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Abstract
The objective of this article is to present the notion of direct sum of two anti fuzzy multigroups under

t-conorms. We show that the direct sum of them is also anti fuzzy multigroup under t-conorms and discuss
its various algebraic aspects. We also define strong upper alpha-cut, weak upper alpha-cut, strong lower
alpha-cut and weak lower alpha-cut of them and prove some fundamental result of this phenomena. We
show that the homomorphic image (pre image) of them will be anti fuzzy multigroups under t-conorms
by using the notion of classical homomorphism.
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1 Introduction

In classical set theory, a set is a well-defined collection of distinct objects. If repeated occurrences of any
object are allowed in a set, then the mathematical structure is called as multiset. Thus, a multiset differs
from a set in the sense that each element has a multiplicity. A complete account of the development of
multiset theory can be seen in [1, 2, 18, 19]. The concept of fuzzy sets was proposed by Zaded [20] to
capture uncertainty in a collection which was neglected in crisp set. Fuzzy set has grown stupendously over
the years giving birth to fuzzy groups introduced in [16]. Recently, Shinoj et al. [17] introduced a non-
classical group called fuzzy multigroup which generalized fuzzy group. The First author by using norms,
investigated some properties of fuzzy algebraic structures [3-15] specially in [3, 4, 5] initiated the study of
fuzzy multigroups and anti fuzzy multigroups under norms and investigated some properties of them. We
organized this paper as follows: Section 2 contains the introductory definition of multisets, fuzzy multisets,
conjugates, commutatives, conorms, anti fuzzy multigroups under t-conorms and related result which plays
a key role for our further discussion. In section 3 we define of the direct sum two anti fuzzy multigroups
under t-conorms. We prove that the direct sum of them is anti fuzzy multigroups under t-conorms and
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also the fundamental properties of them are discussed deeply in this section. Next we explicate the strong
upper alpha-cut, weak upper alpha-cut, strong lower alpha-cut and weak lower alpha-cut of them and also
investigate the algebraic properties of this phenomena. Finally, we investigate the notion of them under
group homomorphisms.

2 Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the sequel. For
details we refer to [3, 4, 5].

Definition 2.1. Let X = {x1, x2, ..., xn, ...} be a set. A multiset A over X is a cardinal-valued function,
that is, CA : X → N such that x ∈ Dom(A) implies A(x) is a cardinal and A(x) = CA(x) > 0, where CA(x),

denotes the number of times an object x occur in A. Whenever CA(x) = 0, implies x /∈ Dom(A). The set X
is called the ground or generic set of the class of all multisets (for short, msets) containing objects from X.

A multiset A = [a, b, b, c, c, c] can be represented as A = [a, b, c]1,2,3 or A = [a1, b2, c3] or {a
1
,
b

2
,
c

3
}. Difierent

forms of representing multiset exist other than this. See [10, 20, 30] for details. We denote the set of all
multisets by MS(X).

Definition 2.2. Let A and B be two multisets over X, then A is called a submultiset of B written as
A ⊆ B if CA(x) ≤ CB(x) for all x ∈ X. Also, if A ⊆ B and A ̸= B, then A is called a proper submultiset of
B and denoted as A ⊂ B. Note that a multiset is called the parent in relation to its submultiset. Also two
multisets A and B over X are comparable to each other if A ⊆ B or B ⊆ A.

Definition 2.3. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy
subset of G, we mean a function from G into [0, 1]. The set of all fuzzy subsets of G is called the [0, 1]-power
set of G and is denoted [0, 1]G.

Definition 2.4. Let X be a set. A fuzzy multiset A of X is characterized by a count membership function

CMA : X → [0, 1]

of which the value is a multiset of the unit interval I = [0, 1]. That is,

CMA(x) = {µ1, µ2, ..., µn, ...}∀x ∈ X,

where µ1, µ2, ..., µn, ... ∈ [0, 1] such that

(µ1 ≥ µ2 ≥ ... ≥ µn ≥ ...).

Whenever the fuzzy multiset is finite, we write

CMA(x) = {µ1, µ2, ..., µn},

where µ1, µ2, ..., µn ∈ [0, 1] such that
(µ1 ≥ µ2 ≥ ... ≥ µn),

or simply
CMA(x) = {µi},
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for µi ∈ [0, 1] and i = 1, 2, ..., n.

