# Perfect 3-Coloring and Truncated Octahedral Graph 

Mehdi Alaeiyan ${ }^{1}$<br>School of Mathematics, Iran University of Science and Technology, Narmak, Tehran<br>Sahar Qajar<br>Department of Mathematical Science, Sharif University of Technology, Azadi Street, P. O. Box<br>11365-9415, Tehran, Iran.


#### Abstract

If the vertex set of the graph $G$ can be partitioned into $m$ parts $V_{1}, V_{2}, \ldots, V_{m}$ in such a way that the number of neighbors of a vertex in each of these parts is a constant number depends on the parts, that is the number of neighbor of a vertex $v \in V_{i}$ in $V_{j}$ is $a_{i j}$, where $1 \leq i, j \leq n$, this partition is a perfect $m$-coloring for $G$ and is perfect $m$-colorable. Also, the $m \times m$ matrix $A=\left(a_{i j}\right)$ is called parameter matrix of the graph. In this paper, we find all possible parameter matrices of perfect 3-coloring for truncated octahedral graph.


Keywords: Vertex coloring, Perfect 3-Coloring, Parameter matrix, Truncated octahedral graph.

AMS Mathematical Subject Classification [2010]: 05C15

## 1 Introduction

This note is about perfect 3-coloring of truncated octahedral graph. Like other kinds of coloring, this concept of graph theory related to a partition of vertices that has special property, too. Our definitions and terminologies are from [11]. Let $G=(V, E)$ be a graph. A partition $\left(V_{1}, V_{2}, \ldots, V_{m}\right)$ of $V$ is perfect $m$-coloring of $G$, if for every $i, j, 1 \leq i, j \leq m$, each vertex $v \in V_{i}$ has exactly $a_{i j}$ neighbors in $V_{j}$. The matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq m}$ is called the parameter matrix. For more information see [1-7,9,10].

Two parameter matrices $A$ and $A^{\prime}$ are isomorphic if a permutation $\sigma \in S_{m}$ exists that operates on both rows and columns of $A$ to obtain $A^{\prime}$. It is obvious that if $A$ and $A^{\prime}$ are isomorphic, then the existence of a coloring with parameter matrix $A$ is equivalent the existence of a coloring with parameter matrix $A^{\prime}$.

Let $G=(V, E)$ be a graph. Suppose that $M$ be a matching in graph $G=(V, E)$. If $G[M]=M$, the we call $M$ an induced matching. Suppose that $C$ be a union of cycles in graph $G=(V, E)$. If $G[C]=C$, the we call $C$ an induced cycles.

[^0]In [1] we determined all parameter matrices of perfect 3-colorings of cubic graphs and properties of perfect 3 -colorable cubic graph with each parameter matrix, (see Table 1). Also we characterize perfect 3 -colorable cubic graphs, (see Lemma 2.1). In this paper, we determine all perfect 3-coloring for truncated octahedral graph:


Figure 1: Truncated Octahedral Graph

Throughout this paper, our focus is on perfect 3-colorings, that is shown by $(W, B, R)$, where $|W| \leq|B| \leq|R|$, and $W, B$ and $R$ are symbols for white, black and red, respectively.

## 2 Preliminaries

In this section, we introduced some preliminary result that will be used to solve the problem. The first one is Table 1 (see [1]) in which you can see the properties of the perfect 3 -coloring of cubic graphs of order $n$, with determined parameter matrix. All parameter matrices of the perfect 3 -coloring of cubic graphs of order $n$ which is determined in [1] are:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \quad A_{3}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \quad A_{4}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \quad A_{5}=\left[\begin{array}{lll}
0 & 3 & 0 \\
2 & 0 & 1 \\
0 & 1 & 2
\end{array}\right] \\
& A_{6}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right] \quad A_{7}=\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right] \quad A_{8}=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \quad A_{9}=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right] \quad A_{10}=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right] \\
& A_{11}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right] \quad A_{12}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right] \quad A_{13}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \quad A_{14}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right] \quad A_{15}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right] \\
& A_{16}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right] \quad A_{17}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right] \quad A_{18}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

In each row, the 1 st box is the parameter matrix. The $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th one are the size of coloring parts $W, B$ and $R$, respectively. The 5 th, 6 th and 7 th one show that coloring parts $W, B$ and $R$ are independent, induced matching or induced cycles, respectively.

