
Algebraic structures of QIFSN(G)

Rasul Rasuli1

Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran

Hossien Naraghi
Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran

Bahman Taherkhani
Department of Mathematics, Payame Noor University(PNU), P. O. Box 19395-4697, Tehran, Iran

Abstract
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morphism and anti-homomorphism of QIFSN(G) and discuss their properties of them.
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1 Introduction

The concept of fuzzy sets was proposed by Zadeh [23]. The theory of fuzzy sets has several applications
in real-life situations, and many scholars have researched fuzzy set theory. After the introduction of the
concept of fuzzy sets, several research studies were conducted on the generalizations of fuzzy sets. The idea
of intuitionistic fuzzy sets suggested by Atanassov [2, 3] is one of the extensions of fuzzy sets with better
applicability. Applications of intuitionistic fuzzy sets appear in various fields, including medical diagnosis,
optimization problems, and multicriteria decision making. The concept of fuzzy group was introduced
by Rosenfled [21] and Anthony and Sherwood [1] gave the definition of fuzzy subgroup based on t-norm.
Solairaju and Nagarajan [22] introduced the notion of Q- fuzzy groups. The First author by using norms,
investigated some properties of fuzzy algebraic structures [4-20] specially in [4, 5, 6, 7, 8, 13] by using norms,
defined and investigated some properties of Q-fuzzy subgroups, anti Q-fuzzy subgroups and Q-intuitionistic
fuzzy subgroups(QIFSN(G)). In this paper we define the intersection and direct product of two members
of QIFSN(G) and we prove that they will be QIFSN(G). Next we introduce the concept of normality of
QIFSN(G) as NQIFSN(G) and investigate some properties of them. Finaly we consider the image and
pre image of QIFSN(G) and NQIFSN(G) under homomorphisms and anti-homomorphisms of groups.
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2 Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the sequal. For
more details we refer to [4, 5, 6, 7, 8, 13].

Definition 2.1. A group is a non-empty set G on which there is a binary operation (a, b) → ab such that
(1) if a and b belong to G then ab is also in G (closure),
(2) a(bc) = (ab)c for all a, b, c ∈ G (associativity),
(3) there is an element e ∈ G such that ae = ea = a for all a ∈ G (identity),
(4) if a ∈ G, then there is an element a−1 ∈ G such that aa−1 = a−1a = e (inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A group G is called
abelian if the binary operation is commutative, i.e., ab = ba for all a, b ∈ G.

Remark 2.2. There are two standard notations for the binary group operation: either the additive notation,
that is (a, b) → a + b in which case the identity is denoted by 0, or the multiplicative notation, that is
(a, b) → ab for which the identity is denoted by e.

Proposition 2.3. Let G be a group. Let H be a non-empty subset of G. The following are equivalent:
(1) H is a subgroup of G.

(2) x, y ∈ H implies xy−1 ∈ H for all x, y.

Definition 2.4. Let (G, .), (H, .) be any two groups. The function f : G → H is called a homomorphism
(anti-homomorphism) if f(xy) = f(x)f(y)(f(xy) = f(y)f(x)), for all x, y ∈ G.

Definition 2.5. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy
subset of G, we mean a function from G into [0, 1]. The set of all fuzzy subsets of G is called the [0, 1]-power
set of G and is denoted [0, 1]G.

Definition 2.6. For sets X,Y and Z, f = (f1, f2) : X → Y ×Z is called a complex mapping if f1 : X → Y

and f2 : X → Z are mappings.

Definition 2.7. Let X be a nonempty set. A complex mapping A = (µA, νA) : X → [0, 1] × [0, 1] is
called an intuitionistic fuzzy set (in short, IFS) in X such that µA, νA ∈ [0, 1]X and for all x ∈ X we have
(µA(x)+νA(x)) ∈ [0, 1]. In particular ∅X and UX denote the intuitionistic fuzzy empty set and intuitionistic
fuzzy whole set in X defined by ∅X(x) = (0, 1) and UX(x) = (1, 0), respectively. We will denote the set of
all IFSs in X as IFS(X).

Definition 2.8. Let X be a nonempty set and let A = (µA, νA) and B = (µB, νB) be IFSs in X. Then
(1) Inclusion: A ⊆ B iff µA ≤ µB and νA ≥ νB.