Now, a fuzzy multiset A is given as
A = {CMA(x)

x
: x ∈ X} or A = {(CMA(x), x) : x ∈ X}.

The set of all fuzzy multisets is depicted by FMS(X).

Example 2.5. Assume that X = {a, b, c} is a set. Then for CMA(a) = {1, 0.5, 0.4} and CMA(b) = {0.9, 0.6}
and CMA(c) = {0} we get that A is a fuzzy multiset of X written as

A = {1, 0.5, 0.4
a

,
0.9, 0.6

b
}.

Definition 2.6. Let A,B ∈ FMS(X). Then A is called a fuzzy submultiset of B written as A ⊆ B if
CMA(x) ≤ CMB(x) for all x ∈ X. Also, if A ⊆ B and A ̸= B, then A is called a proper fuzzy submultiset
of B and denoted as A ⊂ B.

Definition 2.7. Let A ∈ FMS(X) and α ∈ [0, 1]. Then we define
(1) A⋆ = {x ∈ X | CMA(x) = CMA(eX)} where eX is the identity element of X.

(2) A[α] = {x ∈ X | CMA(x) ≥ α} is called strong upper alpha-cut of A.
(3) A(α) = {x ∈ X | CMA(x) > α} is called weak upper alpha-cut of A.
(4) A[α] = {x ∈ X | CMA(x) ≤ α} is called strong lower alpha-cut of A.
(6) A(α) = {x ∈ X | CMA(x) < α} is called weak lower alpha-cut of A.

Definition 2.8. Let A,B ∈ FMS(G). We say A is conjugate to B if for all x, y ∈ G we have that
CMA(x) = CMB(yxy

−1).

Definition 2.9. Let A ∈ FMS(G). We say A is commutative if CMA(xy) = CMA(yx) for all x, y ∈ G.

Definition 2.10. A t-conorm C is a function C : [0, 1]× [0, 1] → [0, 1] having the following four properties:
(C1) C(x, 0) = x

(C2) C(x, y) ≤ C(x, z) if y ≤ z

(C3) C(x, y) = C(y, x)

(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

Example 2.11. (1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x+ y}.
(3) Algebraic sum t-conorm Cp(x, y) = x+ y − xy.

(4) Drastic T -conorm

CD(x, y) =


y if x = 0
x if y = 0
1 otherwise,

dual to the drastic T -norm.
(5) Nilpotent maximum T -conorm , dual to the nilpotent minimum T -norm:

CnM (x, y) =

{
max{x, y} if x+ y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity) CH2(x, y) =
x+ y

1 + xy
is a

dual to one of the Hamacher t-norms. Note that all t-conorms are bounded by the maximum and the drastic
t-conorm: Cmax(x, y) ≤ C(x, y) ≤ CD(x, y) for any t-conorm C and all x, y ∈ [0, 1].
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Recall that t-conorm C is idempotent if for all x ∈ [0, 1], we have that C(x, x) = x).

Lemma 2.12. Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.13. Let A ∈ FMS(G). We say A is an anti fuzzy multigroup of G under t-conorm C if it
satisfies the following two conditions:
(1) CMA(xy) ≤ C(CMA(x), CMA(y)),

(2) CMA(x
−1) ≤ CMA(x),

for all x, y ∈ G.

The set of all anti fuzzy multisets of G under t-conorm C is depicted by AFCMS(G).

Theorem 2.14. Let A ∈ AFCMS(G). If C be idempotent t-conorm, then for all x ∈ G, and n ≥ 1,

(1) CMA(e) ≤ CMA(x);
(2) CMA(x

n) ≤ CMA(x);

(3) CMA(x) = CMA(x
−1).

3 Direct sum of AFCMS(G)

Definition 3.1. Let A ∈ AFCMS(G) and B ∈ AFCMS(H). The direct sum of A and B, denoted by
A⊕B, is characterized by a count membership function

CMA⊕B : G⊕H → [0, 1]

such that
CMA⊕B(x, y) = C(CMA(x), CMB(y))

for all x ∈ G and y ∈ H.

