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Abstract
This paper studies the existence of a solution for a system of fractional integral equations using

Darbo’s fixed point theorem under the measure of noncompactness. Moreover, some tables and figures
are presented to show the efficiency of our main results. In this paper, by applying the artificial small
parameter method, we approximate the solution of one example.
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1 Introduction

Many papers successfully apply Darbo’s fixed point theorem to study the existence of solutions for the
functional integral equations formulated as a fixed point problem. For example in [4], the following system
of integro-differential equations is studiedσ(ς) = f1

(
ς, σ(ς), ζ(ς),

∫ q1(ς)
p g1(ς, s, σ(s), ζ(s), σ

′
(s), ζ

′
(s)) ds

)
, ς ∈ R+,

ζ(ς) = f2

(
ς, σ(ς), ζ(ς),

∫ q2(ς)
p g2(ς, s, σ(s), ζ(s), σ

′
(s), ζ

′
(s)) ds

)
, ς ∈ R+.

(1)

In this article, we discuss the following fractional system of equations such that ς ∈ R+
σ(ς) = f1

(
ς, σ(ς), ζ(ς),

1

Γ(α1,1)

∫ ς

a1,1

g
′

1,1(s)(
g1,1(ς)− g1,1(s)

)1−α1,1
ds, ...,

1

Γ(α1,n)

∫ ς

a1,n

g
′

1,n(s)(
g1,n(t)− g1,n(s)

)1−α1,n
ds
)
,

ζ(ς) = f2

(
ς, σ(ς), ζ(ς),

1

Γ(α2,1)

∫ ς

a2,1

g
′

2,1(s)(
g2,1(ς)− g2,1(s)

)1−α2,1
ds, ...,

1

Γ(α2,n)

∫ ς

a2,n

g
′

2,n(s)(
g2,n(t)− g2,n(s)

)1−α2,n
ds
)
,

(2)
in which n ∈ N, ai,j , αi,j ∈ R, i ∈ {1, 2}, and j ∈ {1, ..., n}.

1speaker
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2 Preliminaries

Definition 2.1. [4] A function ϱ : R+ −→ R+ is called the admissible-Darbo function, if it verifies one of
the following conditions:
(D1)ϱ−1({0}) = {0}.
(D2) ϱ is a nondecreasing function and for ς ≥ 0, lim

n→∞
ϱn(ς) = 0.

(D3) ϱ is an upper-semi continuous function and for ς > 0, ϱ(ς) < ς.
(D4) For every z > 0, there exist δ > 0 such that ϱ(ς) ≤ z for ς ∈ [z, z + δ].
Let us denote the family of admissible-Darbo functions with Υ.

Definition 2.2. [1] A mapping µ : MZ −→ [0,+∞] is a measure of noncompactness (MNC) in Z if it
satisfies the following conditions:

(1) The family kerµ := {J ∈MZ : µ(J) = 0} is nonempty subset of NZ ,

(2) J1 ⊆ J2 =⇒ µ(J1) ≤ µ(J2),

(3) µ(J) = µ(J),

(4) µ(ConvJ) = µ(J),

(5) µ(αJ1 + (1− α)J2) ≤ αµ(J1) + (1− α)µ(J2), for every α ∈
[
0, 1

]
,

(6) If {Jn} is a sequence of closed sets from MZ such that Jn+1 ⊆ Jn and lim
n→∞

µ(Jn) = 0, then the set
J∞ = ∩∞

n=1Jn is nonempty.

Theorem 2.3. [4] Suppose Υ is a nonempty, convex, bounded and closed subset of a Banach space X. For
each i ∈ {1, 2} and k ∈ {1, ...n} for some n ∈ N, let Ai,k : Υ × Υ −→ Υ be a compact and continuous
operator, ψk

i : R+ −→ R+ be a nondecreasing continuous function with ψk
i (0) = 0, and Ti : Υ×Υ −→ Υ be

an operator such that

∥ Ti(σ1, ζ1)− Ti(σ2, ζ2) ∥≤ ϱi

(
max{∥σ1 − σ2∥, ∥ζ1 − ζ2∥}

)
+

n∑
k=1

ψk
i (∥Ai,k(σ1, ζ1)−Ai,k(σ2, ζ2)∥), (3)

in which ϱ1, ϱ2 ∈ Υ are two same admissible-Darbo functions. Then there exist x∗, y∗ ∈ Υ such that{
x∗ = T1(x

∗, y∗),

y∗ = T2(x
∗, y∗).

3 Main results

Theorem 3.1. Consider the fractional system of equations (2) with the following conditions

(A) For i ∈ {1, 2}, j ∈ {1, ..., n}, ς ∈ R+, and σi, ζi, zj ∈ R, we have

|fi(ς, σ1, ζ1, z1, ..., zn)− fi(ς, σ2, ζ2, z1, ..., zn)| ≤ ϱi

(
max{∥σ1 − σ2∥, ∥ζ1 − ζ2∥}

)
.