(2) Equality:A = B iff A ⊆ B and B ⊆ A.

Definition 2.9. A t-norm T is a function T : [0, 1]× [0, 1] → [0, 1] having the following four properties:
(T1) T (x, 1) = x (neutral element)
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity)
(T3) T (x, y) = T (y, x) (commutativity)
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),
for all x, y, z ∈ [0, 1].
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Corollary 2.10. Let T be a t-norm. Then for all x ∈ [0, 1]

(1) T (x, 0) = 0.

(2) T (0, 0) = 0.

Example 2.11. (1) Standard intersection t-norm

Tm(x, y) = min{x, y}.

(2) Bounded sum t-norm
Tb(x, y) = max{0, x+ y − 1}.

(3) algebraic product t-norm
Tp(x, y) = xy.

(4) Drastic t-norm

TD(x, y) =


y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum t-norm

TnM (x, y) =

{
min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product t-norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm:

TD(x, y) ≤ T (x, y) ≤ Tmin(x, y)

for all x, y ∈ [0, 1].

Definition 2.12. A t-conorm C is a function C : [0, 1]× [0, 1] → [0, 1] having the following four properties:
(C1) C(x, 0) = x

(C2) C(x, y) ≤ C(x, z) if y ≤ z

(C3) C(x, y) = C(y, x)

(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

Corollary 2.13. Let C be a C-conorm. Then for all x ∈ [0, 1]

(1) C(x, 1) = 1.

(2) C(0, 0) = 0.

Example 2.14. (1) Standard union t-conorm

Cm(x, y) = max{x, y}.
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(2) Bounded sum t-conorm
Cb(x, y) = min{1, x+ y}.

(3) Algebraic sum t-conorm
Cp(x, y) = x+ y − xy.

(4) Drastic t-conorm

CD(x, y) =


y if x = 0
x if y = 0
1 otherwise,

dual to the drastic t-norm.
(5) Nilpotent maximum t-conorm , dual to the nilpotent minimum T -norm:

CnM (x, y) =

{
max{x, y} if x+ y < 1

1 otherwise.
(6) Einstein sum (compare the velocity-addition formula under special relativity)

CH2(x, y) =
x+ y

1 + xy

is a dual to one of the Hamacher t-norms. Note that all t-conorms are bounded by the maximum and the
drastic t-conorm:

Cmax(x, y) ≤ C(x, y) ≤ CD(x, y)

for any t-conorm C and all x, y ∈ [0, 1].

Recall that t-norm T ( t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) = x(C(x, x) = x).

Lemma 2.15. Let C be a t-conorm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.16. Let (G, .) be a group and Q be a non empty set. A bifuzzy (intuitionistic) fuzzy set
A = (µA, νA) ∈ IFS(G × Q) is said to be a Q-intuitionistic fuzzy subgroup of G with respect to norms
(t-norm T and t-conorm C) if the following conditions are satisfied:
(1)

A(xy, q) = (µA(xy, q), νA(xy, q)) ⊇ A(T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q))),

(2)
A(x−1, q) = (µA(x

−1, q), νA(x
−1, q)) ⊇ A(x, q) = (µA(x, q), νA(x, q))

which mean:
(a) µA(xy, q) ≥ T (µA(x, q), µA(y, q)),

(b) νA(xy, q) ≤ C(νA(x, q), νA(y, q)),
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(c) µA(x
−1, q) ≥ µA(x, q),

(d) νA(x
−1, q) ≤ νA(x, q),

for all x, y ∈ G and q ∈ Q. Throughout this paper the set of all Q-intuitionistic fuzzy subgroups of G with
respect to norms (t-norm T and t-conorm C) will be denoted by QIFSN(G).

Proposition 2.17. Let A = (µA, νA) ∈ QIFSN(G) such that T and C be idempotent. Then

A(eG, q) ⊇ A(x, q)

for all x ∈ G and q ∈ Q.

Proposition 2.18. Let T and C be idempotent. Then

A = (µA, νA) ∈ QIFSN(G)

if and only if
A(xy−1, q) ⊇ A(T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q)))

for all x, y ∈ G and q ∈ Q.