Example 3.2. Let G = {1, x} be a group, where x2 = 1 and H = {e, a, b, c} be a Klein 4-group, where
a2 = b2 = c2 = e. Suppose

A = {0.6, 0.4, 0.2
1

,
1, 0.1

x
}

and
B = {0.9, 0.35

e
,
0.55, 0.45, 0.25

a
,
0.80, 0.55

b
,
0.6, 0.3

c
}

be fuzzy multigroups of G and H. Let

G⊕H = {(1, e), (1, a), (1, b), (1, c), (x, e), (x, a), (x, b), (x, c)}

be a a group from the classical sense. Define
A⊕ B = {1, 0.55, 0.25

(1, e)
,
1, 0.45

(1, a)
,
0.30, 0.2

(1, b)
,
0.55, 0.35, 0.15

(1, c)
,
0.75, 0.65

(x, e)
,
1, 0.25, 0.15

(x, a)
,
0.10, 0.50

(x, b)
,
0.7, 0.6

(x, c)
} and let

C(x, y) = Cp(x, y) = x+ y − xy for all x, y ∈ [0, 1]. Then

A⊕B ∈ AFCMS(G⊕H).
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Proposition 3.3. Let Ai ∈ AFCMS(Gi) for i = 1, 2. Then A1 ⊕A2 ∈ AFCMS(G1 ⊕G2).

Proof. Let (a1, b1), (a2, b2) ∈ G1 ⊕G2. Then

(CMA⊕B)((a1, b1)(a2, b2)) = (CMA⊕B)(a1a2, b1b2)

= C(CMA(a1a2), CMB(b1b2))

≤ C(C(CMA(a1), CMA(a2)), C(CMB(b1), CMB(b2)))

= C(C(CMA(a1), CMB(b1), C(CMA(a2), CMB(b2)) (Lemma 2.12)

= C((CMA⊕B)(a1, b1), (CMA⊕B)(a2, b2))

then
(CMA⊕B)((a1, b1)(a2, b2)) ≤ C((CMA⊕B)(a1, b1), (CMA⊕B)(a2, b2)).

Also

(CMA⊕B)(a1, b1)
−1 = (CMA⊕B)(a

−1
1 , b−1

1 )

= C(CMA(a
−1
1 ), CMB(b

−1
1 ))

≤ C(CMA(a1), CMB(b1))

= (CMA⊕B)(a1, b1)

thus
(CMA⊕B)(a1, b1)

−1 ≤ (CMA⊕B)(a1, b1).

Then A1 ⊕A2 ∈ AFCMS(G1 ⊕G2).

Corollary 3.4. Let A ∈ AFCMS(G) and B ∈ AFCMS(H). Then

A⊕ 1H , 1G ⊕B ∈ AFCMS(G⊕H).

Corollary 3.5. Let Ai ∈ AFCMS(Gi) for i = 1, 2, ..., n. Then

A1 ⊕A2 ⊕ ...⊕An ∈ AFCMS(G1 ⊕G2 ⊕ ...⊕Gn).

Proposition 3.6. Let A ∈ AFCMS(G) and B ∈ AFCMS(H) such that C be idempotent t-conorm. Then
for all α ∈ [0, 1] the following assertions hold.
(1) (A⊕B)⋆ = A⋆ ⊕B⋆.

(2) (A⊕B)[α] = A[α] ⊕B[α].

(3) (A⊕B)(α) = A(α) ⊕B(α).

(4) (A⊕B)[α] = A[α] ⊕B[α].

(5) (A⊕B)(α) = A(α) ⊕B(α).

Proof. (1) As (A⊕B)⋆ = {(x, y) ∈ G⊕H | CMA⊕B(x, y) = CMA⊕B(eG, eH)} so

(x, y) ∈ (A⊕B)⋆ ⇐⇒ CMA⊕B(x, y) = CMA⊕B(eG, eH)

⇐⇒ C(CMA(x), CMB(y)) = C(CMA(eG), CMB(eH))
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⇐⇒ CMA(x) = CMA(eG) and CMB(y) = CMB(eH)

⇐⇒ x ∈ A⋆ and y ∈ B⋆ ⇐⇒ (x, y) ∈ A⋆ ⊕B⋆

thus
(A⊕B)⋆ = A⋆ ⊕B⋆.