(B) There exists a positive constant r0 such that for i ∈ {1, 2},

ϱi(r0) + f i0 < r0, (4)
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in which

f i0 := sup
{
|fi

(
ς, 0, 0,

1

Γ(αi,1)

∫ ς

ai,1

g
′

i,1(s)(
gi,1(ς)− gi,1(s)

)1−αi,1
ds, ...,

1

Γ(αi,n)

∫ ς

ai,n

g
′

i,n(s)(
gi,n(ς)− gi,n(s)

)1−αi,n
ds
)
| : ς ∈ R+

}
.

(5)

Proof. Consider the operator Ti on the space C(R+) for i ∈ {1, 2}, as follows:

Ti(σ, ζ)(ς) = fi

(
ς, σ(ς), ζ(ς),

1

Γ(αi,1)

∫ ς

ai,1

g
′
i,1(s)(

gi,1(ς)− gi,1(s)
)1−αi,1

ds, ...,
1

Γ(αi,n)

∫ ς

ai,n

g
′
i,n(s)(

gi,n(ς)− gi,n(s)
)1−αi,n

ds
)
.

Firstly, for every σ, ζ ∈ Br0 = {y ∈ C(R+) : ∥y∥C(R+) ≤ r0}, we have to prove Ti(σ, ζ) ∈ Br0 . Now, for
ς ∈ R+, we calculate as follows:

|Ti(σ, ζ)(ς)| =
∣∣∣fi(ς, σ(ς), ζ(ς), 1

Γ(αi,1)

∫ ς

ai,1

g
′
i,1(s)(

gi,1(ς)− gi,1(s)
)1−αi,1

ds, ...,
1

Γ(αi,n)

∫ ς

ai,n

g
′
i,n(s)(

gi,n(ς)− gi,n(s)
)1−αi,n

ds
)

− fi
(
ς, 0, 0,

1

Γ(αi,1)

∫ ς

ai,1

g
′
i,1(s)(

gi,1(ς)− gi,1(s)
)1−αi,1

ds, ...,
1

Γ(αi,n)

∫ ς

ai,n

g
′
i,n(s)(

gi,n(ς)− gi,n(s)
)1−αi,n

ds
)

+ fi
(
ς, 0, 0,

1

Γ(αi,1)

∫ ς

ai,1

g
′
i,1(s)(

gi,1(ς)− gi,1(s)
)1−αi,1

ds, ...,
1

Γ(αi,n)

∫ ς

ai,n

g
′
i,n(s)(

gi,n(ς)− gi,n(s)
)1−αi,n

ds
)∣∣∣

≤ ϱi(r0) + f i0.

By applying conditions (A) and (B), we obtain Ti(σ, ζ) ∈ Br0 . In what follows, we study the continuity of Ti
on Br0 ×Br0 . To do this, suppose {σn} and {ζn} as sequences in Br0 that converge to σ ∈ Br0 and ζ ∈ Br0 ,

respectively. For every ε > 0, there exists N > 0 such that ∥σn − σ∥C(R+), ∥ζn − ζ∥C(R+) ≤ ε. Thus, for all
n > N and ς ∈ R+, we get

|Ti(σn, ζn)(ς)− Ti(σ, ζ)(ς)| ≤ ϱi

(
max{∥σn − σ∥, ∥ζn − ζ∥}

)
.

Then the existence of a solution is derived from Theorem 2.3.

Example 3.2. The following fractional integral system of equations has at least one solution

σ(ς) =
e−ς

12
+

arctan(

√
ς

cosh(ς)
)

12
sin(ζ(ς)) +

1

Γ(13)

∫ ς

1

e−s
(
s− 2

)(
(1− ς)e−ς − (1− s)e−s

) 2
3

ds

+
sin(ς)

Γ(17)

∫ ς

2

e−s
(
s− 3

)(
(2− ς)e−ς − (2− s)e−s

) 6
7

ds,

ζ(ς) =
sech(ς)

ς7 + eς
+

ln(1 + |σ(ς)|)
sin(ς) + 12

+
1

Γ(13)

∫ ς

2

−2s(s4 − 8s2 − 1)

(s4 + 1)2
( ς2 − 4

ς4 + 1
− s2 − 4

s4 + 1

) 2
3

ds

+
1

Γ(13)

∫ ς

√
3

−2s(s4 − 6s2 − 1)

(s4 + 1)2
( ς2 − 3

ς4 + 1
− s2 − 3

s4 + 1

) 2
3

ds.
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Proof. If we get

f1(ς, σ, ζ, z1, z2) =

e−ς + sin(ζ) arctan(

√
ς

cosh(ς)
)

12
+ z1 + sin(ς)z2,

f2(ς, σ, ζ, z1, z2) =
sech(ς)

ς7 + eς
+

ln(1 + |σ|)
sin(ς) + 12

+ z1 + z2,

g1,1(ς) = (1− ς)e−ς ,

g1,2(ς) = (2− ς)e−ς ,

g2,1(ς) =
ς2 − 4

ς4 + 1
,

g2,2(ς) =
ς2 − 3

ς4 + 1
.

Now, due to condition (B) and Theorem (3.1), if ϱ1(σ) =
πσ

24
and ϱ2(σ) =

ln(1 + σ)

12
, the existence of at

least one solution is derived for r0 = 12.