3 Intersection, direct product and group homomorphisms of QIFSN(G)

Definition 3.1. Let A = (µA, νA) ∈ QIFSN(G) and B = (µB, νB) ∈ QIFSN(G). The intersection of A
and B is defined by

(A ∩B)(x, q) = ((µA, νA) ∩ (µB, νB))(x, q)

= (µA∩B, νA∩B)(x, q)

= (T (µA(x, q), µB(x, q)), C(νA(x, q), νB(x, q)))

for all x ∈ G and q ∈ Q.

Proposition 3.2. Let A = (µA, νA) ∈ QIFSN(G) and B = (µB, νB) ∈ QIFSN(G). Then A ∩ B ∈
QIFSN(G).

Proof. Let x, y ∈ G, q ∈ Q. Then

µA∩B(xy, q) = T (µA(xy, q), µB(xy, q))

≥ T (T (µA(x, q), µA(y, q)), T (µB(x, q), µB(y, q)))

= T (T (µA(x, q), µB(x, q)), T (µA(y, q), µB(y, q))) (Lemma 2.15)

= T (µA∩B(x, q), µA∩B(y, q))

thus
µA∩B(xy, q) ≥ T (µA∩B(x, q), µA∩B(y, q)). (a)
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νA∩B(xy, q) = C(νA(xy, q), νB(xy, q))

≤ C(C(νA(x, q), νA(y, q)), C(νB(x, q), νB(y, q)))

= C(C(νA(x, q), νB(x, q)), C(νA(y, q), νB(y, q))) (Lemma 2.15)

= C(νA∩B(x, q), νA∩B(y, q))

then
νA∩B(xy, q) ≤ C(νA∩B(x, q), νA∩B(y, q)). (b)

(c)
µA∩B(x

−1, q) = T (µA(x
−1, q), µB(x

−1, q)) ≥ T (µA(x, q), µB(x, q)) = µA∩B(x, q).

(d)
νA∩B(x

−1, q) = C(νA(x
−1, q), νB(x

−1, q)) ≤ C(νA(x, q), νB(x, q)) = νA∩B(x, q).

Then from (a) to (d) we obtain that A ∩B = (µA∩B, νA∩B) ∈ QIFSN(G).

Definition 3.3. Let A = (µA, νA) ∈ QIFSN(G). We say that A is a normal if A(xyx−1, q) = A(y, q) for
all x, y ∈ G and q ∈ Q. We denote by NQIFSN(G) the set of all normal Q-intuitionistic fuzzy subgroups
of G with respect to norms (t-norm T and t-conorm C).

Proposition 3.4. Let A = (µA, νA) ∈ NQIFSN(G) and B = (µB, νB) ∈ NQIFSN(G).Then A ∩ B ∈
NQIFSN(G).

Proof. Let x, y,∈ G and q ∈ Q. Then

µA∩B(xyx
−1, q) = T (µA(xyx

−1, q), µB(xyx
−1, q)) = T (µA(y, q), µB(y, q)) = µA∩B(y, q)

and
νA∩B(xyx

−1, q) = C(νA(xyx
−1, q), νB(xyx

−1, q)) = C(νA(y, q), νB(y, q)) = νA∩B(y, q).

Thus

(A ∩B)(xyx−1, q) = (µA∩B, νA∩B)(xyx
−1, q)

= (µA∩B(xyx
−1, q), νA∩B(xyx

−1, q))

= (µA∩B(y, q), νA∩B(y, q))

= (A ∩B)(y, q)

and then A ∩B ∈ NQIFSN(G).

Corollary 3.5. Let In = {1, 2, ..., n}. If {µi | i ∈ In} ⊆ NQIFSN(G), Then

µ = ∩i∈Inµi ∈ NQIFSN(G).



476 Rasul Rasuli, Hossien Naraghi, Bahman Taherkhani

Definition 3.6. Let (G, .), (H, .) be any two groups such that A = (µA, νA) ∈ QIFSN(G) and B =

(µB, νB) ∈ QIFSN(H). The product of A and B, is defined as

(A×B)((x, y), q) = (µA, νA)× (µB, νB)((x, y), q)

= (µA×B, νA×B)((x, y), q)

= (T (µA(x, q), µB(y, q)), C(νA(x, q), νB(y, q)))

for all x ∈ G, y ∈ H, q ∈ Q.