(2) Let (A⊕B)[α] = {(x, y) ∈ G⊕H | CMA⊕B(x, y) ≥ α}. Now

(x, y) ∈ (A⊕B)[α] ⇐⇒ CMA⊕B(x, y) ≥ α ⇐⇒ C(CMA(x), CMB(y)) ≥ α

⇐⇒ C(CMA(x), CMB(y)) ≥ α = C(α, α) ⇐⇒ CMA(x) ≥ α and CMB(y) ≥ α

⇐⇒ x ∈ A[α] and y ∈ B[α] ⇐⇒ (x, y) ∈ A[α] ⊕B[α]

thus
(A⊕B)[α] = A[α] ⊕B[α].

(3) Since (A⊕B)(α) = {(x, y) ∈ G⊕H | CMA⊕B(x, y) > α} so

(x, y) ∈ (A⊕B)(α) ⇐⇒ CMA⊕B(x, y) > α ⇐⇒ C(CMA(x), CMB(y)) > α

⇐⇒ C(CMA(x), CMB(y)) > α = C(α, α) ⇐⇒ CMA(x) > α and CMB(y) > α

⇐⇒ x ∈ A(α) and y ∈ B(α) ⇐⇒ (x, y) ∈ A(α) ⊕B(α)

and so
(A⊕B)(α) = A(α) ⊕B(α).

(4) Because (A⊕B)[α] = {(x, y) ∈ G⊕H | CMA⊕B(x, y) ≤ α} then

(x, y) ∈ (A⊕B)[α] ⇐⇒ CMA⊕B(x, y) ≤ α ⇐⇒ C(CMA(x), CMB(y)) ≤ α

⇐⇒ C(CMA(x), CMB(y)) ≤ α = C(α, α) ⇐⇒ CMA(x) ≤ α and CMB(y) ≤ α

⇐⇒ x ∈ A[α] and y ∈ B[α] ⇐⇒ (x, y) ∈ A[α] ⊕B[α]

therefore
(A⊕B)[α] = A[α] ⊕B[α].

(5) Because of (A⊕B)(α) = {(x, y) ∈ G⊕H | CMA⊕B(x, y) < α} then

(x, y) ∈ (A⊕B)(α) ⇐⇒ CMA⊕B(x, y) < α ⇐⇒ C(CMA(x), CMB(y)) < α

⇐⇒ C(CMA(x), CMB(y)) < α = C(α, α) ⇐⇒ CMA(x) < α and CMB(y) < α

⇐⇒ x ∈ A(α) and y ∈ B(α) ⇐⇒ (x, y) ∈ A(α) ⊕B(α)

then
(A⊕B)(α) = A(α) ⊕B(α).
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Proposition 3.7. Let A ∈ AFCMS(G) and B ∈ AFCMS(H) such that C be idempotent t-conorm. Then
for all (x, y) ∈ G×H the following assertions hold.
(1) CMA⊕B(eG, eH) ≤ CMA⊕B(x, y).

(2) CMA⊕B((x, y)
n) ≤ CMA⊕B(x, y).

(3) CMA⊕B(x, y) = CMA⊕B(x
−1, y−1).

Proof. Using Proposition 3.3 we get that A ⊕ B ∈ AFCMS(G ⊕ H). Now Theorem 2.14 gives us that
assertions are hold.

Proposition 3.8. Let A ∈ AFCMS(G) and B ∈ AFCMS(H) such that C be idempotent t-conorm. Then
for all α ∈ [0, 1] the following assertions hold.
(1) (A⊕B)⋆ is a subgroup of G⊕H.

(2) (A⊕B)[α] is a subgroup of G⊕H.

(3) (A⊕B)(α) is a subgroup of G⊕H.