4 Numerical method

We provide an example of functional integro-differential equations of the form (2) for which the assumptions
of Theorem 3.1 are satisfied. Moreover, applying the artificial small parameter method [11, 7], which is a
particular case of homotopy analysis method [10, 9] and also is equivalent to the Adomian decomposition
method [8, 6], we find an approximation of the solution which converges. The tables and figures show the
effectiveness of our method.

Example 4.1. Consider the following equation.

σ(ς) =
sin(ζ(ς))

ς4 + 10
− 1

6Γ(13)

∫ ς

1

e−s
(
s− 2

)(
(1− ς)e−ς − (1− s)e−s

) 2
3

ds,

ζ(ς) =
σ(ς)

ς8 + 18
− 1

60Γ(13)

∫ ς

2

−2s(s4 − 8s2 − 1)

(s4 + 1)2
( ς2 − 4

t4 + 1
− s2 − 4

s4 + 1

) 2
3

ds. (6)

that is an example for equation (2) with f1(ς, σ, ζ, z) :=
sin(ζ)

ς4 + 10
+
z

6
, f2(ς, σ, ζ, z) :=

σ

ς8 + 18
+

z

60
, g1 :=

(1 − ς)e−ς , g2 :=
ς2 − 4

ς4 + 1
. Thus assumptions are verified for each 0.2 ≤ r0. For solving this equation we

consider the following equation:

∞∑
j=0

ρjvj(ς) =

sin(
∞∑
j=0

ρjwj(ς))

ς4 + 10
− 1

6Γ(13)

∫ ς

1

e−s
(
s− 2

)(
(1− ς)e−ς − (1− s)e−s

) 2
3

ds,

∞∑
j=0

ρjwj(ς) =

∞∑
j=0

ρjvj(ς)

ς8 + 18
− 1

60Γ(13)

∫ ς

2

−2s(s4 − 8s2 − 1)

(s4 + 1)2
( ς2 − 4

ς4 + 1
− s2 − 4

s4 + 1

) 2
3

ds.

The parameter ρ is called the artificial small parameter. The approximate solution of σ(ς) and ζ(ς) are
Q(ς, ρ) =

∞∑
j=0

ρjvj(ς) and Θ(ς, ρ) =
∞∑
j=0

ρjwj(ς), respectively. If ρ increases from 0 to 1, then Q(ς, 1) and



Θ(ς, 1) are equivalent to σ(ς) and ζ(ς), respectively. We can write

sin(Θ(ς, ρ)) = sin(

∞∑
j=0

ρjwj(ς)) =

∞∑
j=0

ρjAj(ς), (7)

Differentiating both sides of the above expression n times with respect ρ and then setting ρ = 0, we get

An(ς) =
1

n!

∂n

∂ρn
sin

( ∞∑
i=0

ρi
(
Θ(ς, ρ)

))∣∣∣
ρ=0

,

Therefore, we have

∞∑
j=0

ρjvj(ς) =

ρ
∞∑
j=0

ρjAj(ς)

ς4 + 10
+

((1− ς)e−ς)
1
3

2Γ(13)
,

∞∑
j=0

ρjwj(ς) =

∞∑
j=0

ρjvj(ς)

ς8 + 18
+

1

20Γ(
1

3
)
(
ς2 − 4

ς4 + 1
)
1
3 . (8)

If we compare the two sides of (8) with respect to the powers of ρ, we can get v0, w0, v1 and w1 as follows,

v0(ς) =
((1− ς)e−ς)

1
3

2Γ(
1

3
)

,

w0(ς) =
((1− ς)e−ς)

1
3

2Γ(
1

3
)(ς8 + 18)

+ (
ς4 − 4

ς4 + 1
)
1
3 × 1

20Γ(
1

3
)
,

v1(ς) =
sin(w0(ς))

ς4 + 10
,

w1(ς) =
v1(ς)

ς8 + 18
.

Fig.1
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i ς Real(σ(ς)− T1(σ, ζ)(ς)) Imag(σ(ς)− T1(σ, ζ)(ς))

1 1 4.64× 10−6 8.04× 10−6

2 2 7.32× 10−2 8.3× 10−2

3 3 6.18× 10−2 7.49× 10−2

4 4 4.57× 10−2 6.14× 10−2

5 10 7× 10−3 1.20× 10−2

6 11 5.2× 10−3 8.9× 10−3

Table 1: Absolute errors of T1(σ, ζ).

i ς Real(ζ(ς)− T2(σ, ζ)(ς)) Imag(ζ(ς)− T2(σ, ζ)(ς))

1 1 1.94× 10−19 3.36× 10−19

2 2 1.66× 10−2 0
3 3 1.09× 10−2 0
4 4 1.18× 10−2 0
5 10 1.47× 10−2 0
6 11 1.49× 10−2 0

Table 2: Absolute errors of T2(σ, ζ) .

Fig.2

We approximate σ(ς) ≈ v0(ς) + v1(ς) and ζ(ς) ≈ w0(ς) + w1(ς).
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