Note that µA×B, νA×B ∈ [0, 1](G×H)×Q and throughout this paper, H denotes an arbitrary group with
identity element eH .

Proposition 3.7. Let A = (µA, νA) ∈ QIFSN(G) and B = (µB, νB) ∈ QIFSN(H). Then A × B ∈
QIFSN(G×H).

Proof. Let (x1, y1), (x2, y2) ∈ G×H and q ∈ Q. Then

µA×B((x1, y1)(x2, y2), q) = (µA×B)((x1x2, y1y2), q)

= T (µA(x1x2, q), µB(y1y2, q))

≥ T (T (µA(x1, q), µA(x2, q)), T (µB(y1, q), µB(y2, q)))

= T (T (µA(x1, q), µB(y1, q)), T (µA(x2, q), µB(y2, q))) (Lemma 2.15)

= T (µA×B((x1, y1), q), µA×B((x2, y2), q))

hence
µA×B((x1, y1)(x2, y2), q) ≥ T (µA×B((x1, y1), q), µA×B((x2, y2), q)). (a)

νA×B((x1, y1)(x2, y2), q) = (νA×B)((x1x2, y1y2), q)

= C(νA(x1x2, q), νB(y1y2, q))

≤ C(C(νA(x1, q), νA(x2, q)), C(νB(y1, q), νB(y2, q)))

= C(C(νA(x1, q), νB(y1, q)), C(νA(x2, q), νB(y2, q))) (Lemma 2.15)

= C(νA×B((x1, y1), q), νA×B((x2, y2), q))

then
νA×B((x1, y1)(x2, y2), q) ≤ C(νA×B((x1, y1), q), νA×B((x2, y2), q)). (b)

µA×B((x1, y1)
−1, q) = µA×B((x

−1
1 , y−1

1 ), q)

= T (µA(x
−1
1 , q), µB(y

−1
1 , q))

≥ T (µA(x1, q), µB(y1, q))

= µA×B((x1, y1), q).
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so
µA×B((x1, y1)

−1, q) ≥ µA×B((x1, y1), q). (c)

νA×B((x1, y1)
−1, q) = νA×B((x

−1
1 , y−1

1 ), q)

= C(νA(x
−1
1 , q), νB(y

−1
1 , q))

≤ C(νA(x1, q), νB(y1, q))

= νA×B((x1, y1), q)

then
νA×B((x1, y1)

−1, q) ≤ νA×B((x1, y1), q). (d)

Hence (a) to (d) give us that A×B = (µA×B, νA×B) ∈ QIFSN(G×H).

Proposition 3.8. Let A = (µA, νA) ∈ IFS(G × Q) and B = (µB, νB) ∈ IFS(H × Q). If T and C be
idempotent and A×B ∈ QIFSN(G×H), then at least one of the following two statements must hold.
(1) B(eH , q) ⊇ A(x, q), for all x ∈ G and q ∈ Q,

(2) A(eG, q) ⊇ B(y, q), for all y ∈ H and q ∈ Q.

Proof. Let none of the statements (1) and (2) holds, then we can find g ∈ G and h ∈ H such that A(g, q) ⊃
B(eH , q) and B(h, q) ⊃ A(eG, q). Then we obtain that µA(g, q) > µB(eH , q) and νA(g, q) < νB(eH , q) and
µB(h, q) > µA(eG, q) and νB(h, q) < νA(eG, q). Now

(A×B)((g, h), q) = (µA×B, νA×B)((g, h), q)

= (T (µA(g, q), µB(h, q)), C(νA(g, q), νB(h, q)))

⊃ (T (µB(eH , q), µA(eG, q)), C(νB(eH , q), νA(eG, q)))

= (T (µA(eG, q), µB(eH , q)), C(νA(eG, q), νB(eH , q)))

= (µA×B((eG, eH), q), νA×B((eG, eH), q))

= (A×B)((eG, eH), q)

then
(A×B)((g, h), q) ⊃ (A×B)((eG, eH), q)

and it is contradiction with A× B ∈ QIFSN(G×H) as Propositions 2.17 and 3.7. This complets the
proof.