The second one is Lemma 2.1 which characterize the cubic graph that has perfect 3 -coloring.

Table 1: Complete properties of all parameter matrices

| $M$ | $\|W\|$ | $\|B\|$ | $\|R\|$ | $W$ | $B$ | $R$ | $M$ | $\|W\|$ | $\|B\|$ | $\|R\|$ | $W$ | $B$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $I$ | $C$ | $M$ | $A_{2}$ | $\frac{n}{4}$ | $\frac{n}{4}$ | $\frac{n}{2}$ | $I$ | $C$ | $C$ |
| $A_{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $M$ | $C$ | $C$ | $A_{4}$ | $\frac{n}{7}$ | $\frac{3 n}{7}$ | $\frac{3 n}{7}$ | $I$ | $M$ | $C$ |
| $A_{5}$ | $\frac{n}{4}$ | $\frac{3 n}{8}$ | $\frac{3 n}{8}$ | $I$ | $I$ | $C$ | $A_{6}$ | $\frac{n}{10}$ | $\frac{3 n}{10}$ | $\frac{3 n}{5}$ | $I$ | $I$ | $C$ |
| $A_{7}$ | $\frac{n}{7}$ | $\frac{3 n}{7}$ | $\frac{3 n}{7}$ | $I$ | $I$ | $M$ | $A_{8}$ | $\frac{n}{5}$ | $\frac{2 n}{5}$ | $\frac{2 n}{5}$ | $M$ | $M$ | $C$ |
| $A_{9}$ | $\frac{n}{7}$ | $\frac{2 n}{7}$ | $\frac{4 n}{7}$ | $M$ | $I$ | $C$ | $A_{10}$ | $\frac{n}{5}$ | $\frac{2 n}{5}$ | $\frac{2 n}{5}$ | $M$ | $I$ | $M$ |
| $A_{11}$ | $\frac{n}{5}$ | $\frac{n}{5}$ | $\frac{3 n}{5}$ | $I$ | $I$ | $M$ | $A_{12}$ | $\frac{n}{6}$ | $\frac{n}{3}$ | $\frac{n}{2}$ | $I$ | $I$ | $I$ |
| $A_{13}$ | $\frac{2 n}{11}$ | $\frac{3 n}{11}$ | $\frac{6 n}{11}$ | $I$ | $M$ | $M$ | $A_{14}$ | $\frac{3 n}{13}$ | $\frac{4 n}{13}$ | $\frac{6 n}{13}$ | $M$ | $I$ | $I$ |
| $A_{15}$ | $\frac{n}{4}$ | $\frac{n}{4}$ | $\frac{n}{2}$ | $M$ | $M$ | $M$ | $A_{16}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $I$ | $M$ | $I$ |
| $A_{17}$ | $\frac{n}{4}$ | $\frac{n}{4}$ | $\frac{n}{2}$ | $I$ | $I$ | $M$ | $A_{18}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $\frac{n}{3}$ | $M$ | $M$ | $M$ |

Lemma 2.1. [1] If the 3-regular graph $G$ of order $n$ has perfect 3-coloring with parameter matrix

1. $A_{1}, A_{3}, A_{12}, A_{16}$ or $A_{18}$, then $6 \mid n$.
2. $A_{2}$ or $A_{17}$, then $4 \mid n$.
3. $A_{4}, A_{7}$ or $A_{9}$, then $14 \mid n$.
4. $A_{5}$ and $A_{15}$ then $8 \mid n$.
5. $A_{6}, A_{8}, A_{10}$ or $A_{11}$ then $10 \mid n$.
6. $A_{13}$ then $22 \mid n$.
7. $A_{14}$ then $26 \mid n$.

The third one is Lemma 2.2 in which the relation between the spectra of parameter matrices and the spectra of the graph determined

Lemma 2.2. [8] If $A$ is a perfect m-coloring matrix of a graph $G$, then any eigenvalue of $A$ is an eigenvalue of $G$.

The last one is the spectrum of all possible parameter matrices for a perfect 3-coloring and Truncated octahedral graph graph.

