + bx + cx + y2, y4a4b2 − y4a4 − 2a2b2y4 + 2a2y4+

b2c2 + (y4 − 1)b2 + 2bc3 − 2bc + c4 − c2 − y4]).

1020 M. Dehghani Darmian and A. Hashemi

In the following, we are willing to compare the performance of the PF4 algorithm with PGBMain and Improved-
DisPGB algorithms (an improvement of the DisPGB algorithm [10] equipped to the Update algorithm [7]). For this
purpose, we have implemented all the algorithms described in this paper in Maple 152. In this direction, the following
parametric ideals in the ring S = Q[a, b, c, d,m, n, r, t][x, y, z, u, v,w] have been chosen, and our aim was to compute
a Gröbner system of the ideal generated by each list of polynomials with respect to the product of the orderings
v ≺lex w ≺lex u ≺lex z ≺lex y ≺lex x and t ≺lex r ≺lex n ≺lex m ≺lex d ≺lex c ≺lex b ≺lex a.

• EX.1= [ab4cuxz − a − c, aby2 − a2 + b2, abuxz − c]

• EX.2= [(a − c)xz − x, (−b3 + a2)uxz − ab, (a + b)y − a2]

• EX.3= [(c2 − 1)x2y + b2 − 1, (a2 − 1)x2z + c + b, (a − b)y2z − x − 1, bxy + a − c]

• EX.4= [bx2z3 − n3 + n, cx2y3 − a3 − a, dx3y2 − m3 − m]

• EX.5= [abcxyz − a − b − c, abxy − a − b, ax3 − bc, by3 − c, cz3 − a]

• EX.6= [(bc − 1)x2 + c2 − a, (ab − 1)z2 − c + a, y2 − (b − 1)x − 1, (b + c + a)z2 + a + b + c]

• EX.7= [(c − a − b)x3z3 + c3 − a − b, (b − a − c)z2y5 − c − a − m, (a − m + n)z2 − a + b]

• EX.8= [(a − 1)xyz + a, (b − 2)y2 + ab, (c + a)xy − a − 1]

• EX.9= [ab4tux3 − x − a3 − n, abxy3 + b4 − a2 + a, anxz3 + a − 1]

Example Method Time (sec.) Used Memory (GB)
PF4 0.38 0.007

EX.1 PGBMain 0.51 0.016
FirstGB 0.2 0.006
Improved-DisPGB 0.54 0.018
PF4 0.9 0.02

EX.2 PGBMain 0.41 0.012
FirstGB 0.3 0.005
Improved-DisPGB 1.44 0.035
PF4 11.64 0.72

EX.3 PGBMain — —
FirstGB — —
Improved-DisPGB — —
PF4 3.52 0.09

EX.4 PGBMain 27.81 1.91
FirstGB 0.32 0.015
Improved-DisPGB 6.1 0.23
PF4 12.48 1.2

EX.5 PGBMain — —
FirstGB — —
Improved-DisPGB — —
PF4 1.13 0.041

EX.6 PGBMain 2.17 0.1
FirstGB 0.02 0.016
Improved-DisPGB 1.84 0.048
PF4 1.43 0.036

EX.7 PGBMain — —
FirstGB 197.25 27.64
Improved-DisPGB 2.59 0.075
PF4 0.67 0.022

EX.8 PGBMain 031 0.007
FirstGB 0.14 0.001
Improved-DisPGB 1.04 0.029
PF4 9.71 0.45

EX.9 PGBMain 11.23 0.85
FirstGB 4.81 0.51
Improved-DisPGB 50.21 6.3

The results are shown in the comparison table where the timings were conducted on personal computer with 5 core,

4 GB RAM and 64 bits under the Windows 10 operating system. The row “First GB" stands for the computation of

the reduced Gröbner basis of the corresponding ideal in the polynomial ring K[a, x] with respect to ≺x,a using the

2The Maple codes of the algorithms are available at http://amirhashemi.iut.ac.ir/softwares under the names PF4.mpl,
PLA-PFGLM.mpl and Montes.mpl. The first file contains a Maple implementation of our algorithm for computing Gröbner systems. The
second file contains a Maple implementation of the Kapur et al. algorithm (PGBMain algorithm) and the last one is a Maple implementation
of the improvement of the Montes DisPGB algorithm.

Generalization of the F4 Algorithm to Parametric Polynomial Ideals 1021

Maple function Basis. Furthermore, the third and fourth columns show respectively the CPU time (in seconds) and

the amount of used memory (in gigabytes) of the total computation by the corresponding method. It is worth noting

that, this computation is needed the first step in the PGBMain algorithm to compute a Gröbner system with respect to

≺x,a. Also, the symbol “—" means that the results can not computed within 600 seconds.

References

[1] Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. Symbolic

and algebraic computation, EUROSAM ’79, int. Symp., Marseille 1979, Lect. Notes Comput. Sci. 72, 3-21

(1979)., 1979.

[2] Buchberger, B. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the

residue class ring of a zero dimensional polynomial ideal. Translation from the German. J. Symb. Comput. 41,

3-4 (2006), 475–511.

[3] Dehghani Darmian, M., and Hashemi, A. Parametric FGLM algorithm. J. Symb. Comput. 82 (2017), 38–56.

[4] DehghaniDarmian, M., Hashemi, A., andMontes, A. Erratum to “A new algorithm for discussing Gröbner bases

with parameters” [J. Symbolic Comput. 33 (1-2) (2002) 183-208]. J. Symb. Comput. 46, 10 (2011), 1187–1188.

[5] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 1-3

(1999), 61–88.

[6] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In

Proceedings of the 2002 international symposium on symbolic and algebraic computation, ISSAC 2002, Lille,

France, July 07–10, 2002. New York, NY: ACM Press, 2002, pp. 75–83.

[7] Hashemi, A., Dehghani Darmian, M., andM.-Alizadeh, B. Applying Buchberger’s criteria on Montes’s DisPGB

algorithm. Bull. Iran. Math. Soc. 38, 3 (2012), 715–724.

[8] Kapur, D., Sun, Y., and Wang, D. A new algorithm for computing comprehensive Gröbner systems. In Pro-

ceedings of the 35th international symposium on symbolic and algebraic computation, ISSAC 2010, Munich,

Germany, July 25–28, 2010. New York, NY: Association for Computing Machinery (ACM), 2010, pp. 29–36.

[9] Lazard, D. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. Computer

algebra, EUROCAL ’83, Proc. Conf., London 1983, Lect. Notes Comput. Sci. 162, 146-156 (1983)., 1983.

[10] Montes, A. A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33, 2 (2002),

183–208.

[11] Suzuki, A., and Sato, Y. A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In

In Proceedings of the 2006 international symposium on symbolic and algebraic computation, ISSAC 06, Genova,

Italy, July 9–12, 2006. New York, NY: ACM Press, 2006, pp. 326–331.

[12] Weispfenning, V. Comprehensive Gröbner bases. J. Symb. Comput. 14, 1 (1992), 1–29.

[13] Weispfenning, V. Canonical comprehensive Gröbner bases. J. Symb. Comput. 36, 3-4 (2003), 669–683.

e-mail: m.dehghanidarmian@gmail.com
e-mail: amir.hashemi@ipm.ir