Proposition 3.9. Let A = (µA, νA) ∈ IFS(G × Q) and B = (µB, νB) ∈ IFS(H × Q). Let T and C be
idempotent and A×B ∈ QIFSN(G×H). Then we have the following statements.
(1) If A(x, q) ⊆ B(eH , q), then A ∈ QIFSN(G) for all x ∈ G and q ∈ Q.

(2) If B(x, q) ⊆ A(eG, q), then B ∈ QIFSN(H) for all x ∈ H and q ∈ Q.

(3) Either A ∈ QIFSN(G) or B ∈ QIFSN(H).
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Proof. (1) Let
A(x, q) = (µA(x, q), νA(x, q)) ⊆ B(eH , q) = (µB(eH , q), νB(eH , q)) (⋆)

for all x ∈ G, q ∈ Q.

From (⋆) we have that µA(x, q) ≤ µB(eH , q) so we can obtain that µA(xy
−1, q) ≤ µB(eH , q) and µA(y, q) ≤

µB(eH , q) for all x, y ∈ G, q ∈ Q so then

µA(xy
−1, q) = T (µA(xy

−1, q), µB(eH , q))

= T (µA(xy
−1, q), µB(eHeH , q))

= µA×B((xy
−1, eHeH), q)

= µA×B((x, eH)(y−1, eH), q)

≥ T (µA×B((x, eH), q), µA×B((y
−1, eH), q))

≥ T (µA×B((x, eH), q), µA×B((y, eH), q))

= T (T (µA(x, q), µB(eH , q)), T (µA(y, q), µB(eH , q)))

≥ T (T (µA(x, q), µA(x, q)), T (µA(y, q), µA(y, q)))

= T (µA(x, q), µA(y, q))

and then
µA(xy

−1, q) ≥ T (µA(x, q), µA(y, q)). (a)

Also from (⋆) we get that νA(x, q) ≥ νB(eH , q) so we can obtain that νA(xy−1, q) ≥ νB(eH , q) and νA(y, q) ≥
νB(eH , q) for all x, y ∈ G, q ∈ Q so then

νA(xy
−1, q) = C(νA(xy

−1, q), νB(eH , q))

= C(νA(xy
−1, q), νB(eHeH , q))

= νA×B((xy
−1, eHeH), q)

= νA×B((x, eH)(y−1, eH), q)

≤ C(νA×B((x, eH), q), νA×B((y
−1, eH), q))

≤ C(νA×B((x, eH), q), νA×B((y, eH), q))

= C(C(νA(x, q), νB(eH , q)), C(νA(y, q), νB(eH , q)))

≤ C(C(νA(x, q), νA(x, q)), C(νA(y, q), νA(y, q)))

= C(νA(x, q), νA(y, q))

and thus
νA(xy

−1, q) ≤ C(νA(x, q), νA(y, q)). (b)

Now (a) and (b) give us that

A(xy−1, q) = (µA(xy
−1, q), νA(xy

−1, q)) ⊇ (T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q)))

and by using Proposition 2.18 we obtain that A = (µA, νA) ∈ QIFSN(G).

(2) Let
B(x, q) = (µB(x, q), νB(x, q)) ⊆ A(eG, q) = (µA(eG, q), νA(eG, q)) (∗)
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for all x ∈ H, q ∈ Q. Then µB(x, q) ≤ µA(eG, q) then µB(xy
−1, q) ≤ µA(eG, q) and µB(y, q) ≤ µA(eG, q) for

all x, y ∈ H, q ∈ Q. Then

µB(xy
−1, q) = T (µB(xy

−1, q), µA(eG, q))

= T (µB(xy
−1, q), µA(eGeG, q))

= T (µA(eGeG, q), µB(xy
−1, q))

= µA×B((eGeG, xy
−1), q)

= µA×B((eG, x)(eG, y
−1), q)

≥ T (µA×B((eG, x), q), µA×B((eG, y
−1), q))

= T (µA×B((eG, x), q), µA×B((eG, y), q))

= T (T (µA(eG, q), µB(x, q)), T (µA(eG, q), µB(y, q)))