Lemma 2.3. [12] Truncated octahedral graph graph spectrum is

$$
( \pm 3)^{1}( \pm 1)^{3}( \pm 1 \pm \sqrt{2})^{3}( \pm \sqrt{3})^{2}
$$

Table 2: Spectrum of parameter matrices.

| Matrix | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | Matrix | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | Matrix | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 3 | $\sqrt{3}$ | $-\sqrt{3}$ | $A_{2}$ | 3 | 2 | -1 | $A_{3}$ | 3 | 2 | 0 |
| $A_{4}$ | 3 | $\sqrt{2}$ | $-\sqrt{2}$ | $A_{5}$ | 3 | $\frac{-1+\sqrt{17}}{2}$ | $\frac{-1-\sqrt{17}}{2}$ | $A_{6}$ | 3 | 1 | -2 |
| $A_{7}$ | 3 | $-1+\sqrt{2}$ | $-1-\sqrt{2}$ | $A_{8}$ | 3 | $\frac{1+\sqrt{5}}{2}$ | $\frac{1-\sqrt{5}}{2}$ | $A_{9}$ | 3 | $\sqrt{2}$ | $-\sqrt{2}$ |
| $A_{10}$ | 3 | 1 | -2 | $A_{11}$ | 3 | 0 | -2 | $A_{12}$ | 3 | 0 | -3 |
| $A_{13}$ | 3 | $\frac{-1+\sqrt{5}}{2}$ | $\frac{-1-\sqrt{5}}{2}$ | $A_{14}$ | 3 | $-1+\sqrt{3}$ | $-1-\sqrt{3}$ | $A_{15}$ | 3 | 1 | -1 |
| $A_{16}$ | 3 | 0 | -2 | $A_{17}$ | 3 | -1 | -1 | $A_{18}$ | 3 | 0 | 0 |

## 3 main results

Theorem 3.1. There is a perfect 3-coloring for truncated octahedral graph only with parameter matrix $A_{1}$.

Proof: You can see perfect 3-coloring with each parameter matrices $A_{1}$ in Table 4.
By Lemmas 2.2 and 2.3 and Table $2, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}, A_{13}, A_{14}, A_{16}$ and $A_{18}$ are not parameter matrices.
Part 3 of Lemma 2.1 implies that $A_{7}$ is not a parameter matrix, too.
Let ( $W, B, R$ ) be a perfect 3 -coloring with parameter matrix $A_{15}$. By the graph construction, it can be suppose that $a_{1} a_{4} \in R$ or $a_{1} a_{24} \in R$. In the former case, w.l.o.g. we can assume that $a_{2} \in W$ and $a_{24} \in B$. Therefore $a_{3} \in W$ and $a_{5} \in B$. Since two member of $B$ (or $W$ ) do not have a common neighbor, so $a_{23} \in R$ and $a_{6} \in R$. Now, $a_{7} \in W$ and $a_{8} \in B$, that is impossible. In the later one, $a_{1} a_{24} \in R$, we can assume that $a_{2} \in B$ and $a_{4} \in W$. Therefore $a_{3}, a_{24} \in R$, $a_{5} \in W$ and $a_{23} \in B$. Now, $a_{7}, a_{8} \in R$, that is impossible too and there is no perfect 3 -coloring with parameter matrix $A_{15}$. By similar method there is no perfect 3 -coloring with parameter matrix $A_{17}$.

Table 3: A Coloring for the Parameter Matrix $A_{1}$

| $A_{1}$ | $W$ | $a_{1}, a_{3}, a_{6}, a_{8}, a_{13}, a_{15}, a_{18}, a_{20}$ |
| :---: | :---: | :---: |
|  | $B$ | $a_{9}, a_{10}, a_{11}, a_{12}, a_{21}, a_{22}, a_{23}, a_{24}$ |
|  | $R$ | $a_{2}, a_{4}, a_{5}, a_{7}, a_{14}, a_{16}, a_{17}, a_{19}$ |

Theorem 3.2. There is a perfect 3-coloring for truncated octahedral graph only with parameter matrix $A_{1}$.