Proof. (1) Let (x1, y1), (x2, y2) ∈ (A ⊕ B)⋆ and we must prove that (x1, y1)(x2, y2)
−1 ∈ (A ⊕ B)⋆. Because

(x1, y1), (x2, y2) ∈ (A⊕B)⋆ then

CMA⊕B(x1, y1) = CMA⊕B(x2, y2) = CMA⊕B(eG, eH)

which means that

C(CMA(x1), CMB(y1)) = C(CMA(x2), CMB(y2)) = C(CMA(eG), CMB(eH))

and so CMA(x1) = CMA(x2) = CMA(eG) and CMA(y1) = CMA(y2) = CMA(eH). Then

CMA⊕B((x1, y1)(x2, y2)
−1) = CMA⊕B((x1, y1)(x

−1
2 , y−1

2 ))

= CMA⊕B(x1x
−1
2 , y1y

−1
2 )

= C(CMA(x1x
−1
2 ), CMB(y1y

−1
2 ))

≤ C(C(CMA(x1), CMA(x
−1
2 )), C(CMB(y1), CMB(y

−1
2 )))

≤ C(C(CMA(x1), CMA(x2)), C(CMB(y1), CMB(y2)))

= C(C(CMA(eG), CMA(eG)), C(CMB(eH), CMB(eH)))

= C(CMA(eG), CMB(eH)) = CMA⊕B(eG, eH)

≤ CMA⊕B((x1, y1)(x2, y2)
−1) (Proposition 3.7 paret(1))

thus CMA⊕B((x1, y1)(x2, y2)
−1) = CMA⊕B(eG, eH) and so (x1, y1)(x2, y2)

−1 ∈ (A⊕B)⋆. Now we obtain
that (A⊕B)⋆ is a subgroup of G⊕H.

(2) Let (x1, y1), (x2, y2) ∈ (A⊕B)[α] and we show that (x1, y1)(x2, y2)
−1 ∈ (A⊕B)[α]. As (x1, y1), (x2, y2) ∈

(A⊕B)[α] so CMA⊕B(x1, y1) ≤ α and CMA⊕B(x2, y2) ≤ α. Now
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CMA⊕B((x1, y1)(x2, y2)
−1) = CMA⊕B((x1, y1)(x

−1
2 , y−1

2 ))

= CMA⊕B(x1x
−1
2 , y1y

−1
2 )

= C(CMA(x1x
−1
2 ), CMB(y1y

−1
2 ))

≤ C(C(CMA(x1), CMA(x
−1
2 )), C(CMB(y1), CMB(y

−1
2 )))

≤ C(C(CMA(x1), CMA(x2)), C(CMB(y1), CMB(y2)))

= C(C(CMA(x1), CMB(y1)), C(CMA(x2), CMB(y2))) (Lemma 2.12)

= C(CMA⊕B(x1, y1), CMA⊕B(x2, y2))

≤ C(α, α) = α

and thus CMA⊕B((x1, y1)(x2, y2)
−1) ≤ α which means that (x1, y1)(x2, y2)

−1 ∈ (A ⊕ B)[α]. Then (A ⊕
B)[α] is a subgroup of G⊕H.

(3) If (x1, y1), (x2, y2) ∈ (A⊕B)(α), then CMA⊕B(x1, y1) < α and CMA⊕B(x2, y2) < α. Then

CMA⊕B((x1, y1)(x2, y2)
−1) = CMA⊕B((x1, y1)(x

−1
2 , y−1

2 ))

= CMA⊕B(x1x
−1
2 , y1y

−1
2 )

= C(CMA(x1x
−1
2 ), CMB(y1y

−1
2 ))

≤ C(C(CMA(x1), CMA(x
−1
2 )), T (CMB(y1), CMB(y

−1
2 )))

≤ C(C(CMA(x1), CMA(x2)), C(CMB(y1), CMB(y2)))

= C(C(CMA(x1), CMB(y1)), C(CMA(x2), CMB(y2))) (Lemma 2.12)

= C(CMA⊕B(x1, y1), CMA⊕B(x2, y2))

< C(α, α) = α

and thus CMA⊕B((x1, y1)(x2, y2)
−1) < α which means that (x1, y1)(x2, y2)

−1 ∈ (A ⊕ B)(α). Then (A ⊕
B)(α) is a subgroup of G⊕H.

Proposition 3.9. Let A ∈ AFCMS(G) and B ∈ AFCMS(H). If A⊕B ∈ AFCMS(G⊕H), then at least
one of the following statements hold.
(1) CMB(eH)) ≤ CMA(x) for all x ∈ G.