≥ T (T (µB(x, q), µB(x, q)), T (µB(y, q), µB(y, q)))

= T (µB(x, q), µB(y, q))

and thus
µB(xy

−1, q) ≥ T (µB(x, q), µB(y, q)). (c)

Also from (∗) we will have that νB(x, q) ≥ νA(eG, q) then νB(xy
−1, q) ≥ νA(eG, q) and νB(y, q) ≥ νA(eG, q)

for all x, y ∈ H, q ∈ Q. Then

νB(xy
−1, q) = C(νB(xy

−1, q), νA(eG, q))

= C(νB(xy
−1, q), νA(eGeG, q))

= C(νA(eGeG, q), νB(xy
−1, q))

= νA×B((eGeG, xy
−1), q)

= νA×B((eG, x)(eG, y
−1), q)

≤ C(νA×B((eG, x), q), νA×B((eG, y
−1), q))

= C(νA×B((eG, x), q), νA×B((eG, y), q))

= C(C(νA(eG, q), νB(x, q)), C(νA(eG, q), νB(y, q)))

≤ C(C(νB(x, q), νB(x, q)), C(νB(y, q), νB(y, q)))

= C(νB(x, q), νB(y, q))

and so
νB(xy

−1, q) ≤ C(νB(x, q), νB(y, q)). (d)

Now as (c) and (d) we give that

B(xy−1, q) = (µB(xy
−1, q), νB(xy

−1, q)) ⊇ (T (µB(x, q), µB(y, q)), C(νB(x, q), νB(y, q)))

and Proposition 2.18 gives us B = (µB, νB) ∈ QIFSN(H).

(3) Straight forward.
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Definition 3.10. Let Let (G, .), (H, .) be any two groups and φ : G → H be a morphism such that
A = (µA, νA) ∈ IFS(G×Q) and B = (µB, νB) ∈ IFS(H ×Q).

For all x ∈ G, y ∈ H, q ∈ Q we define

φ(A)(y, q) = (φ(µA)(y, q), φ(νA)(y, q))

=

{
(sup{µA(x, q) | (x, q) ∈ G×Q,φ(x) = y}, inf{νA(x) | (x, q) ∈ G×Q,φ(x) = y}) if φ−1(y) ̸= ∅

(0, 1) if φ−1(y) = ∅.

Also φ−1(B)(x, q) = (φ−1(µB)(x, q), φ
−1(νB)(x, q)) = (µB(φ(x, q)), νB(φ(x, q))).

Proposition 3.11. Let φ be an epimorphism from group G into group H. If A = (µA, νA) ∈ QIFSN(G)

then φ(A) ∈ QIFSN(H).

Proof. Let h1, h2 ∈ H and q ∈ Q. Then

φ(µA)(h1h2, q) = sup{µA(g1g2, q) | g1, g2 ∈ G,φ(g1) = h1, φ(g2) = h2}

≥ sup{T (µA(g1, q), µA(g2, q)) | g1, g2 ∈ G,φ(g1) = h1, φ(g2) = h2}

= T ((sup{µA(g1, q) | g1 ∈ G,φ(g1) = h1}), (sup{µA(g2, q) | g2 ∈ G,φ(g2) = h2}))

= T (φ(µA)(h1, q), φ(µ)(h2, q))

and then
φ(µA)(h1h2, q) ≥ T (φ(µA)(h1, q), φ(µA)(h2, q)). (a)

Also
φ(νA)(h1h2, q) = inf{νA(g1g2, q) | g1, g2 ∈ G,φ(g1) = h1, φ(g2) = h2}

≤ inf{C(νA(g1, q), νA(g2, q)) | g1, g2 ∈ G,φ(g1) = h1, φ(g2) = h2}

= C((inf{νA(g1, q) | g1 ∈ G,φ(g1) = h1}), (inf{νA(g2, q) | g2 ∈ G,φ(g2) = h2}))

= C(φ(νA)(h1, q), φ(νA)(h2, q))

and so
φ(νA)(h1h2, q) ≤ C(φ(νA)(h1, q), φ(νA)(h2, q)). (b)