Proof: You can see perfect 3-coloring with each parameter matrices $A_{1}$ in Table 4.
By Lemmas 2.2 and 2.3 and Table $2, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}, A_{13}, A_{14}, A_{16}$ and $A_{18}$ are not parameter matrices.
Part 3 of Lemma 2.1 implies that $A_{7}$ is not a parameter matrix, too.
Let $(W, B, R)$ be a perfect 3 -coloring with parameter matrix $A_{15}$. By the graph construction,
it can be suppose that $a_{1} a_{4} \in R$ or $a_{1} a_{24} \in R$. In the former case, w.l.o.g. we can assume that $a_{2} \in W$ and $a_{24} \in B$. Therefore $a_{3} \in W$ and $a_{5} \in B$. Since two member of $B$ (or $W$ ) do not have a common neighbor, so $a_{23} \in R$ and $a_{6} \in R$. Now, $a_{7} \in W$ and $a_{8} \in B$, that is impossible. In the later one, $a_{1} a_{24} \in R$, we can assume that $a_{2} \in B$ and $a_{4} \in W$. Therefore $a_{3}, a_{24} \in R$, $a_{5} \in W$ and $a_{23} \in B$. Now, $a_{7}, a_{8} \in R$, that is impossible too and there is no perfect 3-coloring with parameter matrix $A_{15}$. By similar method there is no perfect 3 -coloring with parameter matrix $A_{17}$.

Table 4: A Coloring for the Parameter Matrix $A_{1}$

| $A_{1}$ | $W$ | $a_{1}, a_{3}, a_{6}, a_{8}, a_{13}, a_{15}, a_{18}, a_{20}$ |
| :---: | :---: | :---: |
|  | $B$ | $a_{9}, a_{10}, a_{11}, a_{12}, a_{21}, a_{22}, a_{23}, a_{24}$ |
|  | $R$ | $a_{2}, a_{4}, a_{5}, a_{7}, a_{14}, a_{16}, a_{17}, a_{19}$ |

## References

[1] M. Alaeiyan and S. Qajar, Parameter Matrices in Perfect 3-Coloring and Some Symmetric Cubic Graphs, in preparation.
[2] M. Alaeiyan and Zahra Shokoohi, Perfect 3-colorings of some generalized peterson graph, Commun. Combin., Cryptogr. and Computer Sci., 1 (2021), 136-142.
[3] M. Alaeiyan, Perfect 3-colorings Of Heawood Graph, Iran J Sci Technol Trans Sci, 12 (2021) No. 1, 713-717. https://doi.org/10.1007/s40995-018-0646-1
[4] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of the Platonic graphs, Iran J Sci Technol Trans Sci https://doi.org/10.1007/s40995-018-0646-1
[5] M. Alaeiyan and A. Mehrabani, Perfect 3-colorings of the cubic graphs of order 10, Electron. J. Graph Theory Appl. 5 (2) (2017), 194-206.
[6] M Alaeiyan, H Karami, Perfect 2-colorings of the generalized Petersen graph, ProceedingsMathematical Sciences 126, 289-294.
[7] S. V. Avgustinovich and I. Yu. Mogil'nykh, Perfect colorings of the Johnson graph $J(8,3)$ and $J(8,4)$ with two colors, Journal of Applied and Industrial Mathematics, 2011, Vol. 5, No. 1, pp. 19-30.
[8] C. Godsil, Compact graphs and equitable partitions, Linear Algebra and Its Application 255 (1997), 259-266.
[9] H. Karami, Perfect 2-colorings of the generalized Petersen graph $G P(n, 3)$, Arxiv,https://arxiv.org/abs/2009.07120.
[10] Z. Vahedi, M. Alaeiyan and M. Maghasedi, Perfect 4-colorings of the 3-regular graphs of order at most 8, Journal of Mathematical Extension, Journal Pre-proof, ISSN: 1735-8299 URL: http://www.ijmex.com.
[11] D. B. West, Introduction to graph theory, Prentice Hall 1996, 2001.
[12] https://mathworld.wolfram.com/TruncatedOctahedralGraph.html.
e-mail: alaeiyan@iust.ac.ir
e-mail: s.qajar@sharif.edu


[^0]:    ${ }^{1}$ speaker