(2) CMA(eG)) ≤ CMB(y) for all y ∈ H.

Proof. By contrapositive, suppose that none of the statements holds. Then suppose we can find a ∈ G and
b ∈ H such that CMA(a) < CMB(eH) and CMB(b) < CMA(eG). Now

CMA⊕B(a, b) = C(CMA(a), CMB(b))

< T (CMB(eH), CMA(eG))

= C(CMA(eG), CMB(eH))

= CMA⊕B(eG, eH)

and thus CMA⊕B(a, b) < CMA⊕B(eG, eH) and this is contradiction with Proposition 3.7 part (1). Then
at least one of the statements hold.
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Proposition 3.10. Let A ∈ FMS(G) and B ∈ FMS(H). Let A⊕ B ∈ AFCMS(G⊕H) and CMA(x) ≥
CMB(eH) for all x ∈ G. Then A ∈ AFCMS(G).

Proof. As CMA(x) ≥ CMB(eH) for all x ∈ G so CMA(y) ≥ CMB(eH) and CMA(xy) ≥ CMB(eH) =

CMB(eHeH) for all y ∈ G. Then

CMA(xy) = C(CMA(xy), CMB(eHeH))

= CMA⊕B(xy, eHeH)

= CMA⊕B((x, eH)(y, eH))

≤ C(CMA⊕B(x, eH), CMA⊕B(y, eH))

= C(C(CMA(x), CMB(eH)), C(CMA(y), CMB(eH)))

= C(CMA(x), CMA(y))

and so
CMA(xy) ≤ C(CMA(x), CMA(y)).

Also since CMA(x) ≥ CMB(eH) for all x ∈ G so CMA(x
−1) ≥ CMB(eH). Thus

CMA(x
−1) = C(CMA(x

−1), CMA(eH))

= C(CMA(x
−1), CMA(e

−1
H ))

= CMA⊕B((x, eH)−1)

≤ CMA⊕B(x, eH)

= C(CMA(x), CMA(eH))

= CMA(x)

and then CMA(x
−1) ≤ CMA(x). Therefore A ∈ AFCMS(G).

Proposition 3.11. Let A ∈ FMS(G) and B ∈ FMS(H). Let A⊕B ∈ AFCMS(G⊕H) and CMB(x) ≥
CMA(eG) for all x ∈ H. Then B ∈ AFCMS(H).

Proof. The proof is similar to Proposition 3.10.

Corollary 3.12. Let A ∈ FMS(G) and B ∈ FMS(H) such that A⊕ B ∈ AFCMS(G⊕H). Then either
A ∈ AFCMS(G) or B ∈ AFCMS(H).

Proof. Using Proposition 3.9 we get that CMB(eH)) ≤ CMA(x) for all x ∈ G or CMA(eG)) ≤ CMB(y) for
all y ∈ H. Then from Proposition 3.10 and Proposition 3.11 we will have that either A ∈ AFCMS(G) or
B ∈ AFCMS(H).

Proposition 3.13. Let A,C ∈ AFCMS(G) and B,D ∈ AFCMS(H). If A is conjugate to B and C is
conjugate to D, then A⊕ C is conjugate to B ⊕D.

Proof. As A is conjugate to B so CMA(x) = CMC(gxg
−1) and as B is conjugate to D so CMB(y) =

CMD(hyh
−1) for all x, g ∈ G and y, h ∈ H. Now
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CMA⊕B(x, y) = C(CMA(x), CMB(y))

= C(CMC(gxg
−1), CMD(hyh

−1))

= CMC⊕D(gxg
−1, hyh−1)

= CMC⊕D((g, h)(x, y)(g
−1, h−1))

= CMC⊕D((g, h)(x, y)(g, h)
−1)

and thus CMA⊕B(x, y) = CMC⊕D((g, h)(x, y)(g, h)
−1) which means that A⊕C is conjugate to B⊕D.

Proposition 3.14. Let A ∈ AFCMS(G) and B ∈ AFCMS(H). Then A and B are commutatives if and
only if A⊕B is a commutative.