Later

φ(µA)(h
−1
1 , q) = sup{µA(g

−1
1 , q) | g1 ∈ G,φ(g−1

1 ) = h−1
1 }

≥ sup{µ(g1, q) | g1 ∈ G,φ(g1, q) = h1}

= φ(µA)(h1, q)

and
φ(µA)(h

−1
1 , q) ≥ φ(µA)(h1, q). (c)

Finally

φ(νA)(h
−1
1 , q) = inf{νA(g−1

1 , q) | g1 ∈ G,φ(g−1
1 ) = h−1

1 }

≤ inf{µ(g1, q) | g1 ∈ G,φ(g1, q) = h1}

= φ(νA)(h1, q)
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and
φ(νA)(h

−1
1 , q) ≤ φ(νA)(h1, q). (d)

Therefore fram (a) to (d) we obtain that φ(A) ∈ QIFSN(H).

Proposition 3.12. Let φ be a homorphism from group G into group H. If B = (µB, νB) ∈ QIFSN(H),

then φ−1(B) ∈ QIFSN(G).

Proof. Let g1, g2 ∈ G and q ∈ Q. Then

φ−1(µB)(g1g2, q) = µB(φ(g1g2), q)

= µB(φ(g1)φ(g2), q)

≥ T (µB(φ(g1), q), µB(φ(g2), q))

= T (φ−1(µB)(g1, q), φ
−1(µB)(g2, q))

then
φ−1(µB)(g1g2, q) ≥ T (φ−1(µB)(g1, q), φ

−1(µB)(g2, q)). (a)

Also

φ−1(νB)(g1g2, q) = νB(φ(g1g2), q)

= νB(φ(g1)φ(g2), q)

≤ C(νB(φ(g1), q), νB(φ(g2), q))

= C(φ−1(νB)(g1, q), φ
−1(νB)(g2, q))

so
φ−1(νB)(g1g2, q) ≤ C(φ−1(νB)(g1, q), φ

−1(νB)(g2, q)). (b)

Moreover

φ−1(µB)(g
−1
1 , q) = µB(φ(g

−1
1 ), q) = µB(φ

−1(g1), q) ≥ µB(φ(g1), q) = φ−1(µB)(g1, q)

and
φ−1(µB)(g

−1
1 , q) ≥ φ−1(µB)(g1, q). (c)

Finally
φ−1(νB)(g

−1
1 , q) = νB(φ(g

−1
1 ), q) = νB(φ

−1(g1), q) ≤ νB(φ(g1), q) = φ−1(νB)(g1, q)

and
φ−1(νB)(g

−1
1 , q) ≤ φ−1(νB)(g1, q). (d)

Thus from (a) to (d) we give that φ−1(B) ∈ QIFSN(G).

Proposition 3.13. Let φ be an anti-homorphism from group G into group H. If B = (µB, νB) ∈ QIFSN(H),

then φ−1(B) ∈ QIFSN(G).
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Proof. Let g1, g2 ∈ G and q ∈ Q. Then

φ−1(µB)(g1g2, q) = µB(φ(g1g2), q)

= µB(φ(g2)φ(g1), q)

≥ T (µB(φ(g2), q), µB(φ(g1), q))

= T (µB(φ(g1), q), µB(φ(g2), q))

= T (φ−1(µB)(g1, q), φ
−1(µB)(g2, q))

then
φ−1(µB)(g1g2, q) ≥ T (φ−1(µB)(g1, q), φ

−1(µB)(g2, q)). (a)

Also

φ−1(νB)(g1g2, q) = νB(φ(g1g2), q)

= νB(φ(g2)φ(g1), q)

≤ C(νB(φ(g2), q), νB(φ(g1), q))

= C(νB(φ(g1), q), νB(φ(g2), q))

= C(φ−1(νB)(g1, q), φ
−1(νB)(g2, q))

so
φ−1(νB)(g1g2, q) ≤ C(φ−1(νB)(g1, q), φ

−1(νB)(g2, q)). (b)

Moreover

φ−1(µB)(g
−1
1 , q) = µB(φ(g

−1
1 ), q) = µB(φ

−1(g1), q) ≥ µB(φ(g1), q) = φ−1(µB)(g1, q)

and
φ−1(µB)(g

−1
1 , q) ≥ φ−1(µB)(g1, q). (c)

Finally
φ−1(νB)(g

−1
1 , q) = νB(φ(g

−1
1 ), q) = νB(φ

−1(g1), q) ≤ νB(φ(g1), q) = φ−1(νB)(g1, q)

and
φ−1(νB)(g

−1
1 , q) ≤ φ−1(νB)(g1, q). (d)

Thus from (a) to (d) we give that φ−1(B) ∈ QIFSN(G).

Proposition 3.14. Let A = (µA, νA) ∈ NQIFSN(G) and H be a group. Suppose that φ : G → H be an
epimorphism. Then φ(A) ∈ NQIFSN(H).

Proof. By Proposition 3.11 we have φ(A) ∈ QIFSN(H). Let x, y ∈ H and q ∈ Q. Since φ is a surjection,
φ(u) = x for some u ∈ G. Then
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φ(µA)(xyx
−1, q) = sup{µA(w, q) | w ∈ G,φ(w) = xyx−1}

= sup{µA(u
−1wu, q) | w ∈ G,φ(u−1wu) = y}

= sup{µA(u
−1wu, q) | w ∈ G,φ(u−1)φ(w)φ(u) = y}

= sup{µA(u
−1wu, q) | w ∈ G,φ−1(u)φ(w)φ(u) = y}

= sup{µA(w, q) | w ∈ G,φ(w) = y}

= φ(µA)(y, q).

Thus
φ(µA)(xyx

−1, q) = φ(µA)(y, q). (a)

Also

φ(νA)(xyx
−1, q) = inf{νA(w, q) | w ∈ G,φ(w) = xyx−1}

= inf{νA(u−1wu, q) | w ∈ G,φ(u−1wu) = y}

= inf{νA(u−1wu, q) | w ∈ G,φ(u−1)φ(w)φ(u) = y}

= inf{νA(u−1wu, q) | w ∈ G,φ−1(u)φ(w)φ(u) = y}

= inf{νA(w, q) | w ∈ G,φ(w) = y}

= φ(νA)(y, q).

Thus
φ(νA)(xyx

−1, q) = φ(νA)(y, q). (b)

Therefore from (a) and (b) we get that

φ(A)(xyx−1, q) = (φ(µA)(xyx
−1, q), φ(νA)(xyx

−1, q))

= (φ(µA)(y, q), φ(νA)(y, q)) = φ(A)(y, q)

and then φ(A) ∈ NQIFSN(H).

Proposition 3.15. Let B = (µB, νB) ∈ NQIFSN(H) and φ : G → H is a group homomorphism.Then
φ−1(B) ∈ NQIFSN(G).

Proof. As Proposition 3.12 we obtain that φ−1(B) ∈ QBFSN(G). Now for any x, y ∈ G and q ∈ Q we
obtain

φ−1(µB)(xyx
−1, q) = µB(φ(xyx

−1), q)

= µB(φ(x)φ(y)φ(x
−1), q)

= µB(φ(x)φ(y)φ
−1(x), q)

= µB(φ(y), q)

= φ−1(µB)(y, q).
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Then
φ−1(µB)(xyx

−1, q) = φ−1(µB)(y, q). (a)

Also

φ−1(νB)(xyx
−1, q) = νB(φ(xyx

−1), q)

= νB(φ(x)φ(y)φ(x
−1), q)

= νB(φ(x)φ(y)φ
−1(x), q)

= νB(φ(y), q)

= φ−1(νB)(y, q).

Then
φ−1(νB)(xyx

−1, q) = φ−1(νB)(y, q). (b)

Therefore (a) and (b) give us that

φ−1(B)(xyx−1, q) = (φ−1(µB)(xyx
−1, q), φ−1(νB)(xyx

−1, q))

= (φ−1(µB)(y, q), φ
−1(νB)(y, q))

= φ−1(B)(y, q)

and then φ−1(B) ∈ NQIFSN(G).

4 Open problem

In this paper, we defined the concepts of intersection, normality, direct product, homomorphism and anti
homomorphism of QIFSN(G) and investigated their properties of them. Now one can study and obtain
QIFSN(M) of R-modules M as we did QIFSN(G) for groups and this can be an open problem.
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