Proof. Let x1, y1 ∈ G and x2, y2 ∈ H such that x = (x1, x2) ∈ G×H and y = (y1, y2) ∈ G×H. Let A and
B are commutative then CMA(x1y1) = CMA(y1x1) and CMB(x2y2) = CMB(y2x2). Then

CMA⊕B(xy) = CMA⊕B((x1, x2)(y1, y2))

= CMA⊕B(x1y1, x2y2)

= C(CMA(x1y1), CMB(x2y2))

= C(CMA(y1x1), CMB(y2x2))

= CMA⊕B(y1x1, y2x2)

= CMA⊕B((y1, y2)(x1, x2))

= CMA⊕B(yx)

thus CMA⊕B(xy) = CMA⊕B(yx) and then A⊕B is a commutative.
Conversely, suppose that A⊕B is a commutative. Then

CMA⊕B(xy) = CMA⊕B(yx)

⇐⇒ CMA⊕B((x1, x2)(y1, y2)) = CMA⊕B((y1, y2)(x1, x2))

⇐⇒ CMA⊕B(x1y1, x2y2) = CMA⊕B(y1x1, y2x2)

⇐⇒ C(CMA(x1y1), CMB(x2y2)) = C(CMA(y1x1), CMB(y2x2))

⇐⇒ CMA(x1y1) = CMA(y1x1) and CMB(x2y2) = CMB(y2x2)

which gives us that A and B are commutative.

Definition 3.15. Let G⊕H and I⊕J be groups and f : G⊕H → I⊕J be a homomorphism. Let A⊕B ∈
FMS(G⊕H) and C⊕D ∈ FMS(I⊕J). Define f(A⊕B) ∈ FMS(I⊕J) and f−1(C⊕D) ∈ FMS(G⊕H)

as

f(CMA⊕B)(i, j) = (CMf(A⊕B))(i, j)

=

{
inf{CMA⊕B(g, h) | g ∈ G,h ∈ H, f(g, h) = (i, j)} if f−1(i, j) ̸= ∅

0 otherwise
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and
f−1(CMC⊕D(g, h)) = CMf−1(C⊕D)(g, h) = CMC⊕D(f(g, h))

for all (g, h) ∈ G⊕H.

Proposition 3.16. Let G ⊕ H and I ⊕ J be groups and f : G ⊕ H → I ⊕ J be an epimorphism. If
A ∈ AFCMS(G), B ∈ AFCMS(H) and A⊕B ∈ AFCMS(G⊕H), then f(A⊕B) ∈ AFCMS(I ⊕ J).

Proof. (1) Let X = (i1, j1) ∈ I ⊕ J and Y = (i2, j2) ∈ I ⊕ J such that

f−1(XY ) = f−1((i1, j1)(i2, j2)) = f−1(i1i2, j1j2) ̸= ∅.

Then
f(A⊕B)(XY ) = f(A⊕B)((i1, j1)(i2, j2)) = f(A⊕B)(i1i2, j1j2)

= inf{CMA⊕B(g1g2, h1h2) : g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2, h1h2) = (i1i2, j1j2)}
= inf{CMA⊕B(g1g2, h1h2) : g1, g2 ∈ G,h1, h2 ∈ H, (f(g1g2), f(h1h2)) = (i1i2, j1j2)}
= inf{CMA⊕B(g1g2, h1h2) : g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}
= inf{C(CMA(g1g2), CMB(h1h2)) : g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}
≤ inf{C(C(CMA(g1), CMA(g2)), T (CMB(h1), CMB(h2))) : f(g1g2) = i1i2, f(h1h2) = j1j2}
= inf{C(C(CMA(g1), CMB(h1)), C(CMA(g2), CMB(h2))) : f(g1g2) = i1i2, f(h1h2) = j1j2}
= inf{C(C(CMA(g1), CMB(h1)), C(CMA(g2), CMB(h2))) : f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= inf{C(CMA⊕B(g1, h1), CMA×B(g2, h2)) : f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= C(inf{CMA×B(g1, h1) : f(g1, h1) = (i1, j1)}, inf{CMA×B(g2, h2) | f(g2, h2) = (i2, j2)})
= C(f(A⊕B)(i1, j1), f(A×B)(i2, j2))

= C(f(A⊕B)(X), f(A⊕B)(Y ))

thus
f(A⊕B)(XY ) ≤ C(f(A⊕B)(X), f(A⊕B)(Y )).

(2) Let X = (i, j) ∈ I ⊕ J then
f(A⊕B)(X−1) = f(A⊕B)((i, j)−1) = f(A⊕B)(i−1, j−1)

= inf{CMA⊕B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1, h−1) = (i−1, j−1)}

= inf{CMA⊕B(g
−1, h−1) | g ∈ G,h ∈ H, (f(g−1), f(h−1)) = (i−1, j−1)}

= inf{CMA⊕B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}

= inf{C(CMA(g
−1), CMB(h

−1)) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}

≤ inf{C(CMA(g), CMB(h)) | g ∈ G,h ∈ H, f−1(g) = i−1, f−1(h) = j−1}

= inf{C(CMA(g), CMB(h)) | g ∈ G,h ∈ H, f(g) = i, f(h) = j}

= inf{CMA⊕B(g, h) | (g, h) ∈ G⊕H, f(g, h) = (i, j)}

= f(A⊕B)(i, j) = f(A⊕B)(X)

and then
f(A⊕B)(X−1) ≤ f(A⊕B)(X).

Therefore f(A⊕B) ∈ AFCMS(I ⊕ J).
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Proposition 3.17. Let G ⊕ H and I ⊕ J be groups and f : G ⊕ H → I ⊕ J be a homomorphism. If
C ∈ AFCMS(I) and D ∈ AFCMS(J) and C⊕D ∈ AFCMS(I⊕J), then f−1(C⊕D) ∈ AFCMS(G⊕H).

Proof. (1) Let X = (g1, h1) ∈ G⊕H and Y = (g2, h2) ∈ G⊕H. Then

f−1(CMC⊕D)(XY ) = f−1(CMC⊕D)((g1, h1)(g2, h2))

= f−1(CMC⊕D)(g1g2, h1h2))

= CMC⊕D(f(g1g2, h1h2))

= CMC⊕D(f(g1g2), f(h1h2))

= C(CMC(f(g1g2)), CMD(f(h1h2)))

= C(CMC(f(g1)f(g2)), CMD(f(h1)f(h2)))

≤ C(C(CMC(f(g1)), CMC(f(g2))), C(CMD(f(h1)), CMD(f(h2)))

= C(C(CMC(f(g1)), CMD(f(h1))), C(CMC(f(g2), CMD(f(h2)))

= C(CMC⊕D(f(g1), f(h1)), CMC⊕D(f(g2), f(h2)))

= C(CMC⊕D(f(g1, h1)), CMC⊕D(f(g2, h2)))

= C(f−1(CMC⊕D)(g1, h1), f
−1(CMC⊕D)(g2, h2))

= C(f−1(CMC⊕D)(X), f−1(CMC⊕D)(Y ))

and then
f−1(CMC⊕D)(XY ) ≤ C(f−1(CMC⊕D)(X), f−1(CMC⊕D)(Y )).

(2) Let X = (g, h) ∈ G⊕H. Then

f−1(CMC⊕D)(X
−1) = f−1(CMC⊕D)((g1, h1)

−1)

= CMC⊕D(f(g, h)
−1)

= CMC⊕D(f(g
−1, h−1))

= CMC⊕D(f
−1(g), f−1(h))

= C(CMC(f
−1(g)), CMD(f

−1(h)))

≤ C(CMC(f(g)), CMD(f(h)))

= CMC⊕D(f(g), f(h))

= CMC⊕D(f(g, h))

= f−1(CMC⊕D)(g, h)

= f−1(CMC⊕D)(X)

and then
f−1(CMC⊕D)(X

−1) ≤ f−1(CMC⊕D)(X).

Thus f−1(C ⊕D) ∈ AFCMS(G⊕H).
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4 Open problem

In this study, we introduced the notion of direct sum of two anti fuzzy multigroups under t-conorms and
we defined strong upper alpha-cut, weak upper alpha-cut, strong lower alpha-cut and weak lower alpha-cut
of them and prove some fundamental result of this phenomena. Now one can study and obtain anti fuzzy
multirings under t-conorms as we did for groups and this can be an open problem.

Acknowledgment. It is our pleasant duty to thank referees for their useful suggestions which helped
us to improve our manuscript.
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